Advertisement

Antenatal maternal anxiety modulates the BOLD response in 20-year-old men during endogenous cognitive control

  • Maarten Mennes
  • Peter Stiers
  • Lieven Lagae
  • Bea R. H. Van den BerghEmail author
ORIGINAL RESEARCH
  • 24 Downloads

Abstract

Evidence is building for an association between the level of anxiety experienced by a mother during pregnancy and offspring cognition and structural and functional brain correlates. The current study uses fMRI to examine the association between prenatal exposure to maternal anxiety and brain activity associated with endogenous versus exogenous cognitive control in 20-year-old males. Endogenous cognitive control refers to the ability to generate control over decisions, strategies, conflicting information and so on, from within oneself without external signals, while exogenous control is triggered by external signals. In line with previous results of this long-term follow-up study we found that 20-year-olds of mothers reporting high levels of anxiety during weeks 12–22 of pregnancy exhibited a different pattern of decision making in a Gambling paradigm requiring endogenous cognitive control, compared to adults of mothers reporting low to average levels of anxiety. Moreover, the blood oxygenation level dependent (BOLD) response in a number of prefrontal cortical areas was modulated by the level of antenatal maternal anxiety. In particular, a number of right lateralized clusters including inferior frontal junction, that were modulated in the adults of mothers reporting low to average levels of anxiety during pregnancy by a task manipulation of cognitive control, were not modulated by this manipulation in the adults of mothers reporting high levels of anxiety during pregnancy. These differences in brain functional correlates provide a neurobiological underpinning for the hypothesis of an association between exposure to maternal anxiety in the prenatal life period and a deficit in endogenous cognitive control in early adulthood.

Keywords

Neurocognitive tasks Brain network Task-related fMRI Gambling paradigm Early adversity Developmental origins of health and disease (DOHaD) Developmental origins of behavior, health and Disseas (DOBHaD) Prospective study Maternal psychological distress Pregnancy Adult offspring 

Notes

Funding sources

This work was supported by the Research Foundation Flanders (FWO) (#G.0211.03), by KU Leuven (IMPH/06/GHW and IDO 05/010 EEG-fMRI). BVdB is supported by the European Commission Seventh Framework Programme (FP7— HEALTH. 2011.2.2.2–2 BRAINAGE, grant agreement no: 279281). LL is holder of the `UCB Chair on Cognitive Dysfunctions in Childhood’ at the KU Leuven. The funding sources had no involvement in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Compliance with ethical standards

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Research involving human participants

The local ethical committee for experiments on human subjects approved the study. The work described has been carried out in accordance with The Code of Ethics of the World Medical Association (Declaration of Helsinki) for experiments involving humans.

Informed consent

All participants were clearly informed about the scanning procedures and gave their written informed consent.

References

  1. Achenbach, T. M., & Rescorla, L. A. (2003). Manual for the ASEBA Adult Forms & Profiles. Research Center for Children, youth, & families, University of Vermont, Burlington, VT, USA.Google Scholar
  2. Bauer, A., Knapp, M., & Parsonage, M. (2016). Lifetime costs of perinatal anxiety and depression. Journal of Affective Disorders, 92, 83–90.CrossRefGoogle Scholar
  3. Billiet, T., Vandenbulcke, M., Mädler, B., Peeters, R., Dhollander, T., Zhang, H., Deprez, S., Van den Bergh, B.R.H. & . Emsell, L. (2015). Age-related microstructural differences quantified using myelin water imaging and advanced diffusion MRI. Neurobiology of Aging, 36(6), 2107–2121.  https://doi.org/10.1016/j.neurobiolaging.2015.02.029.CrossRefPubMedGoogle Scholar
  4. Bock, J., Wainstock, T., Braun, K., & Segal, M. (2015). Stress in utero: Prenatal programming of brain plasticity and cognition. Biological Psychiatry, 78(5), 315–326.  https://doi.org/10.1016/j.biopsych.2015.02.036.CrossRefPubMedGoogle Scholar
  5. Bowers, M. E., & Yehuda, R. (2016). Intergenerational transmission of stress in humans. Neuropsychopharmacology, 41(1), 232–244.  https://doi.org/10.1038/npp.2015.247.CrossRefPubMedGoogle Scholar
  6. Brass, M., & von Cramon, Y. (2004). Decomposing components of task preparation with functional magnetic resonance imaging. Journal of Cognitive Neuroscience, 16, 609–620.CrossRefGoogle Scholar
  7. Brass, M., Derrfuss, J., Forstmann, B., & von Cramon, D. (2005). The role of the inferior frontal junction area in cognitive control. Trends in Cognitive Sciences, 9, 314–316.CrossRefGoogle Scholar
  8. Bunge, S., Dudukovic, N., Thomason, M., Vaidya, C., & Gabrieli, J. (2002). Immature frontal lobe contributions to cognitive control in children: Evidence from fmri. Neuron, 33, 301–311.CrossRefGoogle Scholar
  9. Buss, C., Davis, E. P., Muftuler, L. T., Head, K., & Sandman, C. A. (2010). High pregnancy anxiety during mid-gestation is associated with decreased gray matter density in 6–9-year-old children. Psychoneuroendocrinology, 35(1), 141–153.  https://doi.org/10.1016/j.psyneuen.2009.07.010.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chen, L., Pan, H., Tuan, T. A., Teh, A. L., MacIsaac, J. L., Mah, S. M., … Holbrook, J. D. (2015). Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism influences the association of the methylome with maternal anxiety and neonatal brain volumes. Development and Psychopathology, 27(1), 137–150.  https://doi.org/10.1017/S0954579414001357.
  11. Christian, L. M. (2014). Effects of stress and depression on inflammatory immune parameters in pregnancy. American Journal of Obstetetrics & Gynecology, 211(3), 275–277.  https://doi.org/10.1016/j.ajog.2014.06.042.CrossRefGoogle Scholar
  12. Christian, L. M., Franco, A., Glaser, R., & Iams, J. D. (2009). Depressive symptoms are associated with elevated serum proinflammatory cytokines among pregnant women. Brain, Behavior, and Immunity, 23(6), 750–754.CrossRefGoogle Scholar
  13. Christian, L. M., Franco, A., Iams, J., Sheridan, J., & Glaser, R. (2010). Depressive symptoms predict exaggerated inflammatory responses to an in vivo immune challenge among pregnant women. Brain, Behavior, and Immunity, 24(1), 49–53.CrossRefGoogle Scholar
  14. Durston, S., Thomas, K. M., Yang, Y., Ulug, A. M., Zimmerman, R. D., & Casey, B. (2002). A neural basis for the development of inhibitory control. Developmental Science, 5, F9–F16.CrossRefGoogle Scholar
  15. Durston, S., Tottenham, N., Thomas, K., Davidson, M., Eigsti, I., Yang, Y., … Casey, B. (2003). Differential patterns of striatal activtion in young children with and without ADHD. Biological Psychiatry, 53, 871–878.Google Scholar
  16. El Marroun, H., Tiemeier, H., Muetzel, R. L., Thijssen, S., van der Knaap, N. J. F., Jaddoe, V. W. V., … White, T. J. H. (2016). Prenatal exposure to maternal and paternal depressive symptoms and brain morphology: A population-based prosepctive neuroimaging study in young children. Depression and Anxiety, 33(7), 658–666.  https://doi.org/10.1002/da.22524.
  17. Faraone, S. V., Asherson, P., Banaschewski, T., Biederman, Buitelaar, J. K., Ramos-Quiroga, J. A., Rohde, L. A., Sonuga-Barke, E. J. S., Tannock, R., & Franke, B. (2015). Attention-deficit/hyperactivity disorder. Nature Reviews Disease Primers, 2015, 1–23.Google Scholar
  18. Field, T., Diego, M., Hernandez-Reif, M., Figueiredo, B., Deeds, O., Ascencio, A., … Kuhn, C. (2010). Comorbid depression and anxiety effects on pregnancy and neonatal outcome. Infant Behavior and Development, 33(1), 23–29.  https://doi.org/10.1016/j.infbeh.2009.10.004.
  19. Forstmann, D., Brass, M., Koch, I., & von Cramon, D. (2005). Internally generated and directly cued task sets: An investigation with fMRI. Neuropsychologia, 43(6), 943–952.CrossRefGoogle Scholar
  20. Franke,K., Van den Bergh, B.R.H., de Rooij, S.R., Nathanielsz, P.W., Witte, O.W., Roseboom, T.J., & Schwab, M. (2017). Effects of prenatal stress on structural brain development and aging in humans.  https://doi.org/10.1101/148916.
  21. Galobardes, B., Shaw, M., Lawlor, D. A., Lynch, J. W., & Smith, D. G. (2006). Indicators of socioeconomic position (part 1). Journal of Epidemiology and Community Health, 60, 7–12.CrossRefGoogle Scholar
  22. Gluckman, P. D., Hanson, M. A., Cooper, C., & Thornburg, K. L. (2008). Effect of in utero and early-life conditions on adult health and disease. New England Journal of Medicine, 359(1), 61–73.  https://doi.org/10.1056/NEJMra0708473.CrossRefPubMedGoogle Scholar
  23. Gusnard, D., & Raichle, M. (2001). Searching for a baseline: Functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–694.CrossRefGoogle Scholar
  24. Hanamsagar, R., & Bilbo, S. D. (2016). Sex differences in neurodevelopmental and neurodegenerative disorders: Focus on microglial function and neuroinflammation during development. The Journal of Steroid Biochemistry and Molecular Biology, 160, 127–133.  https://doi.org/10.1016/j.jsbmb.2015.09.039.CrossRefPubMedGoogle Scholar
  25. Hanson, M., & Gluckman, P. (2011). Developmental origins of noncommunicable disease: Population and public health implications. The American Journal of Clinical Nutrition, 94(6 Suppl), 1754S–1758S.  https://doi.org/10.3945/ajcn.110.001206.CrossRefPubMedGoogle Scholar
  26. Harvison, K. W., Molfese, D. L., Woodruff-Borden, J., & Weigel, R. A. (2009). Neonatal auditory evoked responses are related to perinatal maternal anxiety. Brain and Cognition, 71(3), 369–374.  https://doi.org/10.1016/j.bandc.2009.06.004.CrossRefPubMedGoogle Scholar
  27. Hester, R. L., Murphy, K., Foxe, J. J., Foxe, D. M., Javitt, D. C., & Garavan, H. (2004). Predicting success: Patterns of cortical activation and deactivation prior to response inhibition. Journal of Cognitive Neuroscience, 16, 776–785.CrossRefGoogle Scholar
  28. Hinshaw, S. P. (2018). Attention deficit hyperactivity disorder (ADHD): Controversy, developmental mechanisms, and multiple levels of analysis. Annual Review of Clinical Psychology, 14, 291–316.Google Scholar
  29. Hunter, S. K., Mendoza, J. H., D'Anna, K., Zerbe, G. O., McCarthy, L., Hoffman, C., … Ross, R. G. (2012). Antidepressants may mitigate the effects of prenatal maternal anxiety on infant auditory sensory gating. American Journal Psychiatry, 169(6), 616–624.Google Scholar
  30. Knuesel, I., Chicha, L., Britschgi, M., Schobel, S. A., Bodmer, M., Hellings, J. A., … Prinssen, E. P. (2014). Maternal immune activation and abnormal brain development across CNS disorders. Nature Reviews Neurology, 10(11), 643–660.  https://doi.org/10.1038/nrneurol.2014.187.
  31. Koelewijn, J. M., Sluijs, A. M., & Vrijkotte, T. G. M. (2017). Possible relationship between general and pregnancy-related anxiety during the first half of pregnancy and the birth process: A prospective cohort study. Britisch Medical Journal Open, 7, e013413.Google Scholar
  32. Labouesse, M. A., Langhans, W., & Meyer, U. (2015). Long-term pathological consequences of prenatal infection: Beyond brain disorders. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 309(1), R1–R12.  https://doi.org/10.1152/ajpregu.00087.2015.CrossRefPubMedGoogle Scholar
  33. Lawrence, N. S., Ross, T. J., Hoffmann, R., Garavan, H., & Stein, E. A. (2003). Multiple neuronal networks mediate sustained attention. Journal of Cognitive Neuroscience, 15, 1028–1038.CrossRefGoogle Scholar
  34. Lebel, C., Walton, M., Letourneau, N., Giesbrecht, G. F., Kaplan, B. J., & Dewey, D. (2016). Prepartum and postpartum maternal depressive symptoms are related to children’s brain structure in preschool. Biological Psychiatry, 80(11), 859–868.  https://doi.org/10.1016/j.biopsych.2015.12.004.CrossRefPubMedGoogle Scholar
  35. Leff-Gelman, P., Mancilla-Herrera, I., Flores-Ramos, M., Cruz-Fuentes, C., Reyes-Grajeda, J. P., García-Cuétara, M. d. P., … Pulido-Ascencio, D. E. (2016). The immune system and the role of rnflammation in perinatal depression. Neuroscience Bulletin, 32(4), 398–420.  https://doi.org/10.1007/s12264-016-0048-3.
  36. Lewis, A. J., Galbally, M., Gannon, T., & Symeonides, C. (2014). Early life programming as a target for prevention of child and adolescent mental disorders. BMC Medicine, 12(1).  https://doi.org/10.1186/1741-7015-12-33.
  37. Lugo-Candelas, C., Cha, J., Hong, S., Bastidas, V., Weissman, M., Fifer, W., … Posner, J. (2018). Associations between brain structure and connectivity in infants and exposure to selective serotonin reuptake inhibitors during pregnancy. JAMA Pediatrics, 172(6), 525–533.Google Scholar
  38. Lusby, C. M., Goodman, S. H., Yeung, E. W., Bell, M. A., & Stowe, Z. N. (2016). Infant EEG and temperament negative affectivity: Coherence of vulnerabilities to mothers' perinatal depression. Development and Psychopathology, 28(4pt1), 895–911.  https://doi.org/10.1017/S0954579416000614.CrossRefPubMedGoogle Scholar
  39. Meder, D., Haagensen, B. N., Hulme, O., Morville, T., Gelskov, S., Herz, D. M., … Siebner, H. R. (2016). Tuning the brake while raising the stake: Network dynamics during sequential decision-making. The Journal of Neuroscience, 36(19), 5417–5426.  https://doi.org/10.1523/jneurosci.3191-15.2016.
  40. Mennes, M., Stiers, P., Lagae, L., & Van den Bergh, B. R. H. (2006). Long-term cognitive sequelae of antenatal maternal anxiety: Involvement of the orbitofrontal cortex. Neuroscience & Biobehavioral Reviews, 30, 1078–1086.CrossRefGoogle Scholar
  41. Mennes, M., Wouters, H., Van den Bergh, B. R. H., Lagae, L., & Stiers, P. (2008). Detection and resolution of conflict: ERP correlates of complex human decision making. Psychophysiology, 45(5), 714–720.CrossRefGoogle Scholar
  42. Mennes, M., Van den Bergh, B. R. H., Lagae, L., & Stiers, P. (2009). Developmental brain alterations in 17 year old boys are related to antenatal maternal anxiety. Clinical Neurophysiology, 120(6), 1116–1122.CrossRefGoogle Scholar
  43. Miller, E., & Cohen, J. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefGoogle Scholar
  44. Otte, R. A., Donkers, F. C. L., Braeken, M. A. K. A., & Van den Bergh, B. R. H. (2015). Multimodal processing of emotional information in 9-month-old infants II: Prenatal exposure to maternal anxiety. Brain and Cognition, 95, 107–117.  https://doi.org/10.1016/j.bandc.2014.12.001.CrossRefPubMedGoogle Scholar
  45. Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9, 60–68.CrossRefGoogle Scholar
  46. Posner, J., Cha, J., Roy, A. K., Peterson, B. S., Bansal, R., Gustafsson, H. C., … Monk, C. (2016). Alterations in amygdala–prefrontal circuits in infants exposed to prenatal maternal depression. Translational Psychiatry, 6(11), e935.  https://doi.org/10.1038/tp.2016.146.
  47. Qiu A, Anh TT, Li Y, Chen H, Rifkin-Graboi A, Broekman BF, … Meaney, M.J. (2015a). Prenatal maternal depression alters amygdala functional connectivity in 6-month-old infants. Translational Psychiatry 5: e508.  https://doi.org/10.1038/tp.2015.3.
  48. Qiu, A., Tuan, T. A., Ong, M. L., Li, Y., Chen, H., Rifkin-Graboi, A., … Gluckman, P. D. (2015b). COMT haplotypes modulate associations of antenatal maternal anxiety and neonatal cortical morphology. American Journal of Psychiatry, 172(2), 163–172.  https://doi.org/10.1176/appi.ajp.2014.14030313.
  49. Qiu, A., Rifkin-Graboi, A., Chen, H., Chong, Y. S., Kwek, K., Gluckman, P. D., … Meaney, M. J. (2013). Maternal anxiety and infants' hippocampal development: Timing matters. Translational Psychiatry, 3, e306.  https://doi.org/10.1038/tp.2013.79.
  50. Räikkönen, K., Seckl, J. R., Pesonen, A.-K., Simons, A., & Van den Bergh, B. R. H. (2011). Stress, glucocorticoids and liquorice in human pregnancy: Programmers of the offspring brain. Stress, 14, 590–603.CrossRefGoogle Scholar
  51. Rakers, F., Rupprecht, S., Bergmeier, C., Witte, O. W., & Schwab, M. (2017). Transfer of maternal psychosocial stress to the fetus. Neuroscience & Biobehavioral Reviews.  https://doi.org/10.1016/j.neubiorev.2017.02.019.
  52. Rifkin-Graboi, A., Bai, J., Chen, H., Hameed, W. B. r., Sim, L. W., Tint, M. T., … Qiu, A. (2013). Prenatal maternal depression associates with microstructure of right amygdala in neonates at birth. Biological Psychiatry, 74(11), 837–844.  https://doi.org/10.1016/j.biopsych.2013.06.019.
  53. Rifkin-Graboi, A., Meaney, M. J., Chen, H., Bai, J., Hameed, W. B. r., Tint, M. T., … Qiu, A. (2015). Antenatal maternal anxiety predicts variations in neural structures implicated in anxiety disorders in newborns. Journal of the American Academy of Child & Adolescent Psychiatry, 54(4), 313–321.e312.  https://doi.org/10.1016/j.jaac.2015.01.013
  54. Sandman, C. A., Buss, C., Head, K., & Davis, E. P. (2015). Fetal exposure to maternal depressive symptoms is associated with cortical thickness in late childhood. Biological Psychiatry, 77(4), 324–334.  https://doi.org/10.1016/j.biopsych.2014.06.025.CrossRefPubMedGoogle Scholar
  55. Sarkar, S., Craig, M. C., Dell’Acqua, F., O’Connor, T. G., Catani, M., Deeley, Q., … Murphy, D. G. M. (2014). Prenatal stress and limbic-prefrontal white matter microstructure in children aged 6–9 years: A preliminary diffusion tensor imaging study. The World Journal of Biological Psychiatry, 15(4), 346–352.  https://doi.org/10.3109/15622975.2014.903336.
  56. Scheinost, D., Kwon, S. H., Lacadie, C., Sze, G., Sinha, R., Constable, R. T., & Ment, L. R. (2016). Prenatal stress alters amygdala functional connectivity in preterm neonates. NeuroImage: Clinical, 12, 381–388.  https://doi.org/10.1016/j.nicl.2016.08.010.CrossRefGoogle Scholar
  57. Scheinost, D., Sinha, R., Cross, S. N., Kwon, S. H., Sze, G., Constable, R. T., & Ment, L. R. (2017). Does prenatal stress alter the developing connectome? Pediatric Research, 81, 214–226.CrossRefGoogle Scholar
  58. Schlotz, W., & Phillips, D. I. (2009). Fetal origins of mental health: Evidence and mechanisms. Brain Behavior and Immunity, 23, 905–916.CrossRefGoogle Scholar
  59. Schweitzer, J., Lee, D., Hanford, R., Zink, C., Ely, T., Tagamets, M., … Kilts, C. (2004). Effect of methylphenidate on executive functioning in adults with attention-deficit/hyperactivity disorder: Normalization of behavior but not related brain activity. Biological Psychiatry, 56, 597–606.Google Scholar
  60. Soe, N.N., Wen, D.J., Poh, J.S., Li, Y., Broekman, B.F.P., Chen, H., … Qiu, A. (2016).Pre- and post-patal maternal depressive symptoms in relation with infant frontal function, connectivity, and behaviors. PLoS One 11, e0152991.Google Scholar
  61. Stein, A., Pearson, R. M., Goodman, S. H., Rapa, E., Rahman, A., McCallum, M., … Pariante, C. M. (2014). Effects of perinatal mental disorders on the fetus and child. The Lancet, 384(9956), 1800–1819.  https://doi.org/10.1016/S0140-6736(14)61277-0.
  62. Tomasi, D., Ernst, T., Caparelli, E., & Chang, L. (2006). Common deactivation patterns during working memory and visual attention tasks: An intra-subject fMRI study at 4 tesla. Human Brain Mapping, 27, 694–705.CrossRefGoogle Scholar
  63. Vallesi, A., Arbula, S., Capizzi, M., Causin, F., & D'Avella, D. (2015). Domain-independent neural underpinning of task-switching: An fMRI investigation. Cortex, 65(Supplement C), 173–183.  https://doi.org/10.1016/j.cortex.2015.01.016.CrossRefPubMedGoogle Scholar
  64. Van den Bergh, B. R. H. (1990). The infuence of maternal emotions during pregnancy on fetal and neonatal behavior. Journal of Prenatal & Perinatal Psychology and Health, 5(2), 119–130.Google Scholar
  65. Van den Bergh, B. R. H. (2011). Developmental programming of early brain and behaviour development and mental health: A conceptual framework. Developmental Medicine & Child Neurology, 53, 19–23.  https://doi.org/10.1111/j.1469-8749.2011.04057.x.CrossRefGoogle Scholar
  66. Van den Bergh, B.R.H. (2016) Maternal anxiety, minfullness, and heart rate variability during pregnancy influence fetal and infant development. In N. Reissland and B.S. Kisilevsky (Eds). Fetal Development. Research on brain and behavior, environmental influences, and emering thechnologies (pp.267–292). Switserland, Springer International Publishing, ISBN 978-3-310-22023-9.Google Scholar
  67. Van den Bergh, B. R. H., & Marcoen, A. (2004). High antenatal maternal anxiety is related to ADHD symptoms, externalizing problems and anxiety in 8/9-year-olds. Child Development, 75, 1085–1097.CrossRefGoogle Scholar
  68. Van den Bergh, B. R. H., Mennes, M., Oosterlaan, J., Stevens, V., Stiers, P., Marcoen, A., & Lagae, L. (2005a). High antenatal maternal anxiety is related to impulsivity during performance on cognitive tasks in 14- and 15-year-olds. Neuroscience & Biobehavioral Reviews, 29, 259–269.CrossRefGoogle Scholar
  69. Van den Bergh, B. R. H., Mulder, E. J. H., Mennes, M., & Glover, V. (2005b). Antenatal maternal anxiety and stress and the neurobehavioural development of the fetus and child: Links and possible mechanisms. A review. Neuroscience and Biobehavioral Reviews, 29, 237–258.CrossRefGoogle Scholar
  70. Van den Bergh, B.R.H., Mennes, M., Stevens, V., Van der Meere, J., Börger, N., Stiers, P., … Lagae, L. (2006). ADHD deficit as measured in adolescent boys with a continuous performance task is related to antenatal maternal anxiety. Pediatric Research, 59, 78–82.Google Scholar
  71. Van den Bergh, B. R. H., Van Calster, B., Smits, T., Van Huffel, S., & Lagae, L. (2008). Antenatal maternal anxiety is related to HPA-axis dysregulation and self-reported depressive symptoms in adolescence: A prospective study on the fetal origins of depressed mood. Neuropsychopharmacology, 33, 536–545.CrossRefGoogle Scholar
  72. Van den Bergh, B. R. H., van den Heuvel, M. I., Lahti, M., Braeken, M., de Rooij, S. R., Entringer, S., … Schwab, M. (2017). Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neuroscience & Biobehavioral Reviews.  https://doi.org/10.1016/j.neubiorev.2017.07.003.
  73. Van den Bergh, B. R. H., Dahnke, R., & Mennes, M. (2018). Prenatal stress and the developing brain: Risks for neurodevelopmental disorders. Development and Psychopathology, 30, 743–762.  https://doi.org/10.1017/S0954579418000342.CrossRefPubMedGoogle Scholar
  74. van den Heuvel, M. I., & Thomason, M. E. (2016). Functional connectivity of the human brain in utero. Trends in Cognitive Sciences., 20, 931–939.  https://doi.org/10.1016/j.tics.2016.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  75. van den Heuvel, M. I., Donkers, F. C., Winkler, I., Otte, R. A., & Van den Bergh, B. R. H. (2015). Maternal mindfulness and anxiety during pregnancy affect infants' neural responses to sounds. Social Cognitive and Affective Neuroscience, 10(3), 453–460.  https://doi.org/10.1093/scan/nsu075.CrossRefPubMedGoogle Scholar
  76. van den Heuvel, M. I., Henrichs, J., Donkers, F. C., & Van den Bergh, B. R. H. (2017). Children prenatally exposed to maternal anxiety devote more attentional resources to neutral pictures. Developmental Science, 21, e12612.  https://doi.org/10.1111/desc.12612.CrossRefPubMedGoogle Scholar
  77. Van der Ploeg, H. M., Defares, P. B., & Spielberger, C. D. (1980). Handleiding bij de zelfbeoordelingsvragenlijst [manual of the state-trait anxiety inventory; Dutch adaptation]. Leiden, the Netherlands: Swets en Zeitlinger.Google Scholar
  78. Van Essen, D. (2002). Windows on the brain. The emerging role of atlases and databases in neuroscience. Current Opinion in Neurobiology, 12, 574–579.CrossRefGoogle Scholar
  79. Veru, F., Laplante, D. P., Luheshi, G., & King, S. (2014). Prenatal maternal stress exposure and immune function in the offspring. Stress, 17(2), 133–148.  https://doi.org/10.3109/10253890.2013.876404.CrossRefPubMedGoogle Scholar
  80. Veru, F., Dancause, K., Laplante, D. P., King, S., & Luheshi, G. (2015). Prenatal maternal stress predicts reductions in CD4+ lymphocytes, increases in innate-derived cytokines, and a Th2 shift in adolescents: Project ice storm. Physiology & Behavior, 144, 137–145.  https://doi.org/10.1016/j.physbeh.2015.03.016.CrossRefGoogle Scholar
  81. Wen, D. J., Poh, J. S., Ni, S. N., Chong, Y. S., Chen, H., Kwek, K., … Qiu, A. (2017). Influences of prenatal and postnatal maternal depression on amygdala volume and microstructure in young children. Translational Psychiatry, 7, e1103.  https://doi.org/10.1038/tp.2017.74.
  82. Wiggs, K., Elmoe, A.L., Niggs, J.T., a Nikolas, M.A. (2016) Pre- and perinatal risk for attention-deficit hyperactivity disorder: Does neuropsychological weakness explain the link? Journal of Abnormal Child Psychology, 44:1473–1485.Google Scholar
  83. Zysset, S., Wendt, C., Volz, K., Neumann, J., Huber, O., & von Cramon, D. (2006). The neural implementation of multi-attribute decision making: A parametric fMRI study with human subjects. NeuroImage, 31, 1380–1388.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Donders Institute for Brain, Cognition, and BehaviorRadboud UniversityNijmegenThe Netherlands
  2. 2.Department of Neuropsychology and PsychopharmacologyMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Section Paediatric Neurology, Department Development and RegenerationUniversity Hospitals KU LeuvenLeuvenBelgium
  4. 4.Health Psychology, Faculty of Psychology and Educational SciencesUniversity of Leuven - KU LeuvenLeuvenBelgium
  5. 5.Department of Welfare, Public Health and FamilyFlemish GovernmentBrusselsBelgium

Personalised recommendations