Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1658–1668 | Cite as

Physical activity mitigates adverse effect of metabolic syndrome on vessels and brain

  • Evan P. PashaEmail author
  • Alex C. Birdsill
  • Stephanie Oleson
  • Andreana P. Haley
  • Hirofumi Tanaka
ORIGINAL RESEARCH

Abstract

Metabolic syndrome (MetS) adversely affects the vasculature and cerebral white matter (CWM) integrity. Arterial stiffening has been associated with diminished CWM integrity. Physical activity (PA) can ameliorate components of MetS and subsequently affect arterial stiffening and CWM integrity. Our aim was to determine the role of PA on mitigating the adverse influence of MetS on arterial stiffness and CWM integrity. In a cross-sectional study design, sixty-six middle-aged adults (40–62 years) composed of 18 sedentary MetS (Sed MetS), 21 physically active MetS (Active MetS), and 27 healthy individuals absent of MetS risk factors were studied. Carotid artery stiffness was assessed via simultaneous ultrasound and tonometry. CWM integrity was measured using diffusion tensor imaging (DTI) through metrics of fractional anisotropy (FA) and mean diffusivity (MD). Carotid β-stiffness index in Active MetS was lower than Sed MetS but was not different from Healthy controls (6.6 ± 1.5, 7.7 ± 2.1, and 5.6 ± 1.6 au, p = 0.001). CWM integrity was significantly greater in Active MetS subjects compared to Sed MetS subjects but statistically equal to Healthy controls in the anterior limb of the internal capsule, and splenium of the corpus callosum, uncinate fasciculus, and superior corona radiata (all p < 0.05). Middle-aged individuals with MetS who habitually perform PA demonstrated lower arterial stiffness and more favorable CWM integrity than their sedentary peers, indicating that PA may be effective in mitigating the adverse effects of MetS on the vasculature and brain at midlife.

Keywords

Arterial stiffness Brain structure Cognition Midlife 

Notes

Funding

This work was made possible by funding provided by the National Institute of Neurological Disorders and Stroke (R01 NS075565; to A.P.H.) and the National Science Foundation (GRFP; to A.B.).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Acosta-Cabronero, J., Williams, G. B., Pengas, G., & Nestor, P. J. (2010). Absolute diffusivities define the landscape of white matter degeneration in Alzheimer’s disease. Brain, 133(Pt 2), 529–539.  https://doi.org/10.1093/brain/awp257.CrossRefPubMedGoogle Scholar
  2. Aguilar, M., Bhuket, T., Torres, S., Liu, B., & Wong, R. J. (2015). Prevalence of the metabolic syndrome in the United States, 2003–2012. JAMA, 313(19), 1973–1974.  https://doi.org/10.1001/jama.2015.4260.CrossRefPubMedGoogle Scholar
  3. Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of. the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640–1645,  https://doi.org/10.1161/CIRCULATIONAHA.109.192644.CrossRefGoogle Scholar
  4. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.  https://doi.org/10.1016/j.nurt.2007.05.011.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Armentano, R., Megnien, J. L., Simon, A., Bellenfant, F., Barra, J., & Levenson, J. (1995). Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension, 26(1), 48–54.CrossRefGoogle Scholar
  6. Birdsill, A. C., Carlsson, C. M., Willette, A. A., Okonkwo, O. C., Johnson, S. C., Xu, G., et al. (2013). Low cerebral blood flow is associated with lower memory function in metabolic syndrome. Extramural: [Research Support, N.I.H.Google Scholar
  7. Boreham, C. A., Ferreira, I., Twisk, J. W., Gallagher, A. M., Savage, M. J., & Murray, L. J. (2004). Cardiorespiratory fitness, physical activity, and arterial stiffness: the Northern Ireland Young Hearts Project. [Research Support, Non-U.S. Gov’t]. Hypertension, 44(5), 721–726.  https://doi.org/10.1161/01.HYP.0000144293.40699.9a.CrossRefPubMedGoogle Scholar
  8. Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Reports, 100(2), 126–131.PubMedPubMedCentralGoogle Scholar
  9. Chang, M., Jonsson, P. V., Snaedal, J., Bjornsson, S., Saczynski, J. S., Aspelund, T., et al. (2010). The effect of midlife physical activity on cognitive function among older adults: AGES–Reykjavik Study. Journal Gerontol Series A Biological Sciences Medical Science, 65(12), 1369–1374.  https://doi.org/10.1093/gerona/glq152.CrossRefGoogle Scholar
  10. Croft, J. B., Keenan, N. L., Sheridan, D. P., Wheeler, F. C., & Speers, M. A. (1995). Waist-to-hip ratio in a biracial population: measurement, implications, and cautions for using guidelines to define high risk for cardiovascular disease. Journal of the American Dietetic Association, 95(1), 60–64.  https://doi.org/10.1016/S0002-8223(95)00014-3.CrossRefPubMedGoogle Scholar
  11. Della-Morte, D., Gardener, H., Denaro, F., Boden-Albala, B., Elkind, M. S., Paik, M. C., et al. (2010). Metabolic syndrome increases carotid artery stiffness: the Northern Manhattan Study. International Journal of Stroke, 5(3), 138–144.  https://doi.org/10.1111/j.1747-4949.2010.00421.x.CrossRefPubMedPubMedCentralGoogle Scholar
  12. DuBose, L. E., Voss, M. W., Weng, T. B., Kent, J. D., Dubishar, K. M., Lane-Cordova, A. D., et al. (2017). Carotid beta-stiffness index is associated with slower processing speed but not working memory or white matter integrity in healthy middle-aged/older adults. Journal of Applied Physiology (1985), jap 00769, 02016.  https://doi.org/10.1152/japplphysiol.00769.2016.
  13. Godin, G., & Shephard, R. J. (1985). A simple method to assess exercise behavior in the community. Canadian Journal of Applied Sport Sciences, 10(3), 141–146.Google Scholar
  14. Gustavsson, A. M., Stomrud, E., Abul-Kasim, K., Minthon, L., Nilsson, P. M., Hansson, O., et al. (2015). Cerebral microbleeds and white matter hyperintensities in cognitively healthy elderly: A cross-sectional cohort study evaluating the effect of arterial stiffness. Cerebrovasc Dis Extra, 5(2), 41–51.  https://doi.org/10.1159/000377710.
  15. Hanon, O., Haulon, S., Lenoir, H., Seux, M. L., Rigaud, A. S., Safar, M., et al. (2005). Relationship between arterial stiffness and cognitive function in elderly subjects with complaints of memory loss. [Research Support, Non-U.S. Gov’t]. Stroke, 36(10), 2193–2197.  https://doi.org/10.1161/01.STR.0000181771.82518.1c.CrossRefPubMedGoogle Scholar
  16. Haskell, W. L., Lee, I. M., Pate, R. R., Powell, K. E., Blair, S. N., Franklin, B. A., et al. (2007). Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. [Congresses]. Circulation, 116(9), 1081–1093.  https://doi.org/10.1161/CIRCULATIONAHA.107.185649.CrossRefPubMedGoogle Scholar
  17. Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., et al. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cerebral Cortex, 14(4), 410–423.CrossRefGoogle Scholar
  18. Hughes, T. M., Craft, S., & Lopez, O. L. (2015). Review of ‘the potential role of arterial stiffness in the pathogenesis of Alzheimer’s disease’. Neurodegenerative Disease Management, 5(2), 121–135.  https://doi.org/10.2217/nmt.14.53.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Johnson, N. F., Kim, C., Clasey, J. L., Bailey, A., & Gold, B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. Neuroimage, 59(2), 1514–1523.  https://doi.org/10.1016/j.neuroimage.2011.08.032.CrossRefPubMedGoogle Scholar
  20. Kennedy, K. M., & Raz, N. (2009). Pattern of normal age-related regional differences in white matter microstructure is modified by vascular risk. Brain Research, 1297, 41–56.  https://doi.org/10.1016/j.brainres.2009.08.058.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., et al. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. European Heart Journal, 27(21), 2588–2605.  https://doi.org/10.1093/eurheartj/ehl254.CrossRefPubMedGoogle Scholar
  22. Maillard, P., Mitchell, G. F., Himali, J. J., Beiser, A., Tsao, C. W., Pase, M. P., et al. (2016). Effects of arterial stiffness on brain integrity in young adults from the Framingham heart study. Stroke, 47(4), 1030–1036.  https://doi.org/10.1161/STROKEAHA.116.012949.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Marks, B. L., Madden, D. J., Bucur, B., Provenzale, J. M., White, L. E., Cabeza, R., et al. (2007). Role of aerobic fitness and aging on cerebral white matter integrity. [Comparative Study. Annals of the New York Academy of Sciences, 1097, 171–174.  https://doi.org/10.1196/annals.1379.022.CrossRefPubMedGoogle Scholar
  24. Mitchell, G. F. (2008). Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. Journal of Applied Physiology (1985), 105(5), 1652–1660.  https://doi.org/10.1152/japplphysiol.90549.2008.CrossRefGoogle Scholar
  25. Miyaki, A., Maeda, S., Yoshizawa, M., Misono, M., Saito, Y., Sasai, H., et al. (2009). Effect of habitual aerobic exercise on body weight and arterial function in overweight and obese men. American Journal of Cardiology, 104(6), 823–828.  https://doi.org/10.1016/j.amjcard.2009.04.057.CrossRefPubMedGoogle Scholar
  26. Nichols, W. W., Nichols, W. W., & McDonald, D. A. (2011). McDonald’s blood flow in arteries: theoretic, experimental, and clinical principles (6th edn.). London: Hodder Arnold.Google Scholar
  27. O’Rourke, M. F., Staessen, J. A., Vlachopoulos, C., Duprez, D., & Plante, G. E. (2002). Clinical applications of arterial stiffness; definitions and reference values. American Journal Hypertension;, 15(5), 426–444.CrossRefGoogle Scholar
  28. O’Sullivan, M., Summers, P. E., Jones, D. K., Jarosz, J. M., Williams, S. C., & Markus, H. S. (2001). Normal-appearing white matter in ischemic leukoaraiosis: a diffusion tensor MRI study. Neurology, 57(12), 2307–2310.CrossRefGoogle Scholar
  29. Pasha, E. P., Birdsill, A. C., Oleson, S., Haley, A. P., & Tanaka, H. (2017). Impacts of metabolic syndrome scores on cerebrovascular conductance are mediated by arterial stiffening. American Journal of Hypertension, hpx132.Google Scholar
  30. Persson, J., Lind, J., Larsson, A., Ingvar, M., Cruts, M., Van Broeckhoven, C., et al. (2006). Altered brain white matter integrity in healthy carriers of the APOE epsilon4 allele: a risk for AD? Neurology, 66(7), 1029–1033.  https://doi.org/10.1212/01.wnl.0000204180.25361.48.CrossRefPubMedGoogle Scholar
  31. Podewils, L. J., Guallar, E., Beauchamp, N., Lyketsos, C. G., Kuller, L. H., & Scheltens, P. (2007). Physical activity and white matter lesion progression: assessment using MRI. [Research Support, N.I.H., Extramural]. Neurology, 68(15), 1223–1226.  https://doi.org/10.1212/01.wnl.0000259063.50219.3e.CrossRefPubMedGoogle Scholar
  32. Potenza, M. V., & Mechanick, J. I. (2009). The metabolic syndrome: definition, global impact, and pathophysiology. [Review]. Nutrition in Clinical Practice, 24(5), 560–577.  https://doi.org/10.1177/0884533609342436.CrossRefPubMedGoogle Scholar
  33. Raffaitin, C., Gin, H., Empana, J. P., Helmer, C., Berr, C., Tzourio, C., et al. (2009). Metabolic syndrome and risk for incident Alzheimer’s disease or vascular dementia: the Three-City Study. [Research Support, Non-U.S. Gov’t]. Diabetes Care, 32(1), 169–174.  https://doi.org/10.2337/dc08-0272.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Research Support, Non-U.S., & Gov’t]. Obesity (Silver Spring), 21(7), 1313–1320,  https://doi.org/10.1002/oby.20170.
  35. Sankoh, A. J., Huque, M. F., & Dubey, S. D. (1997). Some comments on frequently used multiple endpoint adjustment methods in clinical trials. Statistics in Medicine, 16(22), 2529–2542.CrossRefGoogle Scholar
  36. Smith, J. C., Lancaster, M. A., Nielson, K. A., Woodard, J. L., Seidenberg, M., Durgerian, S., et al. (2016). Interactive effects of physical activity and APOE-epsilon4 on white matter tract diffusivity in healthy elders. Neuroimage, 131, 102–112.  https://doi.org/10.1016/j.neuroimage.2015.08.007.CrossRefPubMedGoogle Scholar
  37. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024.CrossRefPubMedGoogle Scholar
  38. Strasser, B., Arvandi, M., Pasha, E. P., Haley, A. P., Stanforth, P., & Tanaka, H. (2015). Abdominal obesity is associated with arterial stiffness in middle-aged adults. Nutrition Metabolism and Cardiovascular Diseases, 25(5), 495–502.  https://doi.org/10.1016/j.numecd.2015.01.002.CrossRefGoogle Scholar
  39. Tanaka, H., Dinenno, F. A., Monahan, K. D., Clevenger, C. M., DeSouza, C. A., & Seals, D. R. (2000). Aging, habitual exercise, and dynamic arterial compliance. Circulation, 102(11), 1270–1275.CrossRefGoogle Scholar
  40. Tarumi, T., de Jong, D. L., Zhu, D. C., Tseng, B. Y., Liu, J., Hill, C., et al. (2015). Central artery stiffness, baroreflex sensitivity, and brain white matter neuronal fiber integrity in older adults. Neuroimage, 110, 162–170.  https://doi.org/10.1016/j.neuroimage.2015.01.041.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Tarumi, T., Shah, F., Tanaka, H., & Haley, A. P. (2011). Association between central elastic artery stiffness and cerebral perfusion in deep subcortical gray and white matter. American Journal of Hypertension, 24(10), 1108–1113.  https://doi.org/10.1038/ajh.2011.101.CrossRefPubMedGoogle Scholar
  42. Thompson, P. D., Crouse, S. F., Goodpaster, B., Kelley, D., Moyna, N., & Pescatello, L. (2001). The acute versus the chronic response to exercise. [Review]. Medicine and Science in Sports Exercise, 33(6 Suppl), S438–S445. discussion S452-433.CrossRefGoogle Scholar
  43. Tseng, B. Y., Gundapuneedi, T., Khan, M. A., Diaz-Arrastia, R., Levine, B. D., Lu, H., et al. (2013). White matter integrity in physically fit older adults. Neuroimage, 82, 510–516.  https://doi.org/10.1016/j.neuroimage.2013.06.011.CrossRefPubMedGoogle Scholar
  44. Voss, M. W., Heo, S., Prakash, R. S., Erickson, K. I., Alves, H., Chaddock, L., et al. (2013). The influence of aerobic fitness on cerebral white matter integrity and cognitive function in older adults: results of a one-year exercise intervention. [Research Support, N.I.H., Extramural]. Human Brain Mapping, 34(11), 2972–2985.  https://doi.org/10.1002/hbm.22119.CrossRefPubMedGoogle Scholar
  45. Yates, K. F., Sweat, V., Yau, P. L., Turchiano, M. M., & Convit, A. (2012). Impact of metabolic syndrome on cognition and brain: a selected review of the literature. Arteriosclerosis Thrombosis and Vascular Biology, 32(9), 2060–2067.  https://doi.org/10.1161/ATVBAHA.112.252759.CrossRefGoogle Scholar
  46. Zhang, Y., Schuff, N., Jahng, G. H., Bayne, W., Mori, S., Schad, L., et al. (2007). Diffusion tensor imaging of cingulum fibers in mild cognitive impairment and Alzheimer disease. Neurology, 68(1), 13–19.  https://doi.org/10.1212/01.wnl.0000250326.77323.01.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Evan P. Pasha
    • 1
    Email author
  • Alex C. Birdsill
    • 2
  • Stephanie Oleson
    • 2
  • Andreana P. Haley
    • 2
    • 3
  • Hirofumi Tanaka
    • 1
  1. 1.Cardiovascular Aging Research Laboratory, Department of Kinesiology and Health EducationThe University of Texas at AustinAustinUSA
  2. 2.Department of PsychologyThe University of Texas at AustinAustinUSA
  3. 3.Imaging Research CenterThe University of Texas at AustinAustinUSA

Personalised recommendations