Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1640–1649 | Cite as

Altered intrinsic brain activity and memory performance improvement in patients with end-stage renal disease during a single dialysis session

  • Peng Li
  • Dun Ding
  • Xue-ying Ma
  • Hua-wen Zhang
  • Ji-xin LiuEmail author
  • Ming ZhangEmail author
ORIGINAL RESEARCH
  • 128 Downloads

Abstract

Memory deficits are considered to have a great influence on self-management, dietary restriction and therapeutic regimen for end-stage renal disease (ESRD) patients with dialysis treatment. This study was aim to investigate the spontaneous brain activity and its relationship with memory performance in ESRD patients before dialysis (T1) and after 24 h (T2) during a single dialysis session. 23 ESRD patients and 25 matched healthy controls (HCs) were scanned using functional magnetic resonance imaging (fMRI) at T1, and all patients were also scanned at T2. Amplitude of low-frequency fluctuation (ALFF) and regional homogeneity (ReHo) methods were used to evaluate the spontaneous brain activity between two groups. The Auditory Verbal Learning Test-Huashan version (AVLT-H) was performed to assess memory function. Compared with HCs, ESRD group showed a significant decreases in the immediate recall total score (IR-S), short-term delayed recall score (SR-S), and long-term delayed recall score (LR-S) at T1. IR-S, SR-S, LR-S and recognition score (REC-S) were significantly increased at T2. Compared with HCs at T1, ESRD patients showed that the lower mean ALFF (mALFF) values were mainly located in dorsolateral prefrontal cortex (DLPFC), medial frontal gyrus, and precuneus. Higher ReHo in the bilateral inferior temporal gyrus and left hippocampus and lower ReHo in the right precentral gyrus, anterior cingulate cortex were found at T1 too. The mALFF values of the DLPFC and precuneus were significantly increased during a dialysis session, while no significantly difference of ReHo region was found. Furthermore, the increased mALFF values of the DLPFC were significantly positively correlated with the improvement in the IR-S. Our results indicated that increased regional spontaneous activity of the DLPFC may reflect memory performance improvement after a single dialysis treatment, which may provide insight into the effect of hemodialysis on spontaneous brain function during a single dialysis session.

Keywords

End-stage renal disease Memory deficits Resting-state functional magnetic resonance imaging Amplitude of low-frequency fluctuation Regional homogeneity Maintenance hemodialysis 

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant No. 81371530, 81471737) and the Research Funds of the First Affiliated Hospital of Xi’an Jiaotong University, College of Medicine (Grant No. 2014YK3).

Compliance with ethical standards

Conflict of interest

Peng Li, Dun Ding, Xue-ying Ma, Hua-wen Zhang, Ji-xin Liu, and Ming Zhang declares that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Ethical statements

Informed consent was obtained from all individual participants for being included in the study.

Supplementary material

11682_2018_9828_MOESM1_ESM.docx (525 kb)
Supplementary material 1 (DOCX 525 KB)

References

  1. Birkenhager, W. H., & Staessen, J. A. (2006). Antihypertensives for prevention of Alzheimer’s disease. Lancet Neurology, 5(6), 466–468.CrossRefGoogle Scholar
  2. Biswal, B. B. (2012). Resting state fMRI: a personal history. Neuroimage, 62(2), 938–944.CrossRefGoogle Scholar
  3. Bossola, M., Di Stasio, E., Antocicco, M., Silvestri, P., & Tazza, L. (2013). Variables associated with time of recovery after hemodialysis. Journal of Nephrology, 26(4), 787–792.CrossRefGoogle Scholar
  4. Bossola, M., & Tazza, L. (2016). Postdialysis fatigue: a frequent and debilitating symptom. Seminars in Dialysis, 29(3), 222–227.CrossRefGoogle Scholar
  5. Brkovic, T., Burilovic, E., & Puljak, L. (2016). Prevalence and severity of pain in adult end-stage renal disease patients on chronic intermittent hemodialysis: a systematic review. Patient Prefer Adherence, 10, 1131–1150.PubMedPubMedCentralGoogle Scholar
  6. Bugnicourt, J. M., Godefroy, O., Chillon, J. M., Choukroun, G., & Massy, Z. A. (2013). Cognitive disorders and dementia in CKD: the neglected kidney-brain axis. Journal of the American Society of Nephrology, 24(3), 353–363.CrossRefGoogle Scholar
  7. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.CrossRefGoogle Scholar
  8. Campbell, N. L., Boustani, M. A., Skopelja, E. N., Gao, S., Unverzagt, F. W., & Murray, M. D. (2012). Medication adherence in older adults with cognitive impairment: a systematic evidence-based review. The American Journal of Geriatric Pharmacotherapy, 10(3), 165–177.CrossRefGoogle Scholar
  9. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: a matlab toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 413.Google Scholar
  10. Cicchetti, D., & Posner, M. I. (2005). Cognitive and affective neuroscience and developmental psychopathology. Development and Psychopathology, 17(3), 569–575.PubMedGoogle Scholar
  11. Elias, M. F., Dore, G. A., & Davey, A. (2013). Kidney disease and cognitive function. Contributions to Nephrology, 17942–57.Google Scholar
  12. Falleti, M. G., Maruff, P., Collie, A., & Darby, D. G. (2006). Practice effects associated with the repeated assessment of cognitive function using the CogState battery at 10-minute, one week and one month test-retest intervals. Journal of Clinical and Experimental Neuropsychology, 28(7), 1095–1112.CrossRefGoogle Scholar
  13. Fried, P. J., Rd, R. R., Moss, M. B., Valerocabré, A., & Pascualleone, A. (2014). Causal evidence supporting functional dissociation of verbal and spatial working memory in the human dorsolateral prefrontal cortex. European Journal of Neuroscience, 39(11), 1973–1981.CrossRefGoogle Scholar
  14. Griva, K., Newman, S. P., Harrison, M. J., Hankins, M., Davenport, A., Hansraj, S. et al (2003). Acute neuropsychological changes in hemodialysis and peritoneal dialysis patients. Health Psychology, 22(6), 570–578.CrossRefGoogle Scholar
  15. Keightley, M. L., Saluja, R. S., Chen, J. K., Gagnon, I., Leonard, G., Petrides, M. et al (2014). A functional magnetic resonance imaging study of working memory in youth after sports-related concussion: is it still working? Journal of Neurotrauma, 31(5), 437–451.CrossRefGoogle Scholar
  16. Kielstein, H., Suntharalingam, M., Perthel, R., Song, R., Schneider, S. M., Martens-Lobenhoffer, J. et al (2015). Role of the endogenous nitric oxide inhibitor asymmetric dimethylarginine (ADMA) and brain-derived neurotrophic factor (BDNF) in depression and behavioural changes: clinical and preclinical data in chronic kidney disease. Nephrology, Dialysis, Transplantation, 30(10), 1699–1705.CrossRefGoogle Scholar
  17. Kielstein, J. T., & Bernstein, H. G. (2014). The reversible part of cognitive impairment in chronic kidney disease: can mice help men break the TEMPOLimit? Nephrology, Dialysis, Transplantation, 29(3), 476–478.CrossRefGoogle Scholar
  18. Kielstein, J. T., Donnerstag, F., Gasper, S., Menne, J., Kielstein, A., Martens-Lobenhoffer, J. et al (2006). ADMA increases arterial stiffness and decreases cerebral blood flow in humans. Stroke, 37(8), 2024–2029.CrossRefGoogle Scholar
  19. Kurella, M., Chertow, G. M., Fried, L. F., Cummings, S. R., Harris, T., Simonsick, E. et al (2005). Chronic kidney disease and cognitive impairment in the elderly: the health, aging, and body composition study. Journal of the American Society of Nephrology, 16(7), 2127–2133.CrossRefGoogle Scholar
  20. Kurella, M., Chertow, G. M., Luan, J., & Yaffe, K. (2004). Cognitive impairment in chronic kidney disease. Journal of the American Geriatrics Society, 52(11), 1863–1869.CrossRefGoogle Scholar
  21. Latimer, C. S., Brewer, L. D., Searcy, J. L., Chen, K. C., Popovic, J., Kraner, S. D. et al (2014). Vitamin D prevents cognitive decline and enhances hippocampal synaptic function in aging rats. Proceedings of the National Academy of Sciences of the United States of America, 111(41), E4359–E4366.CrossRefGoogle Scholar
  22. Lee, S. T., Chu, K., Park, J. E., Jung, K. H., Jeon, D., Lim, J. Y. et al (2012). Erythropoietin improves memory function with reducing endothelial dysfunction and amyloid-beta burden in Alzheimer’s disease models. Journal of Neurochemistry, 120(1), 115–124.CrossRefGoogle Scholar
  23. Li, C., Su, H. H., Qiu, Y. W., Lv, X. F., Shen, S., Zhan, W. F. et al (2014). Regional homogeneity changes in hemodialysis patients with end stage renal disease: in vivo resting-state functional MRI study. PLoS One, 9(2), e87114.Google Scholar
  24. Li, F., Lui, S., Yao, L., Hu, J., Lv, P., Huang, X. et al (2016). Longitudinal changes in resting-state cerebral activity in patients with first-episode Schizophrenia: a 1-year follow-up functional MR Imaging Study. Radiology, 279(3), 867–875.CrossRefGoogle Scholar
  25. Liang, X., Wen, J., Ni, L., Zhong, J., Qi, R., Zhang, L. J. et al (2013). Altered pattern of spontaneous brain activity in the patients with end-stage renal disease: a resting-state functional MRI study with regional homogeneity analysis. PLoS One, 8(8), e71507.Google Scholar
  26. Lin, B. M., Curhan, S. G., Wang, M., Eavey, R., Stankovic, K. M., & Curhan, G. C. (2016). Hypertension, diuretic use, and risk of hearing loss. The American Journal of Medicine, 129(4), 416–422.CrossRefGoogle Scholar
  27. Luo, S., Qi, R. F., Wen, J. Q., Zhong, J. H., Kong, X., Liang, X. et al (2016). Abnormal intrinsic brain activity patterns in patients with end-stage renal disease undergoing peritoneal dialysis: a resting-state functional MR imaging study. Radiology, 278(1), 181–189.CrossRefGoogle Scholar
  28. Murray, A. M., Bell, E. J., Tupper, D. E., Davey, C. S., Pederson, S. L., Amiot, E. M. et al (2016). The brain in kidney disease (BRINK) cohort study: design and baseline cognitive function. American Journal of Kidney Diseases, 67(4), 593–600.CrossRefGoogle Scholar
  29. Murray, A. M., Pederson, S. L., Tupper, D. E., Hochhalter, A. K., Miller, W. A., Li, Q. et al (2007). Acute variation in cognitive function in hemodialysis patients: a cohort study with repeated measures. American Journal of Kidney Diseases, 50(2), 270–278.CrossRefGoogle Scholar
  30. Ni, L., Wen, J., Zhang, L. J., Zhu, T., Qi, R., Xu, Q. et al (2014). Aberrant default-mode functional connectivity in patients with end-stage renal disease: a resting-state functional MR imaging study. Radiology, 271(2), 543–552.CrossRefGoogle Scholar
  31. Pliskin, N. H., Yurk, H. M., Ho, L. T., & Umans, J. G. (1996). Neurocognitive function in chronic hemodialysis patients. Kidney International, 49(5), 1435–1440.CrossRefGoogle Scholar
  32. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. Neuroimage, 84320–341.Google Scholar
  33. Qiu, Y., Lv, X., Su, H., Jiang, G., Li, C., & Tian, J. (2014). Structural and functional brain alterations in end stage renal disease patients on routine hemodialysis: a voxel-based morphometry and resting state functional connectivity study. PLoS One, 9(5), e98346.Google Scholar
  34. Richardson, M. P., Strange, B. A., Thompson, P. J., Baxendale, S. A., Duncan, J. S., & Dolan, R. J. (2004). Pre-operative verbal memory fMRI predicts post-operative memory decline after left temporal lobe resection. Brain, 127(Pt 11), 2419–2426.CrossRefGoogle Scholar
  35. Schaechter, J. D., Kraft, E., Hilliard, T. S., Dijkhuizen, R. M., Benner, T., Finklestein, S. P. et al (2002). Motor recovery and cortical reorganization after constraint-induced movement therapy in stroke patients: a preliminary study. Neurorehabil Neural Repair, 16(4), 326–338.CrossRefGoogle Scholar
  36. Schneider, S., Malecki, A.-K., Boenisch, O., Schönfeld, R., & Kielstein, J. T. (2012) Cognitive function at 2443 µmol/l creatinine. BMC Nephrology. 86.Google Scholar
  37. Schneider, S. M., Malecki, A. K., Müller, K., Schönfeld, R., Girndt, M., Mohr, P. et al (2015). Effect of a single dialysis session on cognitive function in CKD5D patients: a prospective clinical study. Nephrology, Dialysis, Transplantation: Official Publication of the European Dialysis and Transplant Association - European Renal Association, 30(9), 1551–1559.CrossRefGoogle Scholar
  38. Scribner, B. H., Buri, R., Caner, J. E., Hegstrom, R., & Burnell, J. M. (1960). The treatment of chronic uremia by means of intermittent hemodialysis: a preliminary report. Transactions - American Society for Artificial Internal Organs, 6114 – 122.Google Scholar
  39. Shen, J., Zhang, G., Yao, L., & Zhao, X. (2015). Real-time fMRI training-induced changes in regional connectivity mediating verbal working memory behavioral performance. Neuroscience, 289144–152.Google Scholar
  40. Song, S. H., Kim, I. J., Kim, S. J., Kwak, I. S., & Kim, Y. K. (2008). Cerebral glucose metabolism abnormalities in patients with major depressive symptoms in pre-dialytic chronic kidney disease: statistical parametric mapping analysis of F-18-FDG PET, a preliminary study. Psychiatry and Clinical Neurosciences, 62(5), 554–561.CrossRefGoogle Scholar
  41. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., & Zhu, C. Z. et al (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One, 6(9), e25031.Google Scholar
  42. van Dijk, P. C., Zwinderman, A. H., Dekker, F. W., Schon, S., Stel, V. S., Finne, P., et al. (2007). Effect of general population mortality on the north-south mortality gradient in patients on replacement therapy in Europe. Kidney International, 71(1), 53–59.CrossRefGoogle Scholar
  43. Wagrowska-Danilewicz, M., & Danilewicz, M. (2007). Current position of electron microscopy in the diagnosis of glomerular diseases. Polish Journal of Pathology, 58(2), 87–92.PubMedGoogle Scholar
  44. Williams, M. A., Sklar, A. H., Burright, R. G., & Donovick, P. J. (2004). Temporal effects of dialysis on cognitive functioning in patients with ESRD. American Journal of Kidney Diseases, 43(4), 705–711.CrossRefGoogle Scholar
  45. Wolk, D. A., & Dickerson, B. C. (2011a). Fractionating verbal episodic memory in Alzheimer’s disease. Neuroimage, 54(2), 1530–1539.Google Scholar
  46. Wolk, D. A., & Dickerson, B. C. (2011b). Alzheimer’s disease Neuroimaging. Fractionating verbal episodic memory in Alzheimers disease. Neuroimage, 54(2), 1530–1539. I.Google Scholar
  47. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22(1), 394–400.CrossRefGoogle Scholar
  48. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91.CrossRefGoogle Scholar
  49. Zhang, L. J., Wen, J., Liang, X., Qi, R., Schoepf, U. J., Wichmann, J. L., et al. (2016). Brain default mode network changes after renal transplantation: a diffusion-tensor imaging and resting-state functional MR imaging study. Radiology, 278(2), 485–495.CrossRefGoogle Scholar
  50. Zhao, Q., Guo, Q., Liang, X., Chen, M., Zhou, Y., Ding, D., et al. (2015). Auditory verbal learning test is superior to rey-osterrieth complex figure memory for predicting mild cognitive impairment to Alzheimer’s disease. Current Alzheimer Research, 12(6), 520–526.Google Scholar
  51. Zhao, Q., Lv, Y., Zhou, Y., Hong, Z., & Guo, Q. (2012). Short-term delayed recall of auditory verbal learning test is equivalent to long-term delayed recall for identifying amnestic mild cognitive impairment. PLoS One, 7(12), e51157.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Medical Imaging, First Affiliated Hospital of Xi’anJiaotong UniversityXi’anPeople’s Republic of China
  2. 2.Department of Medical ImagingShaanxi Nuclear Geology 215 HospitalXianyangPeople’s Republic of China
  3. 3.Center for Brain Imaging, School of Life Science and TechnologyXidian UniversityXi’ anPeople’s Republic of China

Personalised recommendations