Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1795–1803 | Cite as

Difference in regional neural fluctuations and functional connectivity in Crohn’s disease: a resting-state functional MRI study

  • Chunhui Bao
  • Peng Liu
  • Huirong Liu
  • Xiaoming Jin
  • Yin Shi
  • Luyi Wu
  • Xiaoqing Zeng
  • Jianye Zhang
  • Di Wang
  • Vince D. Calhoun
  • Jie Tian
  • Huangan Wu
Original Research


Patients with Crohn’s disease (CD) are shown to have abnormal changes in brain structures. This study aimed to further investigate whether these patients have abnormal brain activities and network connectivity. Sixty patients with CD and 40 healthy controls (HCs) underwent resting-state functional magnetic resonance imaging (fMRI) scans. Amplitude of low-frequency fluctuation (ALFF) and seed-based functional connectivity (FC) were used to assess differences in spontaneous regional brain activity and functional connectivity. Compared to the HCs, patients with CD showed significantly higher ALFF values in hippocampus and parahippocampus (HIPP/paraHIPP), anterior cingulate cortex, insula, superior frontal cortex and precuneus. The ALFF values were significantly lower in secondary somatosensory cortex (S2), precentral gyrus, and medial prefrontal cortex. Functional connectivities between left HIPP and left inferior temporal cortex, and right middle cingulate cortex, HIPP, and fusiform area were significantly lower. The functional connectivities between right HIPP and right inferior orbitofrontal cortex and left HIPP were also significantly lower. Patients with CD showed higher or lower spontaneous activity in multiple brain regions. Altered activities in these brain regions may collectively reflect abnormal function and regulation of visceral pain and sensation, external environmental monitoring, and cognitive processing in these patients. Lower functional connectivity of the hippocampus-limbic system was observed in these patients. These findings may provide more information to elucidate the neurobiological mechanisms of the disease.


Crohn’s disease Resting-state functional MRI Amplitude of low-frequency fluctuation Functional connectivity 



Many thanks to Dr. Lili Ma at Zhongshan Hospital of Fudan University for endoscopy examination and scoring. This work was funded by the National Key Basic Research Program of China (973 program), No. 2009CB522900, 2015CB554501; the Program for Outstanding Medical Academic Leader, No. 80; the Program of Shanghai Academic Research Leader, No. 17XD1403400, the National Natural Science Foundation of China, No. 81471738 and the National Institutes of Health grant (P20GM103472).

Compliance with ethical standards

Conflict of interest

The authors disclose no conflicts.

Research involving human participants

All procedures performed in this study were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from every participant included in the study.


  1. Agostini, A., Benuzzi, F., Filippini, N., Bertani, A., Scarcelli, A., Farinelli, V., et al. (2013). New insights into the brain involvement in patients with Crohn’s disease: a voxel-based morphometry study. Neurogastroenterology & Motility, 25(2), 147-e82.CrossRefGoogle Scholar
  2. Al, O. Y., & Aziz, Q. (2014). The brain-gut axis in health and disease. Advances in Experimental Medicine & Biology, 817, 135–153.CrossRefGoogle Scholar
  3. Bao, C. H., Liu, P., Liu, H. R., Jin, X. M., Calhoun, V. D., Wu, L. Y., et al. (2016a). Different brain responses to electro-acupuncture and moxibustion treatment in patients with Crohn’s disease. Scientific Reports, 18(6), 36636.CrossRefGoogle Scholar
  4. Bao, C. H., Liu, P., Liu, H. R., Wu, L. Y., Jin, X. M., Wang., S. Y., et al. (2016b). Differences in regional homogeneity between patients with Crohn’s disease with and without abdominal pain revealed by resting-state functional magnetic resonance imaging. Pain, 157(5), 1037–1044.CrossRefGoogle Scholar
  5. Bao, C. H., Liu, P., Liu, H. R., Wu, L. Y., Shi, Y., Chen, W. F., et al. (2015). Alterations in brain grey matter structures in patients with Crohn’s disease and their correlation with psychological distress. Journal of Crohn S & Colitis, 9(7), 532–540.CrossRefGoogle Scholar
  6. Best, W. R., Becktel, J. M., & Singleton, J. W. (1979). Rederived values of the eight coefficients of the Crohn’s Disease Activity Index (CDAI). Gastroenterology, 77(4 Pt 2), 843–846.PubMedGoogle Scholar
  7. Blakemore, S. J. (2008). The social brain in adolescence. Nature Reviews Neuroscience, 9(4), 267–277.CrossRefGoogle Scholar
  8. Bonaz, B. L., & Bernstein, C. N. (2013). Brain-gut interactions in inflammatory bowel disease. Gastroenterology, 144(1), 36–49.CrossRefGoogle Scholar
  9. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124(1), 1–38.CrossRefGoogle Scholar
  10. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(Pt3), 564–583.CrossRefGoogle Scholar
  11. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 14(4), 13.Google Scholar
  12. Drevets, W. C., Price, J. L., & Furey, M. L. (2008). Brain structural and functional abnormalities in mood disorders: implications for neurocircuitry models of depression. Brain Structure and Function, 213(1–2), 93–118.CrossRefGoogle Scholar
  13. Fair, D. A., Cohen, A. L., Dosenbach, N. U. F., Church, J. A., Miezin, F. M., Barch, D. M., et al. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences of the United States of America, 105(10), 4028–4032.CrossRefGoogle Scholar
  14. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.CrossRefGoogle Scholar
  15. Heydarpour, P., Rahimian, R., Fakhfouri, G., Khoshkish, S., Fakhraei, N., Salehi-Sadaghiani, M., et al. (2016). Behavioral despair associated with a mouse model of Crohn’s disease: Role of nitric oxide pathway. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 4(64), 131–141.CrossRefGoogle Scholar
  16. Irvine, E. J., Feagan, B., Rochon, J., Archambault, A., Fedorak, R. N., Groll, A., et al. (1994). Quality of life: a valid and reliable measure of therapeutic efficacy in the treatment of inflammatory bowel disease. Canadian Crohn’s relapse prevention trial study group. Gastroenterology, 106(2), 287–296.CrossRefGoogle Scholar
  17. Jones, M. P., Dilley, J. B., Drossman, D., & Crowell, M. D. (2006). Brain-gut connections in functional GI disorders: anatomic and physiologic relationships. Neurogastroenterology & Motility, 18(2), 91–103.CrossRefGoogle Scholar
  18. Lathe, R. (2001). Hormones and the hippocampus. Journal of Endocrinology, 169(2), 205.CrossRefGoogle Scholar
  19. Li, F., He, N., Li, Y., Chen, L., Huang, X., Lui, S., et al. (2014). Intrinsic brain abnormalities in attention deficit hyperactivity disorder: a resting-state functional MR imaging study. Radiology, 272(2), 514–523.CrossRefGoogle Scholar
  20. Li, F., Lui, S., Yao, L., Hu, J., Lv, P., Huang, X., et al. (2016). Longitudinal changes in resting-state cerebral activity in patients with first-episode schizophrenia: a 1-year follow-up functional MR imaging study. Radiology, 279(3), 867–875.CrossRefGoogle Scholar
  21. Ma, X., Li, S., Tian, J., Jiang, G., Wen, H., Wang, T., et al. (2015). Altered brain spontaneous activity and connectivity network in irritable bowel syndrome patients: a resting-state fMRI study. Clinical Neurophysiology, 126(6), 1190–1197.CrossRefGoogle Scholar
  22. Mantini, D., & Vanduffel, W. (2013). Emerging roles of the brain’s default network. Neuroscientist A Review Journal Bringing Neurobiology Neurology & Psychiatry, 19(1), 76–87.Google Scholar
  23. Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., et al. (2009). Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences of the United States of America, 106(47), 20069–20074.CrossRefGoogle Scholar
  24. Mayer, E. A., Naliboff, B. D., & Craig, A. D. B. (2006). Neuroimaging of the brain-gut axis: from basic understanding to treatment of functional GI disorders. Gastroenterology, 131(6), 1925–1942.CrossRefGoogle Scholar
  25. Mikdashi, J. A. (2016). Altered functional neuronal activity in neuropsychiatric lupus: a systematic review of the fMRI investigations. Seminars in Arthritis and Rheumatism, 45(4), 455–462.CrossRefGoogle Scholar
  26. Ng, S. C., Tang, W., Ching, J. Y., Wong, M., Chow, C., Hui, M., A. J. et al (2013). Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn’s and Colitis epidemiology study. Gastroenterology, 145(1), 158–165.e2.Google Scholar
  27. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefGoogle Scholar
  28. Riazi, K., Galic, M. A., Kentner, A. C., Reid, A. Y., Sharkey, K. A., & Pittman, Q. J. (2015). Microglia-dependent alteration of glutamatergic synaptic transmission and plasticity in the hippocampus during peripheral inflammation. Journal of Neuroscience the Official Journal of the Society for Neuroscience, 35(12), 4942–4952.CrossRefGoogle Scholar
  29. Riazi, K., Galic, M. A., Kuzmiski, J. B., Ho, W., Sharkey, K. A., & Pittman, Q. J. (2008). Microglial activation and TNFalpha production mediate altered CNS excitability following peripheral inflammation. Proceedings of the National Academy of Sciences of the United States of America, 105(44), 17151–17156.CrossRefGoogle Scholar
  30. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. Plos One, 6(9), e25031.CrossRefGoogle Scholar
  31. Torres, J., Mehandru, S., Colombel, J. F., & Peyrin-Biroulet, L. (2016). Crohn’s disease. Lancet, 67(27), 822–824.Google Scholar
  32. Van, O. L., Coen, S. J., & Aziz, Q. (2007). Functional brain imaging of gastrointestinal sensation in health and disease. World Journal of Gastroenterology, 13(25), 3438–3445.CrossRefGoogle Scholar
  33. Van Hees, S., Mcmahon, K., Angwin, A., De Zubicaray, G., Read, S., & Copland, D. A. (2014). A functional MRI study of the relationship between naming treatment outcomes and resting state functional connectivity in post-stroke aphasia. Human Brain Mapping, 35(8), 3919–3931.CrossRefGoogle Scholar
  34. Vermeulen, W., De Man, J. G., Pelckmans, P. A., & De Winter, B. Y. (2014). Neuroanatomy of lower gastrointestinal pain disorders. World Journal of Gastroenterology, 20(4), 1005–1020.CrossRefGoogle Scholar
  35. Wei, S. Y., Chao, H. T., Tu, C. H., et al. (2016). Changes in functional connectivity of pain modulatory systems in women with primary dysmenorrhea. Pain, 157(1),92–102.CrossRefGoogle Scholar
  36. Wiech, K., Seymour, B., Kalisch, R., Stephan, K. E., Koltzenburg, M., Driver, J., et al. (2005). Modulation of pain processing in hyperalgesia by cognitive demand. Neuroimage, 27(1), 59–69.CrossRefGoogle Scholar
  37. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91.CrossRefGoogle Scholar
  38. Zhang, X., Zhu, X., Wang, X., Zhu, X., Zhong, M., Yi, J., et al. (2014). First-episode medication-naive major depressive disorder is associated with altered resting brain function in the affective network. Plos One, 9(1), e85241.CrossRefGoogle Scholar
  39. Zhou, G., Liu, P., Wang, J., Wen, H., Zhu, M., Zhao, R., et al. (2013). Fractional amplitude of low-frequency fluctuation changes in functional dyspepsia: A resting-state fMRI study. Magnetic Resonance Imaging, 31(6), 996–1000.CrossRefGoogle Scholar
  40. Zigmond, A. S., & Snaith, R. P. (1983). The hospital anxiety and depression scale. Acta Psychiatrica Scandinavica, 67(6), 361–370.CrossRefGoogle Scholar
  41. Zonis, S., Pechnick, R. N., Ljubimov, V. A., Mahgerefteh, M., Wawrowsky, K., Michelsen, K. S., et al. (2015). Chronic intestinal inflammation alters hippocampal neurogenesis. Journal of Neuroinflammation, 12, 65.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Chunhui Bao
    • 1
  • Peng Liu
    • 2
  • Huirong Liu
    • 3
  • Xiaoming Jin
    • 4
  • Yin Shi
    • 3
  • Luyi Wu
    • 1
  • Xiaoqing Zeng
    • 5
  • Jianye Zhang
    • 6
  • Di Wang
    • 1
  • Vince D. Calhoun
    • 7
    • 8
  • Jie Tian
    • 2
  • Huangan Wu
    • 1
  1. 1.Key Laboratory of Acupuncture and Immunological EffectsShanghai University of Traditional Chinese MedicineShanghaiChina
  2. 2.Life Sciences Research Center, School of Life Sciences and TechnologyXidian UniversityXi’anChina
  3. 3.Outpatient Department, Shanghai Research Institute of Acupuncture and MeridianShanghai University of Traditional Chinese MedicineShanghaiChina
  4. 4.Stark Neurosciences Research InstituteIndiana University School of MedicineIndianapolisUSA
  5. 5.Department of Gastroenterology, Zhongshan HospitalFudan UniversityShanghaiChina
  6. 6.Department of Radiology, Shanghai Mental Health CenterShanghai Jiaotong University School of MedicineShanghaiChina
  7. 7.The Mind Research NetworkAlbuquerqueUSA
  8. 8.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations