Evaluation of taurine neuroprotection in aged rats with traumatic brain injury

  • Raeesa Gupte
  • Sarah Christian
  • Paul Keselman
  • Joshua Habiger
  • William M. Brooks
  • Janna L. Harris
ORIGINAL RESEARCH

Abstract

Despite higher rates of hospitalization and mortality following traumatic brain injury (TBI) in patients over 65 years old, older patients remain underrepresented in drug development studies. Worse outcomes in older individuals compared to younger adults could be attributed to exacerbated injury mechanisms including oxidative stress, inflammation, blood-brain barrier disruption, and bioenergetic dysfunction. Accordingly, pleiotropic treatments are attractive candidates for neuroprotection. Taurine, an endogenous amino acid with antioxidant, anti-inflammatory, anti-apoptotic, osmolytic, and neuromodulator effects, is neuroprotective in adult rats with TBI. However, its effects in the aged brain have not been evaluated. We subjected aged male rats to a unilateral controlled cortical impact injury to the sensorimotor cortex, and randomized them into four treatment groups: saline or 25 mg/kg, 50 mg/kg, or 200 mg/kg i.p. taurine. Treatments were administered 20 min post-injury and daily for 7 days. We assessed sensorimotor function on post-TBI days 1–14 and tissue loss on day 14 using T2-weighted magnetic resonance imaging. Experimenters were blinded to the treatment group for the duration of the study. We did not observe neuroprotective effects of taurine on functional impairment or tissue loss in aged rats after TBI. These findings in aged rats are in contrast to previous reports of taurine neuroprotection in younger animals. Advanced age is an important variable for drug development studies in TBI, and further research is required to better understand how aging may influence mechanisms of taurine neuroprotection.

Keywords

Aging Traumatic brain injury Therapy Sensorimotor function Magnetic resonance imaging Scientific rigor 

Notes

Acknowledgements

We thank Dr. Allison Neely at the Laboratory Animal Resources facility at the University of Kansas Medical Center for performing animal necropsies.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

References

  1. Aghakhani, K., Heidari, M., Ameri, M., Mehrpisheh, S., & Memarian, A. (2015). Characteristics of traumatic brain injury among accident and falling down cases. Acta Medica Iranica, 53(10), 652–655.PubMedGoogle Scholar
  2. Banay-Schwartz, M., Lajtha, A., & Palkovits, M. (1989). Changes with aging in the levels of amino acids in rat CNS structural elements. II. Taurine and small neutral amino acids. Neurochemical Research, 14(6), 563–570.CrossRefPubMedGoogle Scholar
  3. Begley, C. G. (2013). Six red flags for suspect work. Nature, 497(7450), 433–434.  https://doi.org/10.1038/497433a.CrossRefPubMedGoogle Scholar
  4. Benedetti, M. S., Russo, A., Marrari, P., & Dostert, P. (1991). Effects of ageing on the content in sulfur-containing amino acids in rat brain. Journal of Neural Transmission. General Section, 86(3), 191–203.CrossRefPubMedGoogle Scholar
  5. Bouzat, P., Francony, G., Thomas, S., Valable, S., Mauconduit, F., Fevre, M. C., Barbier, E. L., Bernaudin, M., Lahrech, H., & Payen, J. F. (2011). Reduced brain edema and functional deficits after treatment of diffuse traumatic brain injury by carbamylated erythropoietin derivative. Critical Care Medicine, 39(9), 2099–2105.  https://doi.org/10.1097/CCM.0b013e31821cb7b2.CrossRefPubMedGoogle Scholar
  6. Coronado, V. G., Xu, L., Basavaraju, S. V., McGuire, L. C., Wald, M. M., Faul, M. D., et al. (2011). Surveillance for traumatic brain injury-related deaths--United States, 1997-2007. MMWR Surveillance Summaries, 60(5), 1–32.Google Scholar
  7. Corral, L., Javierre, C. F., Ventura, J. L., Marcos, P., Herrero, J. I., & Manez, R. (2012). Impact of non-neurological complications in severe traumatic brain injury outcome. Critical Care, 16(2), R44.  https://doi.org/10.1186/cc11243.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Duarte, J. M., Do, K. Q., & Gruetter, R. (2014). Longitudinal neurochemical modifications in the aging mouse brain measured in vivo by 1H magnetic resonance spectroscopy. Neurobiology of Aging, 35(7), 1660–1668.  https://doi.org/10.1016/j.neurobiolaging.2014.01.135.CrossRefPubMedGoogle Scholar
  9. Durelli, L., Mutani, R., & Fassio, F. (1983). The treatment of myotonia: Evaluation of chronic oral taurine therapy. Neurology, 33(5), 599–603.CrossRefPubMedGoogle Scholar
  10. El Idrissi, A., Shen, C. H., L'Amoreaux, W., & J. (2013). Neuroprotective role of taurine during aging. Amino Acids, 45(4), 735–750.  https://doi.org/10.1007/s00726-013-1544-7.CrossRefPubMedGoogle Scholar
  11. Farace, E., & Alves, W. M. (2000). Do women fare worse: A metaanalysis of gender differences in traumatic brain injury outcome. Journal of Neurosurgery, 93(4), 539–545.  https://doi.org/10.3171/jns.2000.93.4.0539.CrossRefPubMedGoogle Scholar
  12. Faul, M., & Coronado, V. (2015). Epidemiology of traumatic brain injury. Handbook of Clinical Neurology, 127, 3–13.  https://doi.org/10.1016/B978-0-444-52892-6.00001-5.CrossRefPubMedGoogle Scholar
  13. Fiette, L., & Slaoui, M. (2011). Necropsy and sampling procedures in rodents. Methods in Molecular Biology, 691, 39–67.  https://doi.org/10.1007/978-1-60761-849-2_3.CrossRefPubMedGoogle Scholar
  14. Froger, N., Moutsimilli, L., Cadetti, L., Jammoul, F., Wang, Q. P., Fan, Y., Gaucher, D., Rosolen, S. G., Neveux, N., Cynober, L., Sahel, J. A., & Picaud, S. (2014). Taurine: The comeback of a neutraceutical in the prevention of retinal degenerations. Progress in Retinal and Eye Research, 41, 44–63.  https://doi.org/10.1016/j.preteyeres.2014.03.001.CrossRefPubMedGoogle Scholar
  15. Gilmer, L. K., Ansari, M. A., Roberts, K. N., & Scheff, S. W. (2010). Age-related mitochondrial changes after traumatic brain injury. Journal of Neurotrauma, 27(5), 939–950.  https://doi.org/10.1089/neu.2009.1181.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gu, Y., Zhao, Y., Qian, K., & Sun, M. (2015). Taurine attenuates hippocampal and corpus callosum damage, and enhances neurological recovery after closed head injury in rats. Neuroscience, 291, 331–340.  https://doi.org/10.1016/j.neuroscience.2014.09.073.CrossRefPubMedGoogle Scholar
  17. Gupta, R. C., Seki, Y., & Yosida, J. (2006). Role of taurine in spinal cord injury. Current Neurovascular Research, 3(3), 225–235.CrossRefPubMedGoogle Scholar
  18. Hanell, A., & Marklund, N. (2014). Structured evaluation of rodent behavioral tests used in drug discovery research. Frontiers in Behavioral Neuroscience, 8, 252.  https://doi.org/10.3389/fnbeh.2014.00252.PubMedPubMedCentralGoogle Scholar
  19. Harris, J. L., Yeh, H. W., Choi, I. Y., Lee, P., Berman, N. E., Swerdlow, R. H., Craciunas, S. C., & Brooks, W. M. (2012). Altered neurochemical profile after traumatic brain injury: (1)H-MRS biomarkers of pathological mechanisms. Journal of Cerebral Blood Flow and Metabolism, 32(12), 2122–2134.  https://doi.org/10.1038/jcbfm.2012.114.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Harris, J. L., Choi, I. Y., & Brooks, W. M. (2015). Probing astrocyte metabolism in vivo: Proton magnetic resonance spectroscopy in the injured and aging brain. Frontiers in Aging Neuroscience, 7, 202.  https://doi.org/10.3389/fnagi.2015.00202.PubMedPubMedCentralGoogle Scholar
  21. Hoane, M. R., Swan, A. A., & Heck, S. E. (2011). The effects of a high-fat sucrose diet on functional outcome following cortical contusion injury in the rat. Behavioural Brain Research, 223(1), 119–124.  https://doi.org/10.1016/j.bbr.2011.04.028.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Junyent, F., Utrera, J., Romero, R., Pallas, M., Camins, A., Duque, D., et al. (2009). Prevention of epilepsy by taurine treatments in mice experimental model. Journal of Neuroscience Research, 87(6), 1500–1508.  https://doi.org/10.1002/jnr.21950.CrossRefPubMedGoogle Scholar
  23. Kang, Y. S. (2006). The effect of oxidative stress on the transport of taurine in an in vitro model of the blood-brain barrier. Advances in Experimental Medicine and Biology, 583, 291–298.CrossRefPubMedGoogle Scholar
  24. Kang, Y. S., Ohtsuki, S., Takanaga, H., Tomi, M., Hosoya, K., & Terasaki, T. (2002). Regulation of taurine transport at the blood-brain barrier by tumor necrosis factor-alpha, taurine and hypertonicity. Journal of Neurochemistry, 83(5), 1188–1195.CrossRefPubMedGoogle Scholar
  25. Kennard, J. A., & Woodruff-Pak, D. S. (2011). Age sensitivity of behavioral tests and brain substrates of normal aging in mice. Frontiers in Aging Neuroscience, 3, 9.  https://doi.org/10.3389/fnagi.2011.00009.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kochanek, P. M., Bramlett, H. M., Shear, D. A., Dixon, C. E., Mondello, S., Dietrich, W. D., Hayes, R. L., Wang, K. K. W., Poloyac, S. M., Empey, P. E., Povlishock, J. T., Mountney, A., Browning, M., Deng-Bryant, Y., Yan, H. Q., Jackson, T. C., Catania, M., Glushakova, O., Richieri, S. P., & Tortella, F. C. (2016). Synthesis of findings, current investigations, and future directions: Operation brain trauma therapy. Journal of Neurotrauma, 33(6), 606–614.  https://doi.org/10.1089/neu.2015.4133.CrossRefPubMedGoogle Scholar
  27. Kraus, J. F., Peek-Asa, C., & McArthur, D. (2000). The independent effect of gender on outcomes following traumatic brain injury: A preliminary investigation. Neurosurgical Focus, 8(1), e5.CrossRefPubMedGoogle Scholar
  28. Kuypers, N. J., & Hoane, M. R. (2010). Pyridoxine administration improves behavioral and anatomical outcome after unilateral contusion injury in the rat. Journal of Neurotrauma, 27(7), 1275–1282.  https://doi.org/10.1089/neu.2010.1327.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lallemand, F., & De Witte, P. (2004). Taurine concentration in the brain and in the plasma following intraperitoneal injections. Amino Acids, 26(2), 111–116.  https://doi.org/10.1007/s00726-003-0058-0.CrossRefPubMedGoogle Scholar
  30. Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: A brief overview. The Journal of Head Trauma Rehabilitation, 21(5), 375–378.CrossRefPubMedGoogle Scholar
  31. Leasure, J. L., & Grider, M. (2010). The effect of mild post-stroke exercise on reactive neurogenesis and recovery of somatosensation in aged rats. Experimental Neurology, 226(1), 58–67.  https://doi.org/10.1016/j.expneurol.2010.08.003.CrossRefPubMedGoogle Scholar
  32. Mitchell, J. J., & Anderson, K. J. (1998). Age-related changes in [3H]MK-801 binding in the Fischer 344 rat brain. Neurobiology of Aging, 19(3), 259–265.CrossRefPubMedGoogle Scholar
  33. Mondello, S., Shear, D. A., Bramlett, H. M., Dixon, C. E., Schmid, K. E., Dietrich, W. D., Wang, K. K. W., Hayes, R. L., Glushakova, O., Catania, M., Richieri, S. P., Povlishock, J. T., Tortella, F. C., & Kochanek, P. M. (2016). Insight into pre-clinical models of traumatic brain injury using circulating brain damage biomarkers: Operation brain trauma therapy. Journal of Neurotrauma, 33(6), 595–605.  https://doi.org/10.1089/neu.2015.4132.CrossRefPubMedGoogle Scholar
  34. Oja, S. S., & Saransaari, P. (2013). Taurine and epilepsy. Epilepsy Research, 104(3), 187–194.  https://doi.org/10.1016/j.eplepsyres.2013.01.010.CrossRefPubMedGoogle Scholar
  35. Onyszchuk, G., Al-Hafez, B., He, Y. Y., Bilgen, M., Berman, N. E., & Brooks, W. M. (2007). A mouse model of sensorimotor controlled cortical impact: Characterization using longitudinal magnetic resonance imaging, behavioral assessments and histology. Journal of Neuroscience Methods, 160(2), 187–196.  https://doi.org/10.1016/j.jneumeth.2006.09.007.CrossRefPubMedGoogle Scholar
  36. Onyszchuk, G., He, Y. Y., Berman, N. E., & Brooks, W. M. (2008). Detrimental effects of aging on outcome from traumatic brain injury: A behavioral, magnetic resonance imaging, and histological study in mice. Journal of Neurotrauma, 25(2), 153–171.  https://doi.org/10.1089/neu.2007.0430.CrossRefPubMedGoogle Scholar
  37. Pasantes-Morales, H., Franco, R., Ordaz, B., & Ochoa, L. D. (2002). Mechanisms counteracting swelling in brain cells during hyponatremia. Archives of Medical Research, 33(3), 237–244.CrossRefPubMedGoogle Scholar
  38. Pascual, J. M., Solivera, J., Prieto, R., Barrios, L., Lopez-Larrubia, P., Cerdan, S., et al. (2007). Time course of early metabolic changes following diffuse traumatic brain injury in rats as detected by (1)H NMR spectroscopy. Journal of Neurotrauma, 24(6), 944–959.  https://doi.org/10.1089/neu.2006.0190.CrossRefPubMedGoogle Scholar
  39. Paxinos, G., Watson, C. (2007) The rat brain in stereotaxic coordinates (6th ed.): Academic Press.Google Scholar
  40. Peterson, T. C., Hoane, M. R., McConomy, K. S., Farin, F. M., Bammler, T. K., MacDonald, J. W., Kantor, E. D., & Anderson, G. D. (2015a). A combination therapy of nicotinamide and progesterone improves functional recovery following traumatic brain injury. Journal of Neurotrauma, 32(11), 765–779.  https://doi.org/10.1089/neu.2014.3530.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Peterson, T. C., Maass, W. R., Anderson, J. R., Anderson, G. D., & Hoane, M. R. (2015b). A behavioral and histological comparison of fluid percussion injury and controlled cortical impact injury to the rat sensorimotor cortex. Behavioural Brain Research, 294, 254–263.  https://doi.org/10.1016/j.bbr.2015.08.007.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Ricci, L., Valoti, M., Sgaragli, G., & Frosini, M. (2009). Protection by taurine of rat brain cortical slices against oxygen glucose deprivation- and reoxygenation-induced damage. European Journal of Pharmacology, 621(1–3), 26–32.  https://doi.org/10.1016/j.ejphar.2009.08.017.CrossRefPubMedGoogle Scholar
  43. Ripps, H., & Shen, W. (2012). Review: Taurine: A "very essential" amino acid. Molecular Vision, 18, 2673–2686.PubMedPubMedCentralGoogle Scholar
  44. Sandhir, R., Onyszchuk, G., & Berman, N. E. (2008). Exacerbated glial response in the aged mouse hippocampus following controlled cortical impact injury. Experimental Neurology, 213(2), 372–380.  https://doi.org/10.1016/j.expneurol.2008.06.013.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schuhmann, M. U., Stiller, D., Skardelly, M., Bernarding, J., Klinge, P. M., Samii, A., Samii, M., & Brinker, T. (2003). Metabolic changes in the vicinity of brain contusions: A proton magnetic resonance spectroscopy and histology study. Journal of Neurotrauma, 20(8), 725–743.  https://doi.org/10.1089/089771503767869962.CrossRefPubMedGoogle Scholar
  46. Scott, S., Kranz, J. E., Cole, J., Lincecum, J. M., Thompson, K., Kelly, N., Bostrom, A., Theodoss, J., al-Nakhala, B. M., Vieira, F. G., Ramasubbu, J., & Heywood, J. A. (2008). Design, power, and interpretation of studies in the standard murine model of ALS. Amyotrophic Lateral Sclerosis, 9(1), 4–15.  https://doi.org/10.1080/17482960701856300.CrossRefPubMedGoogle Scholar
  47. Shao, A., & Hathcock, J. N. (2008). Risk assessment for the amino acids taurine, L-glutamine and L-arginine. Regulatory Toxicology and Pharmacology, 50(3), 376–399.  https://doi.org/10.1016/j.yrtph.2008.01.004.CrossRefPubMedGoogle Scholar
  48. Shennan, D. B., & Thomson, J. (2007). Estrogen regulation and ion dependence of taurine uptake by MCF-7 human breast cancer cells. Cellular & Molecular Biology Letters, 12(3), 396–406.  https://doi.org/10.2478/s11658-007-0011-4.CrossRefGoogle Scholar
  49. Simon-O'Brien, E., Gauthier, D., Riban, V., & Verleye, M. (2016). Etifoxine improves sensorimotor deficits and reduces glial activation, neuronal degeneration, and neuroinflammation in a rat model of traumatic brain injury. Journal of Neuroinflammation, 13(1), 203.  https://doi.org/10.1186/s12974-016-0687-3.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Singh, K., Trivedi, R., Haridas, S., Manda, K., & Khushu, S. (2016). Study of neurometabolic and behavioral alterations in rodent model of mild traumatic brain injury: A pilot study. NMR in Biomedicine, 29(12), 1748–1758.  https://doi.org/10.1002/nbm.3627.CrossRefPubMedGoogle Scholar
  51. Slewa-Younan, S., Green, A. M., Baguley, I. J., Gurka, J. A., & Marosszeky, J. E. (2004). Sex differences in injury severity and outcome measures after traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 85(3), 376–379.CrossRefPubMedGoogle Scholar
  52. Steward, O., & Balice-Gordon, R. (2014). Rigor or mortis: Best practices for preclinical research in neuroscience. Neuron, 84(3), 572–581.  https://doi.org/10.1016/j.neuron.2014.10.042.CrossRefPubMedGoogle Scholar
  53. Su, Y., Fan, W., Ma, Z., Wen, X., Wang, W., Wu, Q., & Huang, H. (2014). Taurine improves functional and histological outcomes and reduces inflammation in traumatic brain injury. Neuroscience, 266, 56–65.  https://doi.org/10.1016/j.neuroscience.2014.02.006.CrossRefPubMedGoogle Scholar
  54. Sun, M., & Xu, C. (2008). Neuroprotective mechanism of taurine due to up-regulating calpastatin and down-regulating calpain and caspase-3 during focal cerebral ischemia. Cellular and Molecular Neurobiology, 28(4), 593–611.  https://doi.org/10.1007/s10571-007-9183-8.CrossRefPubMedGoogle Scholar
  55. Sun, M., Zhao, Y., Gu, Y., & Zhang, Y. (2015). Protective effects of taurine against closed head injury in rats. Journal of Neurotrauma, 32(1), 66–74.  https://doi.org/10.1089/neu.2012.2432.CrossRefPubMedGoogle Scholar
  56. Tan, Z., Li, X., Kelly, K. A., Rosen, C. L., & Huber, J. D. (2009). Plasminogen activator inhibitor type 1 derived peptide, EEIIMD, diminishes cortical infarct but fails to improve neurological function in aged rats following middle cerebral artery occlusion. Brain Research, 1281, 84–90.  https://doi.org/10.1016/j.brainres.2009.05.042.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Taylor, C. A., Bell, J. M., Breiding, M. J., & Xu, L. (2017). Traumatic brain injury-related emergency department visits, hospitalizations, and deaths - United States, 2007 and 2013. MMWR Surveillance Summaries, 66(9), 1–16.  https://doi.org/10.15585/mmwr.ss6609a1.CrossRefGoogle Scholar
  58. Thompson, H. J., McCormick, W. C., & Kagan, S. H. (2006). Traumatic brain injury in older adults: Epidemiology, outcomes, and future implications. Journal of the American Geriatrics Society, 54(10), 1590–1595.  https://doi.org/10.1111/j.1532-5415.2006.00894.x.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Timaru-Kast, R., Luh, C., Gotthardt, P., Huang, C., Schafer, M. K., Engelhard, K., et al. (2012). Influence of age on brain edema formation, secondary brain damage and inflammatory response after brain trauma in mice. PLoS One, 7(8), e43829.  https://doi.org/10.1371/journal.pone.0043829.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Undie, A. S., Wang, H. Y., & Friedman, E. (1995). Decreased phospholipase C-beta immunoreactivity, phosphoinositide metabolism, and protein kinase C activation in senescent F-344 rat brain. Neurobiology of Aging, 16(1), 19–28.CrossRefPubMedGoogle Scholar
  61. Unterberg, A., Schneider, G. H., Gottschalk, J., & Lanksch, W. R. (1994). Development of traumatic brain edema in old versus young rats. Acta Neurochirurgica. Supplementum (Wien), 60, 431–433.Google Scholar
  62. Utomo, W. K., Gabbe, B. J., Simpson, P. M., & Cameron, P. A. (2009). Predictors of in-hospital mortality and 6-month functional outcomes in older adults after moderate to severe traumatic brain injury. Injury, 40(9), 973–977.  https://doi.org/10.1016/j.injury.2009.05.034.CrossRefPubMedGoogle Scholar
  63. Vitvitsky, V., Garg, S. K., & Banerjee, R. (2011). Taurine biosynthesis by neurons and astrocytes. The Journal of Biological Chemistry, 286(37), 32002–32010.  https://doi.org/10.1074/jbc.M111.253344.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang, Q., Fan, W., Cai, Y., Wu, Q., Mo, L., Huang, Z., & Huang, H. (2016). Protective effects of taurine in traumatic brain injury via mitochondria and cerebral blood flow. Amino Acids, 48(9), 2169–2177.  https://doi.org/10.1007/s00726-016-2244-x.CrossRefPubMedGoogle Scholar
  65. Won, S. J., Xie, L., Kim, S. H., Tang, H., Wang, Y., Mao, X., Banwait, S., & Jin, K. (2006). Influence of age on the response to fibroblast growth factor-2 treatment in a rat model of stroke. Brain Research, 1123(1), 237–244.  https://doi.org/10.1016/j.brainres.2006.09.055.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wu, J. Y., & Prentice, H. (2010). Role of taurine in the central nervous system. Journal of Biomedical Science, 17(Suppl 1), S1.  https://doi.org/10.1186/1423-0127-17-S1-S1.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Xiong, Y., Mahmood, A., & Chopp, M. (2013). Animal models of traumatic brain injury. Nature Reviews. Neuroscience, 14(2), 128–142.  https://doi.org/10.1038/nrn3407.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Xu, S., Zhuo, J., Racz, J., Shi, D., Roys, S., Fiskum, G., & Gullapalli, R. (2011). Early microstructural and metabolic changes following controlled cortical impact injury in rat: A magnetic resonance imaging and spectroscopy study. Journal of Neurotrauma, 28(10), 2091–2102.  https://doi.org/10.1089/neu.2010.1739.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Ye, H. B., Shi, H. B., & Yin, S. K. (2013). Mechanisms underlying taurine protection against glutamate-induced neurotoxicity. The Canadian Journal of Neurological Sciences, 40(5), 628–634.CrossRefPubMedGoogle Scholar
  70. Zhang, X., Liu, H., Wu, J., Zhang, X., Liu, M., & Wang, Y. (2009). Metabonomic alterations in hippocampus, temporal and prefrontal cortex with age in rats. Neurochemistry International, 54(8), 481–487.  https://doi.org/10.1016/j.neuint.2009.02.004.CrossRefPubMedGoogle Scholar
  71. Zygun, D. (2005). Non-neurological organ dysfunction in neurocritical care: Impact on outcome and etiological considerations. Current Opinion in Critical Care, 11(2), 139–143.CrossRefPubMedGoogle Scholar
  72. Zygun, D. A., Doig, C. J., Gupta, A. K., Whiting, G., Nicholas, C., Shepherd, E., Conway-Smith, C., & Menon, D. K. (2003). Non-neurological organ dysfunction in neurocritical care. Journal of Critical Care, 18(4), 238–244.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Raeesa Gupte
    • 1
    • 2
  • Sarah Christian
    • 1
    • 2
  • Paul Keselman
    • 1
  • Joshua Habiger
    • 3
    • 4
  • William M. Brooks
    • 1
    • 5
  • Janna L. Harris
    • 1
    • 2
  1. 1.Hoglund Brain Imaging CenterUniversity of Kansas Medical CenterKansas CityUSA
  2. 2.Department of Anatomy and Cell BiologyUniversity of Kansas Medical CenterKansas CityUSA
  3. 3.Department of BiostatisticsUniversity of Kansas Medical CenterKansas CityUSA
  4. 4.Department of StatisticsOklahoma State UniversityStillwaterUSA
  5. 5.Department of NeurologyUniversity of Kansas Medical CenterKansas CityUSA

Personalised recommendations