Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1775–1785 | Cite as

Assessing motor, visual and language function using a single 5-minute fMRI paradigm: three birds with one stone

  • Simona Fiori
  • Carolin Zendler
  • Till-Karsten Hauser
  • Karen Lidzba
  • Marko WilkeEmail author
Original Research

Abstract

Clinical functional Magnetic Resonance Imaging (fMRI) requires inferences on localization of major brain functions at the individual subject level. We hypothesized that a single “triple use” task would satisfy sensitivity and reliability requirements for successfully assessing the motor, visual and language domain in this context. This was tested here by the application in a group of healthy adults, assessing sensitivity and reliability at the individual subject level, separately for each domain.

Our “triple use” task consisted of 2 conditions (condition 1, assessing motor and visual domain, and condition 2, assessing the language domain), serving mutually as active/control. We included 20 healthy adult subjects. Random effect analyses showed activation in primary motor, visual and language regions, as expected. Less expected regions were activated both for the motor and visual domains. Further, reliability of primary activation patterns was very high across individual subjects, with activation seen in 70–100% of subjects in primary motor, visual, and left-lateralized language regions.

These findings suggest the “triple use” task to be reliable at the individual subject’s level to assess motor, visual and language domains in the clinical fMRI context. Benefits of such an approach include shortening of acquisition time, simplicity of the task for each domain, and using a visual stimulus. Following establishment of reliability in adults, the task may also be a valuable addition in the pediatric clinical fMRI context, where each of these factors is of high relevance.

Keywords

Clinical functional MRI Children Visual Motor Language Triple use 

Notes

Acknowledgements

We would like to thank Eleonore Schwilling, PhD, for her expert help in voice recordings, and Mickael Dinomais, University of Caens, France, for supplying the hand video recordings.

Funding

This study was funded in part by the H.W. & J. Hector Foundation, Mannheim (M66, to MW). The sponsor had no role in study design, in the collection, analysis and interpretation of data, in the writing of the report, and in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

Simona Fiori declares that she has no conflict of interest. Carolin Zendler declares that she has no conflict of interest. Till-Karsten Hauser declares that he has no conflict of interest. Karen Lidzba declares that she has no conflict of interest. Marko Wilke declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Ahmad, Z., Balsamo, L. M., Sachs, B. C., Xu, B., & Gaillard, W. D. (2003). Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology, 60(10), 1598 – 605.CrossRefGoogle Scholar
  2. Allendorfer, J. B., Lindsell, C. J., Siegel, M., Banks, C. L., Vannest, J., Holland, S. K., & Szaflarski, J. P. (2012). Females and males are highly similar in language performance and cortical activation patterns during verb generation. Cortex, 48(9), 1218–1233.CrossRefGoogle Scholar
  3. Amaro, E. Jr., & Barker, G. J. (2006). Study design in fMRI: basic principles. Brain and Cognition, 60(3), 220 – 32.CrossRefGoogle Scholar
  4. Amunts, K., Malikovic, A., Mohlberg, H., Schormann, T., & Zilles, K. (2000) Brodmann’s areas 17 and 18 brought into stereotaxic space-where and how variable? Neuroimage. 11(1):66–84.CrossRefGoogle Scholar
  5. Andersson, J. L., Hutton, C., Ashburner, J., Turner, R., & Friston, K. (2001). Modeling geometric deformations in EPI time series. Neuroimage, 13(5), 903 – 19.CrossRefGoogle Scholar
  6. Ball, T., Schreiber, A., Feige, B., Wagner, M., Lücking, C. H., & Kristeva-Feige, R. (1999). The role of higher-order motor areas in voluntary movement as revealed by high-resolution EEG and fMRI. Neuroimage, 10(6), 682 – 94.CrossRefGoogle Scholar
  7. Belin, P., Zatorre, R. J., Lafaille, P., Ahad, P., & Pike, B. (2000). Voice-selective areas in human auditory cortex. Nature, 403(6767), 309 – 12.CrossRefGoogle Scholar
  8. Bremmer, F., Schlack, A., Shah, N. J., Zafiris, O., Kubischik, M., Hoffmann, K., Zilles, K., & Fink, G. R. (2001). Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron, 29(1), 287 – 96.CrossRefGoogle Scholar
  9. Broser, P. J., Groeschel, S., Hauser, T. K., Lidzba, K., & Wilke, M. (2012). Functional MRI-guided probabilistic tractography of cortico-cortical and cortico-subcortical language networks in children. Neuroimage, 63(3), 1561–1570.  https://doi.org/10.1016/j.neuroimage.2012.07.060.CrossRefPubMedGoogle Scholar
  10. Brown, E. C., Muzik, O., Rothermel, R., Matsuzaki, N., Juhász, C., Shah, A. K., Atkinson, M. D., Fuerst, D., Mittal, S., Sood, S., Diwadkar, V. A., & Asano, E. (2012). Evaluating reverse speech as a control task with language-related gamma activity on electrocorticography. Neuroimage, 60(4), 2335–2345.  https://doi.org/10.1016/j.neuroimage.2012.02.040.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Buccino, G., Binkofski, F., Fink, G. R., Fadiga, L., Fogassi, L., Gallese, V., Seitz, R. J., Zilles, K., Rizzolatti, G., & Freund, H. J. (2001). Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study. European Journal Neuroscience, 13(2), 400–404.Google Scholar
  12. Buccino, G., Vogt, S., Ritzl, A., Fink, G. R., Zilles, K., Freund, H. J., & Rizzolatti, G. (2004). Neural circuits underlying imitation learning of hand actions: an event-related fMRI study. Neuron, 42(2), 323 – 34.CrossRefGoogle Scholar
  13. Byars, A. W., Holland, S. K., Strawsburg, R. H., Bommer, W., Dunn, R. S., Schmithorst, V. J., & Plante, E. (2002). Practical aspects of conducting large-scale functional magnetic resonance imaging studies in children. Journal of Child Neurology, 17(12), 885 – 90.CrossRefGoogle Scholar
  14. Church, J. A., Petersen, S. E., & Schlaggar, B. L. (2010). The “Task B problem” and other considerations in developmental functional neuroimaging. Human Brain Mapping, 31(6), 852 – 62.CrossRefGoogle Scholar
  15. Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004). Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. Neuroimage. 21(4), 1416–1427.CrossRefGoogle Scholar
  16. Dorn, M., Lidzba, K., Bevot, A., Goelz, R., Hauser, T. K., & Wilke, M. (2014). Long-term neurobiological consequences of early postnatal hCMV-infection in former preterms: a functional MRI study. Human Brain Mapping, 35(6), 2594 – 606.  https://doi.org/10.1002/hbm.22352.CrossRefPubMedGoogle Scholar
  17. Drobyshevsky, A., Baumann, S. B., & Schneider, W. (2006). A rapid fMRI task battery for mapping of visual, motor, cognitive, and emotional function. Neuroimage, 31(2), 732 – 44.CrossRefGoogle Scholar
  18. Ebner, K., Lidzba, K., Hauser, T. K., & Wilke, M. (2011). Assessing language and visuospatial functions with one task: a “dual use” approach to performing fMRI in children. Neuroimage, 58(3), 923–929.CrossRefGoogle Scholar
  19. Friston, K. (2012). Ten ironic rules for non-statistical reviewers. Neuroimage, 61(4), 1300–1310.  https://doi.org/10.1016/j.neuroimage.2012.04.018.CrossRefPubMedGoogle Scholar
  20. Gaillard, W. D., Balsamo, L., Xu, B., McKinney, C., Papero, P. H., Weinstein, S., Conry, J., Pearl, P. L., Sachs, B., Sato, S., Vezina, L. G., Frattali, C., & Theodore, W. H. (2004). fMRI language task panel improves determination of language dominance. Neurology, 63(8), 1403–1408.CrossRefGoogle Scholar
  21. Gaillard, W. D., Grandin, C. B., & Xu, B. (2001). Developmental aspects of pediatric fMRI: considerations for image acquisition, analysis, and interpretation. Neuroimage, 13(2), 239 – 49.CrossRefGoogle Scholar
  22. Gebauer, D., Fink, A., Kargl, R., Reishofer, G., Koschutnig, K., Purgstaller, C., Fazekas, F., & Enzinger, C. (2012). Differences in brain function and changes with intervention in children with poor spelling and reading abilities. PLoS One, 7(5), e38201.  https://doi.org/10.1371/journal.pone.0038201.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Guzzetta, A., Staudt, M., Petacchi, E., Ehlers, J., Erb, M., Wilke, M., Krägeloh-Mann, I., & Cioni, G. (2007). Brain representation of active and passive hand movements in children. Pediatric Research, 61(4), 485 – 90.CrossRefGoogle Scholar
  24. Henson, R. (2007). Efficient experimental design for fMRI, in Statisitcal Parametric Mapping. The Analysis of Functional Brain Images, eds Friston K. J. Ashburner, J. T. Kiebel S. J. Nichols T. E., Penny W. D., (Eds.), (London: Academic Press;), pp. 193–210.Google Scholar
  25. Hikosaka, O., & Isoda, M. (2010). Switching from automatic to controlled behavior: cortico-basal ganglia mechanisms. Trends in Cognitive Sciences. 14(4), 154 – 61.  https://doi.org/10.1016/j.tics.2010.01.006.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Holland, S. K., Plante, E., Weber Byars, A., Strawsburg, R. H., Schmithorst, V. J., & Ball, W. S. Jr. (2001). Normal fMRI brain activation patterns in children performing a verb generation task. Neuroimage, 14(4), 837 – 43.CrossRefGoogle Scholar
  27. Huang, L., Thompson, E. A., Schmithorst, V., Holland, S. K., & Talavage, T. M. (2009). Partially adaptive STAP algorithm approaches to functional MRI. IEEE Transactions on Biomedical Engineering, 56(2), 518–521.  https://doi.org/10.1109/TBME.2008.2006017.CrossRefPubMedGoogle Scholar
  28. Karakas, S., Baran, Z., Ceylan, A. O., Tileylioglu, E., Tali, T., & Karakas, H. M. (2013). A comprehensive neuropsychological mapping battery for functional magnetic resonance imaging. International Journal of Psychophysiology, 90(2), 215 – 34.CrossRefGoogle Scholar
  29. Karunanayaka, P. R., Holland, S. K., Schmithorst, V. J., Solodkin, A., Chen, E. E., Szaflarski, J. P., & Plante, E. (2007). Age-related connectivity changes in fMRI data from children listening to stories. Neuroimage, 34(1), 349 – 60.CrossRefGoogle Scholar
  30. Khorrami, M. S., Faro, S. H., Seshadri, A., Moonat, S., Lidicker, J., Hershey, B. L., & Mohamed, F. B. (2011). Functional MRI of sensory motor cortex: comparison between finger-to-thumb and hand squeeze tasks. Journal of Neuroimaging, 21(3), 236 – 40.CrossRefGoogle Scholar
  31. Lanyon, L. J., Giaschi, D., Young, S. A., Fitzpatrick, K., Diao, L., Bjornson, B. H., & Barton, J. J. (2009). Combined functional MRI and diffusion tensor imaging analysis of visual motion pathways. Journal of Neuroophthalmology, 29(2), 96–103.CrossRefGoogle Scholar
  32. Lidzba, K., Schwilling, E., Grodd, W., Krägeloh-Mann, I., & Wilke, M. (2011). Language comprehension vs. language production: age effects on fMRI activation. Brain Langauge, 119(1), 6–15.  https://doi.org/10.1016/j.bandl.2011.02.003.CrossRefGoogle Scholar
  33. Mall, V., Linder, M., Herpers, M., Schelle, A., Mendez-Mendez, J., Korinthenberg, R., Schumacher, M., & Spreer, J. (2005). Recruitment of the sensorimotor cortex-a developmental FMRI study. Neuropediatrics, 36(6), 373–379.CrossRefGoogle Scholar
  34. Malone, I. B., Leung, K. K., Clegg, S., Barnes, J., Whitwell, J. L., Ashburner, J., Fox, N. C., & Ridgway, G. R. (2015) Accurate automatic estimation of total intracranial volume: a nuisance variable with less nuisance. Neuroimage. 104:366 – 72.Google Scholar
  35. Máté, A., Lidzba, K., Hauser, T. K., Staudt, M., & Wilke, M. (2016). A “one size fits all” approach to language fMRI: increasing specificity and applicability by adding a self-paced component. Experimental Brain Research. 234(3), 673 – 84.  https://doi.org/10.1007/s00221-015-4473-8.CrossRefPubMedGoogle Scholar
  36. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856 – 69.CrossRefGoogle Scholar
  37. Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: a comparative review. Statistics Methods in Medical Research, 12(5), 419 – 46. Review.CrossRefGoogle Scholar
  38. Oja, J. M., Gillen, J., Kauppinen, R. A., Kraut, M., & van Zijl, P. C. (1999). Venous blood effects in spin-echo fMRI of human brain. Magnetic Resonance in Medicine, 42(4), 617 – 26.CrossRefGoogle Scholar
  39. Oldfield, R. C. (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1):pp. 97–113.CrossRefGoogle Scholar
  40. Pernet, C. R. (2014). Misconceptions in the use of the General Linear Model applied to functional MRI: a tutorial for junior neuro-imagers. Frontiers in Neuroscience.  https://doi.org/10.3389/fnins.2014.00001.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Petersen, S. E., & Dubis, J. W. (2012). The mixed block/event-related design. Neuroimage, 62(2), 1177–1184.  https://doi.org/10.1016/j.neuroimage.2011.09.084.CrossRefPubMedGoogle Scholar
  42. Rumiati, R. I., Weiss, P. H., Tessari, A., Assmus, A., Zilles, K., Herzog, H., & Fink, G. R. (2005). Common and differential neural mechanisms supporting imitation of meaningful and meaningless actions. Journal of Cognitive Neuroscience, 17(9), 1420–1431.CrossRefGoogle Scholar
  43. Rushworth, M. F., Hadland, K. A., Paus, T., & Sipila, P. K. (2002). Role of the human medial frontal cortex in task switching: a combined fMRI and TMS study. Journal of Neurophysiology, 87(5), 2577–2592.CrossRefGoogle Scholar
  44. Ryvlin, P., Cross, J. H., & Rheims, S. (2014). Epilepsy surgery in children and adults. Lancet Neurology, 13(11), 1114–1126.  https://doi.org/10.1016/S1474-4422(14)70156-5.CrossRefPubMedGoogle Scholar
  45. Silvanto, J., Lavie, N., & Walsh, V. (2005). Double dissociation of V1 and V5/MT activity in visual awareness. Cerebral Cortex, 15(11), 1736–1741.CrossRefGoogle Scholar
  46. Sroka, M. C., Vannest, J., Maloney, T. C., Horowitz-Kraus, T., Byars, A. W., & Holland, S. K. CMIND Authorship Consortium (2015) Relationship between receptive vocabulary and the neural substrates for story processing in preschoolers. Brain Imaging Behavior. 9(1):43–55.  https://doi.org/10.1007/s11682-014-9342-8.CrossRefPubMedGoogle Scholar
  47. Staudt, M., Gerloff, C., Grodd, W., Holthausen, H., Niemann, G., & Krägeloh-Mann, I. (2004). Reorganization in congenital hemiparesis acquired at different gestational ages. Annals of Neurology, 56(6), 854 – 63.CrossRefGoogle Scholar
  48. Staudt, M., Grodd, W., Gerloff, C., Erb, M., Stitz, J., & Krägeloh-Mann, I. (2002) Two types of ipsilateral reorganization in congenital hemiparesis: a TMS and fMRI study.Brain. 125(Pt 10):2222–2237.CrossRefGoogle Scholar
  49. Suarez, R. O., Taimouri, V., Boyer, K., Vega, C., Rotenberg, A., Madsen, J. R., Loddenkemper, T., Duffy, F. H., Prabhu, S. P., & Warfield, S. K. (2014). Passive fMRI mapping of language function for pediatric epilepsy surgical planning: validation using Wada, ECS, and FMAER. Epilepsy Reseach, 108(10), 1874–1888.CrossRefGoogle Scholar
  50. Sun, B., Berl, M. M., Burns, T. G., Gaillard, W. D., Hayes, L., Adjouadi, M., & Jones, R. A. (2013). Age association of language task induced deactivation induced in a pediatric population. Neuroimage, 15(65), 23–33.  https://doi.org/10.1016/j.neuroimage.2012.09.071.CrossRefGoogle Scholar
  51. Szaflarski, J. P., Altaye, M., Rajagopal, A., Eaton, K., Meng, X., Plante, E., & Holland, S. K. (2012). A 10-year longitudinal fMRI study of narrative comprehension in children and adolescents. Neuroimage, 15(3), 1188–1195.  https://doi.org/10.1016/j.neuroimage.2012.08.049. 63).CrossRefGoogle Scholar
  52. Thakral, P. P., & Slotnick, S. D. (2009). The role of parietal cortex during sustained visual spatial attention. Brain Research, 1302, 157 – 66.CrossRefGoogle Scholar
  53. Thirion, B., Pinel, P., Mériaux, S., Roche, A., Dehaene, S., & Poline, J. B. (2007). Analysis of a large fMRI cohort: Statistical and methodological issues for group analyses. Neuroimage, 35(1), 105.CrossRefGoogle Scholar
  54. Thulborn, K. R., Davis, D., Erb, P., Strojwas, M., & Sweeney, J. A. (1996). Clinical fMRI: implementation and experience. Neuroimage, 4(3 Pt 3), S101-7.PubMedGoogle Scholar
  55. Tzourio-Mazoyer, N., Marie, D., Zago, L., Jobard, G., Perchey, G., Leroux, G., Mellet, E., Joliot, M., Crivello, F., Petit, L., & Mazoyer, B. (2015). Heschl’s gyrification pattern is related to speech-listening hemispheric lateralization: FMRI investigation in 281 healthy volunteers. Brain Structure and Functions, 220(3), 1585–1599.  https://doi.org/10.1007/s00429-014-0746-4.CrossRefGoogle Scholar
  56. Unser, M. (1999). Splines: a perfect fit for signal and image processing. IEEE Signal Processing. Magazine, 16(6), 22–38. IEEE Signal Processing Society’s 2000 magazine award.CrossRefGoogle Scholar
  57. Vannest, J., Rajagopal, A., Cicchino, N. D., Franks-Henry, J., Simpson, S. M., Lee, G., Altaye, M., Sroka, C., & Holland, S. K. CMIND Authorship Consortium (2014) Factors determining success of awake and asleep magnetic resonance imaging scans in nonsedated children. Neuropediatrics. 45(6):370–377.CrossRefGoogle Scholar
  58. Vannest, J. J., Karunanayaka, P. R., Altaye, M., Schmithorst, V. J., Plante, E. M., Eaton, K. J., Rasmussen, J. M., & Holland, S. K. (2009). Comparison of fMRI data from passive listening and active-response story processing tasks in children. Journal of Magnetic Resonance Imaging, 29(4), 971–976.CrossRefGoogle Scholar
  59. Vogt, S., Buccino, G., Wohlschläger, A. M., Canessa, N., Shah, N. J., Zilles, K., Eickhoff, S. B., Freund, H. J., Rizzolatti, G., & Fink, G. R. (2007). Prefrontal involvement in imitation learning of hand actions: effects of practice and expertise. Neuroimage, 37(4), 1371–1383.CrossRefGoogle Scholar
  60. Wells, E. M., & Packer, R. J. (2015) Pediatric brain tumors. Continuum (Minneap Minn). Neuro-oncology, 21(2), 373–396.  https://doi.org/10.1212/01.CON.0000464176.96311.d1.CrossRefGoogle Scholar
  61. Wilke, M. (2012). An alternative approach towards assessing and accounting for individual motion in fMRI. Timeseries.Neuroimage, 59(3), 2062–2072.CrossRefGoogle Scholar
  62. Wilke, M., Holland, S. K., Myseros, J. S., Schmithorst, V. J., & Ball, W. S. Jr. (2003). Functional magnetic resonance imaging in pediatrics. Neuropediatrics, 34(5), 225 – 33.CrossRefGoogle Scholar
  63. Wilke, M., & Lidzba, K. (2007) LI-tool: a new toolbox to assess lateralization in functional MR-data.J Neurosci Methods. 163(1):pp. 128 – 36.CrossRefGoogle Scholar
  64. Wilke, M., Lidzba, K., Staudt, M., Buchenau, K., Grodd, W., & Krägeloh-Mann, I. (2005). Comprehensive language mapping in children, using functional magnetic resonance imaging: what’s missing counts. Neuroreport, 16(9), 915–919.CrossRefGoogle Scholar
  65. Wilke, M., Lidzba, K., Staudt, M., Buchenau, K., Grodd, W., & Krägeloh-Mann, I. (2006). An fMRI task battery for assessing hemispheric language dominance in children. Neuroimage, 32(1), 400 – 10.CrossRefGoogle Scholar
  66. Wilke, M., Pieper, T., Lindner, K., Dushe, T., Holthausen, H., & Krägeloh-Mann, I. (2010). Why one task is not enough: functional MRI for atypical language organization in two children. European Journal Paediatric Neurology, 14(6), 474–478.  https://doi.org/10.1016/j.ejpn.2010.05.002.CrossRefGoogle Scholar
  67. Wilke, M., Pieper, T., Lindner, K., Dushe, T., Staudt, M., Grodd, W., Holthausen, H., & Krägeloh-Mann, I. (2011). Clinical functional MRI of the language domain in children with epilepsy. Human Brain Mapping, 32(11), 1882–1893.  https://doi.org/10.1002/hbm.21156.CrossRefPubMedGoogle Scholar
  68. Wilke, M., & Schmithorst, V. J. (2006). A combined bootstrap/histogram analysis approach for computing a lateralization index from neuroimaging data. Neuroimage, 33(2), 522 – 30.CrossRefGoogle Scholar
  69. Williams, A. M., Marks, C. J., & Bialer, I. (1977). Validity of the Peabody Picture Vocabulary Test as a measure of hearing vocabulary in mentally retarded and normal children. Journal of Speech Hearing Research, 20(2), 205 – 11.CrossRefGoogle Scholar
  70. WMA (2013). World Medical Association Declaration of Helsinki - Ethical Principles for Medical Research Involving Human Subjects. Available at https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/, last accessed 12 Dec, 2017.
  71. Yerys, B. E., Jankowski, K. F., Shook, D., Rosenberger, L. R., Barnes, K. A., Berl, M. M., Ritzl, E. K., Vanmeter, J., Vaidya, C. J., & Gaillard, W. D. (2009). The fMRI success rate of children and adolescents: typical development, epilepsy, attention deficit/hyperactivity disorder, and autism spectrum disorders. Human Brain Mapping, 30(10), 3426–3435.CrossRefGoogle Scholar
  72. Yuan, W., Altaye, M., Ret, J., Schmithorst, V., Byars, A. W., Plante, E., & Holland, S. K. (2009). Quantification of head motion in children during various fMRI language tasks. Human Brain Mapping, 30(5), 1481–1489.CrossRefGoogle Scholar
  73. Zada, G., Bond, A. E., Wang, Y. P., Giannotta, S. L., & Deapen, D. (2012) Incidence trends in the anatomic location of primary malignant brain tumors in the United States: 1992–2006. World Neurosurgery. 77(3–4), 518–24.  https://doi.org/10.1016/j.wneu.2011.05.051.CrossRefPubMedGoogle Scholar
  74. Zsoter, A., Staudt, M., & Wilke, M. (2012). Identification of successful clinical fMRI sessions in children: an objective approach. Neuropediatrics, 43(5), 249 – 57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Developmental NeuroscienceIRCCS Stella MarisPisaItaly
  2. 2.Department of Pediatric Neurology & Developmental MedicineChildren’s HospitalTübingenGermany
  3. 3.Experimental Pediatric Neuroimaging groupPediatric NeurologyTübingenGermany
  4. 4.Department of NeuroradiologyUniversity HospitalTübingenGermany

Personalised recommendations