Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1622–1630 | Cite as

Structural and functional papez circuit integrity in amyotrophic lateral sclerosis

  • Ana Paula Arantes Bueno
  • Walter Hugo L. Pinaya
  • Luciana M. Moura
  • Maxime Bertoux
  • Ratko Radakovic
  • Matthew C. Kiernan
  • Antonio Lucio Teixeira
  • Leonardo Cruz de Souza
  • Michael HornbergerEmail author
  • João Ricardo Sato
ORIGINAL RESEARCH

Abstract

Cognitive impairment in amyotrophic lateral sclerosis (ALS) is heterogeneous but now recognized as a feature in non-demented patients and no longer exclusively attributed to executive dysfunction. However, despite common reports of temporal lobe changes and memory deficits in ALS, episodic memory has been less explored. In the current study, we examined how the Papez circuit—a circuit known to participate in memory processes—is structurally and functionally affected in ALS patients (n = 20) compared with healthy controls (n = 15), and whether these changes correlated with a commonly used clinical measure of episodic memory. Our multimodal MRI approach (cortical volume, voxel-based morphometry, diffusion tensor imaging and resting state functional magnetic resonance) showed reduced gray matter in left hippocampus, left entorhinal cortex and right posterior cingulate as well as increased white matter fractional anisotropy and decreased mean diffusivity in the left cingulum bundle (hippocampal part) of ALS patients compared with controls. Interestingly, thalamus, mammillary bodies and fornix were preserved. Finally, we report a decreased functional connectivity in ALS patients in bilateral hippocampus, bilateral anterior and posterior parahippocampal gyrus and posterior cingulate. The results revealed that ALS patients showed statistically significant structural changes, but more important, widespread prominent functional connectivity abnormalities across the regions comprising the Papez circuit. The decreased functional connectivity found in the Papez network may suggest these changes could be used to assess risk or assist early detection or development of memory symptoms in ALS patients even before structural changes are established.

Keywords

Multimodal MRI Papez circuit Episodic memory Cognitive deficits Amyotrophic lateral sclerosis 

Notes

Acknowledgements

The authors gratefully acknowledge the contribution of the patients and their families. The authors thank Prof. Paulo Caramelli for his valuable comments on early versions of the manuscript.

Funding

This work was supported by the National Health and Medical Research Council of Australia Program Grant to Forefront (1,037,746) and the Brain Foundation Australia grant to MH. MH is further supported by Alzheimer’s Research UK and the Wellcome trust. AB is supported by FAPESP. Grant 2016/19376-9, São Paulo Research Foundation (FAPESP). RR is supported by the Motor Neuron Disease Association (MNDA).

Compliance with ethical standards

Conflict of interest

All authors report no conflict of interest.

Ethical approval

All procedures performed in this study were in accordance with the ethical standards of the institutional and national research committee (Human Research Ethics Committee of South Eastern Sydney/Illawarra Area Health Service) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all individual participants included in the study or from a close relative.

Supplementary material

11682_2018_9825_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 27 KB)

References

  1. Abrahams, S., Goldstein, L. H., Suckling, J., Ng, V., Simmons, A., Chitnis, X., … Leigh, P. N. (2005). Frontotemporal white matter changes in amyotrophic lateral sclerosis. Journal of Neurology, 252(3), 321–331.  https://doi.org/10.1007/s00415-005-0646-x.CrossRefPubMedGoogle Scholar
  2. Abrahams, S., Leigh, P. N., Harvey, A., Vythelingum, G. N., Grisé, D., & Goldstein, L. H. (2000). Verbal fluency and executive dysfunction in amyotrophic lateral sclerosis (ALS). Neuropsychologia, 38(6), 734–747.  https://doi.org/10.1016/S0028-3932(99)00146-3.CrossRefPubMedGoogle Scholar
  3. Agosta, F., Canu, E., Valsasina, P., Riva, N., Prelle, A., Comi, G., & Filippi, M. (2013). Divergent brain network connectivity in amyotrophic lateral sclerosis. Neurobiology of Aging, 34(2), 419–427.  https://doi.org/10.1016/j.neurobiolaging.2012.04.015.CrossRefPubMedGoogle Scholar
  4. Andersson, J. L. R., & Sotiropoulos, S. N. (2016). An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. NeuroImage, 125, 1063–1078.  https://doi.org/10.1016/j.neuroimage.2015.10.019.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. https://doi.org/10.1016/j.neuroimage.2007.07.007.
  6. Beeldman, E., Raaphorst, J., Twennaar, M. K., de Visser, M., Schmand, B., de Haan, R. J., & “Beeldman Raaphorst, J., Twennaar, M. K., de Visser, M., Schmand, B. A., de Haan, R. J.,” E. (2015). The cognitive profile of ALS: a systematic review and meta-analysis update. Journal of Neurology, Neurosurgery and Psychiatry”, (August), 1–9.  https://doi.org/10.1136/jnnp-2015-310734.
  7. Bertoux, M., De Souza, L. C., Corlier, F., Lamari, F., Bottlaender, M., Dubois, B., & Sarazin, M. (2014). Two distinct amnesic profiles in behavioral variant frontotemporal dementia. Biological Psychiatry, 75(7), 582–588.  https://doi.org/10.1016/j.biopsych.2013.08.017.CrossRefPubMedGoogle Scholar
  8. Bertoux, M., Ramanan, S., Slachevsky, A., Wong, S., Henriquez, F., Musa, G., … Dubois, B. (2016). So close yet so far: executive contribution to memory processing in behavioral variant frontotemporal dementia. Journal of Alzheimers Disease, (August), 1–10.  https://doi.org/10.3233/JAD-160522.
  9. Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 1(5), pp. 293–299.  https://doi.org/10.1080/146608200300079536.CrossRefGoogle Scholar
  10. Bueno, A. P. A., Bertoux, M., de Souza, L. C., H. M. (2017). How predictive are temporal lobe changes of underlying TDP-43 pathology in the ALS-FTD continuum? Annals of Clinical Neurophysiology, 19, 101–112.  https://doi.org/10.14253/acn.2017.19.2.101.
  11. Christidi, F., Karavasilis, E., Zalonis, I., Ferentinos, P., Giavri, Z., Wilde, E. A., … Evdokimidis, I. (2017). Memory-related white matter tract integrity in amyotrophic lateral sclerosis: an advanced neuroimaging and neuropsychological study. Neurobiology of Aging, 49, 69–78.  https://doi.org/10.1016/j.neurobiolaging.2016.09.014.CrossRefPubMedGoogle Scholar
  12. Christidi, F., Zalonis, I., Kyriazi, S., Rentzos, M., Karavasilis, E., Wilde, E. A., & Evdokimidis, I. (2014). Uncinate fasciculus microstructure and verbal episodic memory in amyotrophic lateral sclerosis: a diffusion tensor imaging and neuropsychological study. Brain Imaging and Behavior, 8(4), 497–505.  https://doi.org/10.1007/s11682-013-9271-y.CrossRefPubMedGoogle Scholar
  13. Consonni, M., Rossi, S., Cerami, C., Marcone, A., Iannaccone, S., Cappa, F., S., & Perani, D. (2015). Executive dysfunction affects word list recall performance: evidence from amyotrophic lateral sclerosis and other neurodegenerative diseases. Journal of Neuropsychology, 1–17.  https://doi.org/10.1111/jnp.12072.
  14. Dale, A. M., Fischl, B., & Sereno, M. I. (1999a). Cortical surface-based analysis: i. Segmentation and Surface Reconstruction. NeuroImage, 9(2), 179–194.  https://doi.org/10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  15. Dale, A. M., Fischl, B., & Sereno, M. I. (1999b). Cortical surface-based analysis. ii. inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 179–194.  https://doi.org/10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  16. de Carvalho, M., Dengler, R., Eisen, A., England, J. D., Kaji, R., Kimura, J., … Swash, M. (2008). Electrodiagnostic criteria for diagnosis of ALS. Clinical Neurophysiology, 119(3), 497–503.  https://doi.org/10.1016/j.clinph.2007.09.143.CrossRefPubMedGoogle Scholar
  17. De Souza, L. C., Chupin, M., Bertoux, M., Lehéricy, S., Dubois, B., Lamari, F., … Sarazin, M. (2013). Is hippocampal volume a good marker to differentiate alzheimer’s disease from frontotemporal dementia? Journal of Alzheimer’s Disease, 36(1), 57–66.  https://doi.org/10.3233/JAD-122293.CrossRefPubMedGoogle Scholar
  18. Dennis, N. A., Browndyke, J. N., Stokes, J., Need, A., Burke, J. R., Welsh-Bohmer, K. A., & Cabeza, R. (2010). Temporal lobe functional activity and connectivity in young adult APOE ??4 carriers. Alzheimer’s and Dementia, 6(4), 303–311.  https://doi.org/10.1016/j.jalz.2009.07.003.CrossRefPubMedGoogle Scholar
  19. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., … Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.  https://doi.org/10.1016/j.neuroimage.2006.01.021.CrossRefPubMedGoogle Scholar
  20. Douaud, G., Filippini, N., Knight, S., Talbot, K., & Turner, M. R. (2011). Integration of structural and functional magnetic resonance imaging in amyotrophic lateral sclerosis. Brain, 134(12), 3467–3476. https://doi.org/10.1093/brain/awr279.
  21. Fekete, T., Zach, N., Mujica-Parodi, L. R., Turner, M. R., & Zang, Y.-F. (2013). Multiple kernel learning captures a systems-level functional connectivity biomarker signature in amyotrophic lateral sclerosis. PLoS ONE, 8(12). https://doi.org/10.1371/journal.pone.0085190.
  22. Fischl, B., Van Der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., … Dale, A. M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.  https://doi.org/10.1093/cercor/bhg087.CrossRefPubMedGoogle Scholar
  23. Flanagan, E. C., Wong, S., Dutt, A., Tu, S., Bertoux, M., Irish, M., … Hornberger, M. (2016). False recognition in behavioral variant frontotemporal dementia and Alzheimer’s disease-disinhibition or amnesia?. Frontiers in Aging Neuroscience, 8.  https://doi.org/10.3389/fnagi.2016.00177.
  24. Goldstein, L. H., & Abrahams, S. (2013). Changes in cognition and behaviour in amyotrophic lateral sclerosis: nature of impairment and implications for assessment. The Lancet Neurology, 12(4), 368–380.  https://doi.org/10.1016/S1474-4422(13)70026-7.CrossRefPubMedGoogle Scholar
  25. Hammer, A., Vielhaber, S., Rodriguez-Fornells, A., Mohammadi, B., & Münte, T. F. (2011). A neurophysiological analysis of working memory in amyotrophic lateral sclerosis. Brain Research, 1421, 90–99.  https://doi.org/10.1016/j.brainres.2011.09.010.CrossRefPubMedGoogle Scholar
  26. Hervieu-Begue, M., Rouaud, O., Petot, G., Catteau, A., A., & Giroud, M. (2016). Semantic memory assessment in 15 patients with amyotrophic lateral sclerosis. Rev Neurol (Paris), 172(4–5), 307–312.  https://doi.org/10.1016/j.neurol.2015.10.009.
  27. Hornberger, M., & Kiernan, M. C. (2016). Emergence of an imaging biomarker for amyotrophic lateral sclerosis: is the end point near? Journal of Neurology, Neurosurgery & Psychiatry, 87(6), 569–569.  https://doi.org/10.1136/jnnp-2015-312882.CrossRefGoogle Scholar
  28. Hornberger, M., Wong, S., Tan, R., Irish, M., Piguet, O., Kril, J., … Halliday, G. (2012). In vivo and post-mortem memory circuit integrity in frontotemporal dementia and Alzheimer’s disease. Brain, 135(10), 3015–3025. https://doi.org/10.1093/brain/aws239.
  29. Irish, M., Hornberger, M., El Wahsh, S., Lam, B. Y. K., Lah, S., Miller, L., … Piguet, O. (2014). Grey and white matter correlates of recent and remote autobiographical memory retrieval -insights from the dementias. PLoS ONE, 9(11). https://doi.org/10.1371/journal.pone.0113081.
  30. Kasper, E., Schuster, C., Machts, J., Bittner, D., Vielhaber, S., Benecke, R., … Prudlo, J. (2015). Dysexecutive functioning in ALS patients and its clinical implications. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 16(3–4), 160–171.  https://doi.org/10.3109/21678421.2015.1026267.CrossRefPubMedGoogle Scholar
  31. Li, W., Antuono, P. G., Xie, C., Chen, G., Jones, J. L., Ward, B. D., … Li, S. J. (2014). Aberrant functional connectivity in Papez circuit correlates with memory performance in cognitively intact middle-aged APOE4 carriers. Cortex, 57, 167–176.  https://doi.org/10.1016/j.cortex.2014.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Libon, D. J., McMillan, C., Avants, B., Boller, A., Morgan, B., Burkholder, L., … Grossman, M. (2012). Deficits in concept formation in amyotrophic lateral sclerosis. Neuropsychology, 26(4), 422–429. https://doi.org/10.1037/a0028668.
  33. Lillo, P., & Hodges, J. R. (2009). Frontotemporal dementia and motor neurone disease: overlapping clinic-pathological disorders. Journal of Clinical Neuroscience, 16(9), 1131–1135. https://doi.org/10.1016/j.jocn.2009.03.005.
  34. Lillo, P., Savage, S. A., Lillo, P., Savage, S., & Mioshi, E. (2016). Amyotrophic lateral sclerosis and frontotemporal dementia: A behavioural and cognitive continuum, (January 2012).  https://doi.org/10.3109/17482968.2011.639376.
  35. Loewe, K., Machts, J., Kaufmann, J., Petri, S., Heinze, H.-J., Borgelt, C., … Schoenfeld, M. A. (2017). Widespread temporo-occipital lobe dysfunction in amyotrophic lateral sclerosis. Scientific Reports, 7, 40252.  https://doi.org/10.1038/srep40252.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Machts, J., Bittner, V., Kasper, E., Schuster, C., Prudlo, J., Abdulla, S., … Bittner, D. M. (2014). Memory deficits in amyotrophic lateral sclerosis are not exclusively caused by executive dysfunction: a comparative neuropsychological study of amnestic mild cognitive impairment. BMC Neuroscience, 15(1), 83.  https://doi.org/10.1186/1471-2202-15-83.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mantovan, M. C., Baggio, L., Barba, G. D., Smith, P., Pegoraro, E., Soraru’, G., … Angelini, C. (2003). Memory deficits and retrieval processes in ALS1. European Journal of Neurology, 10(3), 221–227.  https://doi.org/10.1046/j.1468-1331.2003.00607.x.CrossRefPubMedGoogle Scholar
  38. Matuszewski, V., Piolino, P., De La Sayette, V., Lalevée, C., Pélerin, A., Dupuy, B., … Desgranges, B. (2006). Retrieval mechanisms for autobiographical memories: Insights from the frontal variant of frontotemporal dementia. Neuropsychologia, 44, 2386–2397.  https://doi.org/10.1016/j.neuropsychologia.2006.04.031.CrossRefPubMedGoogle Scholar
  39. Meoded, A., Kwan, J. Y., Peters, T. L., Huey, E. D., Danielian, L. E., Wiggs, E., … Floeter, M. K. (2013). Imaging findings associated with cognitive performance in primary lateral sclerosis and amyotrophic lateral sclerosis E X T R A. Original Research Article Dement Geriatr Cogn Disord Extra, 3, 233–250.  https://doi.org/10.1159/000353456.CrossRefGoogle Scholar
  40. Mezzapesa, D. M., D’Errico, E., Tortelli, R., Distaso, E., Cortese, R., Tursi, M., … Simone, I. L. (2013). Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis. PLoS ONE, 8(11). https://doi.org/10.1371/journal.pone.0080748.
  41. Mioshi, E., Caga, J., Lillo, P., Hsieh, S., Ramsey, E., Devenney, E., … Kiernan, M. C. (2014). Neuropsychiatric changes precede classic motor symptoms in ALS and do not affect survival. Neurology, 82(2), 149–154.  https://doi.org/10.1212/WNL.0000000000000023.CrossRefPubMedGoogle Scholar
  42. Mioshi, E., Dawson, K., Mitchell, J., Arnold, R., & Hodges, J. R. (2006). The Addenbrooke’s Cognitive Examination revised (ACE-R): A brief cognitive test battery for dementia screening. International Journal of Geriatric Psychiatry, 21(11), 1078–1085. https://doi.org/10.1002/gps.1610.
  43. Mioshi, E., Lillo, P., Yew, B., Hsieh, S., Savage, S., Hodges, J. R., … Hornberger, M. (2013). Cortical atrophy in ALS is critically associated with neuropsychiatric and cognitive changes. Neurology, 80(12), 1117–1123.  https://doi.org/10.1212/WNL.0b013e31828869da.CrossRefPubMedGoogle Scholar
  44. Müller, H.-P., Turner, M. R., Grosskreutz, J., Abrahams, S., Bede, P., & Govind, V. … Neuroimaging Society in ALS (NiSALS) DTI Study Group. (2016). A large-scale multicentre cerebral diffusion tensor imaging study in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 87(6), 570–579.  https://doi.org/10.1136/jnnp-2015-311952.CrossRefPubMedGoogle Scholar
  45. Raaphorst, J., van Tol, M. J., de Visser, M., van der Kooi, A. J., Majoie, C. B., van den Berg, L. H., … Veltman, D. J. (2015). Prose memory impairment in amyotrophic lateral sclerosis patients is related to hippocampus volume. European Journal of Neurology, 22(3), 547–554. https://doi.org/10.1111/ene.12615.
  46. Rudebeck, S. R., Scholz, J., Millington, R., Rohenkohl, G., Johansen-Berg, H., & Lee, A. C. H. (2009). Fornix microstructure correlates with recollection but not familiarity memory. Journal of Neuroscience, 29(47), 14987–14992.  https://doi.org/10.1523/JNEUROSCI.4707-09.2009.CrossRefPubMedGoogle Scholar
  47. Sarro, L., Agosta, F., Canu, E., Riva, N., Prelle, A., Copetti, M., … Filippi, M. (2011). Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. American Journal of Neuroradiology, 32(10), 1866–1872.  https://doi.org/10.3174/ajnr.A2658.CrossRefPubMedGoogle Scholar
  48. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. https://doi.org/10.1002/hbm.10062.
  49. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., … Behrens, T. E. J. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.  https://doi.org/10.1016/j.neuroimage.2006.02.024.CrossRefPubMedGoogle Scholar
  50. Trojsi, F., Esposito, F., de Stefano, M., Buonanno, D., Conforti, F. L., Corbo, D., … Tedeschi, G. (2015). Functional overlap and divergence between ALS and bvFTD. Neurobiology of Aging, 36(1), 413–423.  https://doi.org/10.1016/j.neurobiolaging.2014.06.025.CrossRefPubMedGoogle Scholar
  51. van der Hulst, E.-J., Bak, T. H., & Abrahams, S. (2015). Impaired affective and cognitive theory of mind and behavioural change in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 86(11), 1208–1215.  https://doi.org/10.1136/jnnp-2014-309290.CrossRefPubMedGoogle Scholar
  52. Volpato, C., Piccione, F., Silvoni, S., Cavinato, M., Palmieri, A., Meneghello, F., & Birbaumer, N. (2010). Working memory in amyotrophic lateral sclerosis: auditory event-related potentials and neuropsychological evidence. Journal of Clinical Neurophysiology, 27(3), 198–206.  https://doi.org/10.1097/WNP.0b013e3181e0aa14.CrossRefPubMedGoogle Scholar
  53. Woolley, S. C., & Strong, M. J. (2015). Frontotemporal dysfunction and dementia in amyotrophic lateral sclerosis. Neurologic Clinics, 33(4), 787–805. https://doi.org/10.1016/j.ncl.2015.07.011.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Ana Paula Arantes Bueno
    • 1
  • Walter Hugo L. Pinaya
    • 1
  • Luciana M. Moura
    • 1
  • Maxime Bertoux
    • 2
  • Ratko Radakovic
    • 3
    • 4
    • 5
  • Matthew C. Kiernan
    • 6
  • Antonio Lucio Teixeira
    • 7
  • Leonardo Cruz de Souza
    • 7
  • Michael Hornberger
    • 2
    Email author
  • João Ricardo Sato
    • 1
  1. 1.Center of Mathematics, Computation and CognitionUniversidade Federal do ABCSanto AndréBrazil
  2. 2.Department of Medicine, Norwich Medical SchoolUniversity of East AngliaNorwichUK
  3. 3.School of Health Sciences, Norwich Medical SchoolUniversity of East AngliaNorwichUK
  4. 4.Alzheimer Scotland Dementia Research CentreUniversity of EdinburghEdinburghUK
  5. 5.Centre for Cognitive Ageing and Cognitive EpidemiologyUniversity of EdinburghEdinburghUK
  6. 6.Brain & Mind Centre and Sydney Medical SchoolUniversity of SydneySydneyAustralia
  7. 7.Department of Internal MedicineUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations