Advertisement

Changed hub and functional connectivity patterns of the posterior fusiform gyrus in chess experts

  • Limei Song
  • Qinmu Peng
  • Shuwei LiuEmail author
  • Jiaojian WangEmail author
ORIGINAL RESEARCH
  • 36 Downloads

Abstract

The hubs of the brain network play a key role in integrating and transferring information between different functional modules. However, the effects of long-term practice on functional network hubs in chess experts are largely undefined. Here, we investigated whether alterations of hubs can be detected in chess experts using resting-state functional magnetic resonance imaging (rs-fMRI) and graph theory methods. We first mapped the whole-brain voxel-wise functional connectivity and calculated the functional connectivity strength (FCS) map in each of the 28 chess players and 27 gender- and age-matched healthy novice players. Whole-brain resting-state functional connectivity analyses for the changed hub areas were conducted to further elucidate the corresponding changes of functional connectivity patterns in chess players. The hub analysis revealed increased FCS in the right posterior fusiform gyrus of the chess players, which was supported by analyses of this area’s regional homogeneity (ReHo), amplitude of low frequency fluctuations (ALFF), and fractional amplitude of low frequency fluctuations (fALFF). The following functional connectivity analyses revealed increased functional connectivities between the right posterior fusiform gyrus and the visuospatial attention and motor networks in chess players. These findings demonstrate that cognitive expertise has a positive influence on the functions of the brain regions associated with the chess expertise and that increased functional connections might in turn facilitate within and between networks communication for expert behavior to get superior performance.

Keywords

Chess experts Hubs Functional connectivity strength Resting-state functional connectivity Neuroplasticity 

Notes

Funding

This study is sponsored by Natural Science Foundation of China (Grant No:31500867, 31571237).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3, e17.CrossRefGoogle Scholar
  2. Aciego, R., Garcia, L., & Betancort, M. (2012). The benefits of chess for the intellectual and social-emotional enrichment in schoolchildren. The Spanish Journal of Psychology, 15, 551–559.CrossRefGoogle Scholar
  3. Amidzic, O., Riehle, H. J., Fehr, T., Wienbruch, C., & Elbert, T. (2001). Pattern of focal gamma-bursts in chess players. Nature, 412, 603.CrossRefGoogle Scholar
  4. Astafiev, S. V., Stanley, C. M., Shulman, G. L., & Corbetta, M. (2004). Extrastriate body area in human occipital cortex responds to the performance of motor actions. Nature Neuroscience, 7, 542–548.CrossRefGoogle Scholar
  5. Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12, 512–523.CrossRefGoogle Scholar
  6. Bezzola, L., Mérillat, S., Gaser, C., & Jäncke, L. (2011). Training-induced neural plasticity in golf novices. The Journal of Neuroscience, 31(35), 12444–12448.CrossRefGoogle Scholar
  7. Bilalic, M., Langner, R., Erb, M., & Grodd, W. (2010). Mechanisms and neural basis of object and pattern recognition: A study with chess experts. Journal of Experimental Psychology. General, 139, 728–742.CrossRefGoogle Scholar
  8. Bilalic, M., Langner, R., Ulrich, R., & Grodd, W. (2011). Many faces of expertise: Fusiform face area in chess experts and novices. The Journal of Neuroscience, 31, 10206–10214.CrossRefGoogle Scholar
  9. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541.CrossRefGoogle Scholar
  10. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., Andrews-Hanna, J. R., Sperling, R. A., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: Mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience, 29, 1860–1873.CrossRefGoogle Scholar
  11. Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10, 186–198.CrossRefGoogle Scholar
  12. Campitelli, G., Gobet, F., Head, K., Buckley, M., & Parker, A. (2007). Brain localization of memory chunks in chessplayers. The International Journal of Neuroscience, 117, 1641–1659.CrossRefGoogle Scholar
  13. Chase, W. G., & Simon, H. A. (1973). Perception in chess. Cognitive Psychology, 4, 55–81.CrossRefGoogle Scholar
  14. Cole, M. W., Pathak, S., & Schneider, W. (2010). Identifying the brain's most globally connected regions. Neuroimage, 49, 3132–3148.CrossRefGoogle Scholar
  15. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron, 83, 238–251.CrossRefGoogle Scholar
  16. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews. Neuroscience, 3, 201–215.CrossRefGoogle Scholar
  17. Desimone, R., Albright, T. D., Gross, C. G., & Bruce, C. (1984). Stimulus-selective properties of inferior temporal neurons in the macaque. The Journal of Neuroscience, 4, 2051–2062.CrossRefGoogle Scholar
  18. Draganski, B., Gaser, C., Busch, V., Schuierer, G., Bogdahn, U., & May, A. (2004). Neuroplasticity: Changes in grey matter induced by training. Nature, 427, 311–312.CrossRefGoogle Scholar
  19. Duan, X., He, S., Liao, W., Liang, D., Qiu, L., Wei, L., Li, Y., Liu, C., Gong, Q., & Chen, H. (2012a). Reduced caudate volume and enhanced striatal-DMN integration in chess experts. Neuroimage, 60, 1280–1286.CrossRefGoogle Scholar
  20. Duan, X., Liao, W., Liang, D., Qiu, L., Gao, Q., Liu, C., Gong, Q., & Chen, H. (2012b). Large-scale brain networks in board game experts: Insights from a domain-related task and task-free resting state. PLoS One, 7, e32532.CrossRefGoogle Scholar
  21. Duan, X., Long, Z., Chen, H., Liang, D., Qiu, L., Huang, X., Liu, T. C., & Gong, Q. (2014). Functional organization of intrinsic connectivity networks in Chinese-chess experts. Brain Research, 1558, 33–43.CrossRefGoogle Scholar
  22. Elo, A.E. (1978). The rating of chessplayers, past and present. Arco Pub.Google Scholar
  23. Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2006). Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proceedings of the National Academy of Sciences of the United States of America, 103, 10046–10051.CrossRefGoogle Scholar
  24. Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56, 171–184.CrossRefGoogle Scholar
  25. Friston, K. J. (1994). Functional and effective connectivity in neuroimaging: A synthesis. Human Brain Mapping, 2, 56–78.CrossRefGoogle Scholar
  26. Gaser, C., & Schlaug, G. (2003a). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 9240–9245.CrossRefGoogle Scholar
  27. Gaser, C., & Schlaug, G. (2003b). Gray matter differences between musicians and nonmusicians. Annals of the New York Academy of Sciences, 999, 514–517.CrossRefGoogle Scholar
  28. Gauthier, I., Skudlarski, P., Gore, J. C., & Anderson, A. W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience, 3, 191–197.CrossRefGoogle Scholar
  29. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.CrossRefGoogle Scholar
  30. Gross, C. G. (1992). Representation of visual stimuli in inferior temporal cortex. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 335, 3–10.CrossRefGoogle Scholar
  31. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6, e159.CrossRefGoogle Scholar
  32. Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2(1), 174.CrossRefGoogle Scholar
  33. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006a). Brain connectivity related to working memory performance. The Journal of Neuroscience, 26, 13338–13343.CrossRefGoogle Scholar
  34. Hampson, M., Tokoglu, F., Sun, Z., Schafer, R. J., Skudlarski, P., Gore, J. C., & Constable, R. T. (2006b). Connectivity-behavior analysis reveals that functional connectivity between left BA39 and Broca’s area varies with reading ability. Neuroimage, 31, 513–519.CrossRefGoogle Scholar
  35. Kincade, J. M., Abrams, R. A., Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2005). An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. The Journal of Neuroscience, 25, 4593–4604.CrossRefGoogle Scholar
  36. Kolb, B., Whishaw, I.Q., Teskey, G. (2014). An introduction to brain and behavior.Google Scholar
  37. Krawczyk, D. C., Boggan, A. L., McClelland, M. M., & Bartlett, J. C. (2011). The neural organization of perception in chess experts. Neuroscience Letters, 499, 64–69.CrossRefGoogle Scholar
  38. Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences of the United States of America, 106, 17558–17563.CrossRefGoogle Scholar
  39. Li, K., Jiang, J., Qiu, L., Yang, X., Huang, X., Lui, S., & Gong, Q. (2015). A multimodal MRI dataset of professional chess players. Science Data, 2, 150044.CrossRefGoogle Scholar
  40. Liu, C., Wang, J., Hou, Y., Qi, Z., Wang, L., Zhan, S., Wang, R., & Wang, Y. (2018). Mapping the changed hubs and corresponding functional connectivity in idiopathic restless legs syndrome. Sleep Medicine, 45, 132–139.CrossRefGoogle Scholar
  41. Logothetis, N. K., Pauls, J., & Poggio, T. (1995). Shape representation in the inferior temporal cortex of monkeys. Current Biology, 5, 552–563.CrossRefGoogle Scholar
  42. Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences of the United States of America, 97, 4398–4403.CrossRefGoogle Scholar
  43. Mears, D., & Pollard, H. B. (2016). Network science and the human brain: Using graph theory to understand the brain and one of its hubs, the amygdala, in health and disease. Journal of Neuroscience Research, 94, 590–605.CrossRefGoogle Scholar
  44. Mennes, M., Zuo, X. N., Kelly, C., Di Martino, A., Zang, Y. F., Biswal, B., Castellanos, F. X., & Milham, M. P. (2011). Linking inter-individual differences in neural activation and behavior to intrinsic brain dynamics. Neuroimage, 54, 2950–2959.CrossRefGoogle Scholar
  45. Munte, T. F., Altenmuller, E., & Jancke, L. (2002). The musician's brain as a model of neuroplasticity. Nature Reviews. Neuroscience, 3, 473–478.CrossRefGoogle Scholar
  46. Onofrj, M., Curatola, L., Valentini, G., Antonelli, M., Thomas, A., & Fulgente, T. (1995). Non-dominant dorsal-prefrontal activation during chess problem solution evidenced by single photon emission computerized tomography (SPECT). Neuroscience Letters, 198, 169–172.CrossRefGoogle Scholar
  47. Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665–678.CrossRefGoogle Scholar
  48. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59, 2142–2154.CrossRefGoogle Scholar
  49. Raichle, M. E. (2010). The brain's dark energy. Scientific American, 302, 44–49.CrossRefGoogle Scholar
  50. Rennig, J., Bilalic, M., Huberle, E., Karnath, H. O., & Himmelbach, M. (2013). The temporo-parietal junction contributes to global gestalt perception-evidence from studies in chess experts. Frontiers in Human Neuroscience, 7, 513.PubMedPubMedCentralGoogle Scholar
  51. Saad, Z. S., Reynolds, R. C., Jo, H. J., Gotts, S. J., Chen, G., Martin, A., & Cox, R. W. (2013). Correcting brain-wide correlation differences in resting-state FMRI. Brain Connectivity, 3, 339–352.CrossRefGoogle Scholar
  52. Stark, C. E., & Squire, L. R. (2000). fMRI activity in the medial temporal lobe during recognition memory as a function of study-test interval. Hippocampus, 10, 329–337.CrossRefGoogle Scholar
  53. Sun, H., Luo, L., Yuan, X., Zhang, L., He, Y., Yao, S., Wang, J., & Xiao, J. (2018). Regional homogeneity and functional connectivity patterns in major depressive disorder, cognitive vulnerability to depression and healthy subjects. Journal of Affective Disorders, 235, 229–235.CrossRefGoogle Scholar
  54. Tanaka, K. (1993). Neuronal mechanisms of object recognition. Science, 262, 685–688.CrossRefGoogle Scholar
  55. van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17, 683–696.CrossRefGoogle Scholar
  56. van der Maas, H. L., & Wagenmakers, E. J. (2005). A psychometric analysis of chess expertise. The American Journal of Psychology, 118, 29–60.PubMedGoogle Scholar
  57. Wan, X., Nakatani, H., Ueno, K., Asamizuya, T., Cheng, K., & Tanaka, K. (2011). The neural basis of intuitive best next-move generation in board game experts. Science, 331, 341–346.CrossRefGoogle Scholar
  58. Wang, J., Fan, L., Zhang, Y., Liu, Y., Jiang, D., Zhang, Y., Yu, C., & Jiang, T. (2012). Tractography-based parcellation of the human left inferior parietal lobule. Neuroimage, 63, 641–652.CrossRefGoogle Scholar
  59. Wang, L., Dai, Z., Peng, H., Tan, L., Ding, Y., He, Z., Zhang, Y., Xia, M., Li, Z., Li, W., Cai, Y., Lu, S., Liao, M., Zhang, L., Wu, W., He, Y., & Li, L. (2014). Overlapping and segregated resting-state functional connectivity in patients with major depressive disorder with and without childhood neglect. Human Brain Mapping, 35, 1154–1166.CrossRefGoogle Scholar
  60. Wang, J., Fan, L., Wang, Y., Xu, W., Jiang, T., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2015a). Determination of the posterior boundary of Wernicke's area based on multimodal connectivity profiles. Human Brain Mapping, 36, 1908–1924.CrossRefGoogle Scholar
  61. Wang, J., Yang, Y., Fan, L., Xu, J., Li, C., Liu, Y., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2015b). Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Human Brain Mapping, 36, 238–257.CrossRefGoogle Scholar
  62. Wang, J., Tian, Y., Wang, M., Cao, L., Wu, H., Zhang, Y., Wang, K., & Jiang, T. (2016a). A lateralized top-down network for visuospatial attention and neglect. Brain Imaging and Behavior, 10, 1029–1037.CrossRefGoogle Scholar
  63. Wang, J., Zhang, J., Rong, M., Wei, X., Zheng, D., Fox, P.T., Eickhoff, S.B., Jiang, T., (2016b). Functional topography of the right inferior parietal lobule structured by anatomical connectivity profiles. Hum Brain Mapp.Google Scholar
  64. Wang, C., Wu, H., Chen, F., Xu, J., Li, H., Li, H., Wang, J., 2017a. Disrupted functional connectivity patterns of the insula subregions in drug-free major depressive disorder. Journal of Affective Disorders 234, 297–304.Google Scholar
  65. Wang, J., Wei, Q., Bai, T., Zhou, X., Sun, H., Becker, B., Tian, Y., Wang, K., & Kendrick, K. (2017b). Electroconvulsive therapy selectively enhanced feedforward connectivity from fusiform face area to amygdala in major depressive disorder. Social Cognitive and Affective Neuroscience, 12, 1983–1992.CrossRefGoogle Scholar
  66. Wang, J., Wei, Q., Yuan, X., Jiang, X., Xu, J., Zhou, X., Tian, Y., Wang, K., 2017c. Local functional connectivity density is closely associated with the response of electroconvulsive therapy in major depressive disorder. Journal of Affective Disorders 225, 658–664.Google Scholar
  67. Wang, J., Xie, S., Guo, X., Becker, B., Fox, P. T., Eickhoff, S. B., & Jiang, T. (2017d). Correspondent functional topography of the human left inferior parietal lobule at rest and under task revealed using resting-state fMRI and Coactivation based Parcellation. Human Brain Mapping, 38, 1659–1675.CrossRefGoogle Scholar
  68. Wang, J., Wei, Q., Wang, L., Zhang, H., Bai, T., Cheng, L., Tian, Y., & Wang, K. (2018). Functional reorganization of intra- and internetwork connectivity in major depressive disorder after electroconvulsive therapy. Human Brain Mapping, 39, 1403–1411.CrossRefGoogle Scholar
  69. Wu, H., Sun, H., Xu, J., Wu, Y., Wang, C., Xiao, J., She, S., Huang, J., Zou, W., Peng, H., Lu, X., Huang, G., Jiang, T., Ning, Y., & Wang, J. (2016a). Changed hub and corresponding functional connectivity of Subgenual anterior cingulate cortex in major depressive disorder. Frontiers in Neuroanatomy, 10, 120.PubMedPubMedCentralGoogle Scholar
  70. Wu, Y., Wang, J., Zhang, Y., Zheng, D., Zhang, J., Rong, M., Wu, H., Wang, Y., Zhou, K., & Jiang, T. (2016b). The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Frontiers in Neuroanatomy, 10, 32.PubMedPubMedCentralGoogle Scholar
  71. Xu, Y. (2005). Revisiting the role of the fusiform face area in visual expertise. Cerebral Cortex, 15, 1234–1242.CrossRefGoogle Scholar
  72. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. Neuroimage, 22, 394–400.CrossRefGoogle Scholar
  73. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain Dev, 29, 83–91.CrossRefGoogle Scholar
  74. Zhang, D., & Raichle, M. E. (2010). Disease and the brain's dark energy. Nature Reviews. Neurology, 6, 15–28.CrossRefGoogle Scholar
  75. Zhang, W., Wang, J., Fan, L., Zhang, Y., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2016). Functional organization of the fusiform gyrus revealed with connectivity profiles. Human Brain Mapping, 37, 3003–3016.CrossRefGoogle Scholar
  76. Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., Wang, Y. F., & Zang, Y. F. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF. Journal of Neuroscience Methods, 172, 137–141.CrossRefGoogle Scholar
  77. Zou, L., Ding, G., Abutalebi, J., Shu, H., & Peng, D. (2012). Structural plasticity of the left caudate in bimodal bilinguals. Cortex, 48, 1197–1206.CrossRefGoogle Scholar
  78. Zuo, X. N., Ehmke, R., Mennes, M., Imperati, D., Castellanos, F. X., Sporns, O., & Milham, M. P. (2012). Network centrality in the human functional connectome. Cerebral Cortex, 22, 1862–1875.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research Center for Sectional and Imaging AnatomyShandong University Cheeloo College of MedicineJinanChina
  2. 2.School of Electronic Information and CommunicationsHuazhong University of Science and TechnologyWuhanChina
  3. 3.The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroinformationUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations