Advertisement

Disruption of functional connectivity among subcortical arousal system and cortical networks in temporal lobe epilepsy

  • Rong Li
  • Chongyu Hu
  • Liangcheng Wang
  • Ding Liu
  • Dingyang Liu
  • Wei Liao
  • Bo Xiao
  • Huafu Chen
  • Li Feng
ORIGINAL RESEARCH

Abstract

Growing evidence has demonstrated widespread brain network alterations in temporal lobe epilepsy (TLE). However, the relatively accurate portrait of the subcortical-cortical relationship for impaired consciousness in TLE remains unclear. We proposed that consciousness-impairing seizures may invade subcortical arousal system and corresponding cortical regions, resulting in functional abnormalities and information flow disturbances between subcortical and cortical networks. We performed resting-state fMRI in 26 patients with TLE and 30 matched healthy controls. All included patients were diagnosed with impaired awareness during focal temporal lobe seizures. Functional connectivity density was adopted to determine whether local or distant network alterations occurred in TLE, and Granger causality analysis (GCA) was utilized to assess the direction and magnitude of causal influence among these altered brain networks further. Patients showed increased local functional connectivity in several arousal structures, such as the midbrain, thalamus, and cortical regions including bilateral prefrontal cortex (PFC), left superior temporal pole, left posterior insula, and cerebellum (P < 0.05, FDR corrected). GCA analysis revealed that the casual effects among these regions in patients were significantly sparser than those in controls (P < 0.05, uncorrected), including decreased excitatory and inhibitory effects among the midbrain, thalamus and PFC, and decreased inhibitory effect from the cerebellum to PFC. These findings suggested that consciousness-impairing seizures in TLE are associated with functional alterations and disruption of information process between the subcortical arousal system and cortical network. Understanding the functional networks and innervation pathway involved in TLE can provide insights into the mechanism underlying seizure-related loss of consciousness.

Keywords

Consciousness Functional connectivity Granger causality analysis Subcortical arousal system Midbrain 

Notes

Acknowledgements

We would like to express our gratitude to the patients and volunteers for participating in this study. This work was supported by the National Natural Science Foundation of China (81771407, 61533006, and 81471653).

Compliance with ethical standards

Conflict of interest

Rong Li, Chongyu Hu, Liangcheng Wang, Ding Liu, Dingyang Liu, Wei Liao, Bo Xiao, Huafu Chen and Li Feng declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethnical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinksi Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2018_14_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1274 kb)

References

  1. Berg, A. T. (2008). The natural history of mesial temporal lobe epilepsy. Current Opinion in Neurology, 21(2), 173–178.  https://doi.org/10.1097/WCO.0b013e3282f36ccd.PubMedCrossRefGoogle Scholar
  2. Blumenfeld, H. (2012). Impaired consciousness in epilepsy. Lancet Neurology, 11(9), 814–826.  https://doi.org/10.1016/S1474-4422(12)70188-6.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Blumenfeld, H., McNally, K. A., Vanderhill, S. D., Paige, A. L., Chung, R., Davis, K., Norden, A. D., Stokking, R., Studholme, C., Novotny Jr., E. J., Zubal, I. G., & Spencer, S. S. (2004). Positive and negative network correlations in temporal lobe epilepsy. Cerebral Cortex, 14(8), 892–902.  https://doi.org/10.1093/cercor/bhh048.PubMedCrossRefGoogle Scholar
  4. Bostan, A. C., Dum, R. P., & Strick, P. L. (2010). The basal ganglia communicate with the cerebellum. Proceedings of the National Academy of Sciences of the United States of America, 107(18), 8452–8456.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Braakman, H. M., Vaessen, M. J., Hofman, P. A., Debeij-van Hall, M. H., Backes, W. H., Vles, J. S., et al. (2011). Cognitive and behavioral complications of frontal lobe epilepsy in children: A review of the literature. Epilepsia, 52(5), 849–856.  https://doi.org/10.1111/j.1528-1167.2011.03057.x.PubMedCrossRefGoogle Scholar
  6. Danielson, N. B., Guo, J. N., & Blumenfeld, H. (2011). The default mode network and altered consciousness in epilepsy. [research support, N.I.H., extramural research support, non-U.S. Gov't review]. Behavioural Neurology, 24(1), 55–65.  https://doi.org/10.3233/BEN-2011-0310. PubMedPubMedCentralCrossRefGoogle Scholar
  7. de Lanerolle, N. C., Kim, J. H., Robbins, R. J., & Spencer, D. D. (1989). Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Research, 495(2), 387–395.PubMedCrossRefGoogle Scholar
  8. Edlow, B. L., Takahashi, E., Wu, O., Benner, T., Dai, G., Bu, L., Grant, P. E., Greer, D. M., Greenberg, S. M., Kinney, H. C., & Folkerth, R. D. (2012). Neuroanatomic connectivity of the human ascending arousal system critical to consciousness and its disorders. Journal of Neuropathology & Experimental Neurology, 71(6), 531–546.CrossRefGoogle Scholar
  9. Englot, D. J., & Blumenfeld, H. (2009). Consciousness and epilepsy: Why are complex-partial seizures complex? [research support, N.I.H., extramural research support, non-U.S. Gov't review]. Progress in Brain Research, 177, 147–170.  https://doi.org/10.1016/S0079-6123(09)17711-7. PubMedPubMedCentralCrossRefGoogle Scholar
  10. Englot, D. J., Mishra, A. M., Mansuripur, P. K., Herman, P., Hyder, F., & Blumenfeld, H. (2008). Remote effects of focal hippocampal seizures on the rat neocortex. [research support, N.I.H., extramural research support, non-U.S. Gov't]. The Journal of Neuroscience, 28(36), 9066–9081.  https://doi.org/10.1523/JNEUROSCI.2014-08.2008. PubMedPubMedCentralCrossRefGoogle Scholar
  11. Englot, D. J., Modi, B., Mishra, A. M., DeSalvo, M., Hyder, F., & Blumenfeld, H. (2009). Cortical deactivation induced by subcortical network dysfunction in limbic seizures. [research support, N.I.H., extramural research support, non-U.S. Gov't]. The Journal of Neuroscience, 29(41), 13006–13018.  https://doi.org/10.1523/JNEUROSCI.3846-09.2009. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Englot, D. J., Konrad, P. E., & Morgan, V. L. (2016). Regional and global connectivity disturbances in focal epilepsy, related neurocognitive sequelae, and potential mechanistic underpinnings. Epilepsia, 57(10), 1546–1557.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Englot, D. J., D'Haese, P. F., Konrad, P. E., Jacobs, M. L., Gore, J. C., Abou-Khalil, B. W., et al. (2017). Functional connectivity disturbances of the ascending reticular activating system in temporal lobe epilepsy. Journal of Neurology, Neurosurgery, and Psychiatry, 88(11), 925–932.  https://doi.org/10.1136/jnnp-2017-315732.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Escueta, A. V., Kunze, U., Waddell, G., Boxley, J., & Nadel, A. (1977). Lapse of consciousness and automatisms in temporal lobe epilepsy: A videotape analysis. Neurology, 27(2), 144–155.PubMedCrossRefGoogle Scholar
  15. Galanopoulou, A. S., & Moshe, S. L. (2009). The epileptic hypothesis: Developmentally related arguments based on animal models. Epilepsia, 50(Suppl 7), 37–42.  https://doi.org/10.1111/j.1528-1167.2009.02217.x. PubMedPubMedCentralCrossRefGoogle Scholar
  16. Goebel, R., Roebroeck, A., Kim, D. S., & Formisano, E. (2003). Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and granger causality mapping. [research support, non-U.S. Gov't]. Magnetic Resonance Imaging, 21(10), 1251–1261.PubMedCrossRefGoogle Scholar
  17. Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, 37, 424–438.CrossRefGoogle Scholar
  18. Grodd, W. (2001). Sensorimotor mapping of the human cerebellum: fMRI evidence of somatotopic organization. Human Brain Mapping, 13(2), 55–73.PubMedCrossRefGoogle Scholar
  19. Hamilton, J. P., Chen, G., Thomason, M. E., Schwartz, M. E., & Gotlib, I. H. (2011). Investigating neural primacy in major depressive disorder: Multivariate granger causality analysis of resting-state fMRI time-series data. Molecular Psychiatry, 16(7), 763–772.PubMedCrossRefGoogle Scholar
  20. He, X., Doucet, G. E., Sperling, M., Sharan, A., & Tracy, J. I. (2015). Reduced thalamocortical functional connectivity in temporal lobe epilepsy. Epilepsia, 56(10), 1571–1579.  https://doi.org/10.1111/epi.13085.PubMedCrossRefGoogle Scholar
  21. Henderson, L. A., Rubin, T. K., & Macefield, V. G. (2011). Within-limb somatotopic representation of acute muscle pain in the human contralateral dorsal posterior insula. Human Brain Mapping, 32(10), 1592–1601.PubMedCrossRefGoogle Scholar
  22. Ji, G. J., Zhang, Z., Zhang, H., Wang, J., Liu, D. Q., Zang, Y. F., Liao, W., & Lu, G. (2013). Disrupted causal connectivity in mesial temporal lobe epilepsy. PLoS One, 8(5), e63183.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Kros, L., Eelkman Rooda, O. H., Spanke, J. K., Alva, P., Dongen, M. N., Karapatis, A., et al. (2015). Cerebellar output controls generalized spike-and-wave discharge occurrence. Annals of Neurology, 77(6), 1027–1049.PubMedPubMedCentralCrossRefGoogle Scholar
  24. Laufs, H., Hamandi, K., Salek-Haddadi, A., Kleinschmidt, A. K., Duncan, J. S., & Lemieux, L. (2007). Temporal lobe interictal epileptic discharges affect cerebral activity in “default mode” brain regions. Human Brain Mapping, 28(10), 1023–1032.PubMedPubMedCentralCrossRefGoogle Scholar
  25. Lee, K. H., Meador, K. J., Park, Y. D., King, D. W., Murro, A. M., Pillai, J. J., & Kaminski, R. J. (2002). Pathophysiology of altered consciousness during seizures: Subtraction SPECT study. [comparative study]. Neurology, 59(6), 841–846.PubMedCrossRefGoogle Scholar
  26. Liao, W., Zhang, Z., Pan, Z., Mantini, D., Ding, J., Duan, X., Luo, C., Lu, G., & Chen, H. (2010). Altered functional connectivity and small-world in mesial temporal lobe epilepsy. PLoS One, 5(1), e8525.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Moruzzi, G., & Magoun, H. W. (1995). Brain stem reticular formation and activation of the EEG. 1949. J Neuropsychiatry Clin Neurosci, 7(2), 251–267.  https://doi.org/10.1176/jnp.7.2.251. PubMedCrossRefGoogle Scholar
  28. Motelow, J. E., Li, W., Zhan, Q., Mishra, A. M., Sachdev, R. N., Liu, G., et al. (2015). Decreased subcortical cholinergic arousal in focal seizures. [research support, N.I.H., extramural research support, non-U.S. Gov't]. Neuron, 85(3), 561–572.  https://doi.org/10.1016/j.neuron.2014.12.058. PubMedPubMedCentralCrossRefGoogle Scholar
  29. Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. [research support, non-U.S. Gov't]. Neuron, 79(4), 814–828.  https://doi.org/10.1016/j.neuron.2013.06.027. PubMedPubMedCentralCrossRefGoogle Scholar
  30. Parks, E. L., & Madden, D. J. (2013). Brain connectivity and visual attention. Brain Connectivity, 3(4), 317–338.  https://doi.org/10.1089/brain.2012.0139.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Parvizi, J., & Damasio, A. (2001). Consciousness and the brain. Neuroscience & Behavioral Physiology, 79(1), 135–160.Google Scholar
  32. Pedersen, M., Curwood, E. K., Vaughan, D. N., Omidvarnia, A. H., & Jackson, G. D. (2016). Abnormal brain areas common to the focal epilepsies: Multivariate pattern analysis of fMRI. [research support, non-U.S. Gov't]. Brain Connectivity, 6(3), 208–215.  https://doi.org/10.1089/brain.2015.0367. PubMedCrossRefGoogle Scholar
  33. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.  https://doi.org/10.1016/j.neuroimage.2011.10.018.PubMedCrossRefGoogle Scholar
  34. Proposal for revised classification of epilepsies and epileptic syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. (1989). Epilepsia, 30(4), 389–399.CrossRefGoogle Scholar
  35. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the Commission on Classification and Terminology of the International League Against Epilepsy. (1981). Epilepsia, 22(4), 489–501.CrossRefGoogle Scholar
  36. Shamshiri, E. A., Tierney, T. M., Centeno, M., St Pier, K., Pressler, R. M., Sharp, D. J., Perani, S., Cross, J. H., & Carmichael, D. W. (2017). Interictal activity is an important contributor to abnormal intrinsic network connectivity in paediatric focal epilepsy. Human Brain Mapping, 38(1), 221–236.PubMedCrossRefGoogle Scholar
  37. Sporns, O. (2009). From complex networks to intelligent systems: Springer Berlin Heidelberg, From Complex Networks to Intelligent Systems.Google Scholar
  38. Squire, L. R. (2004). Memory systems of the brain: A brief history and current perspective. Neurobiology of Learning and Memory, 82(3), 171–177.  https://doi.org/10.1016/j.nlm.2004.06.005.PubMedCrossRefGoogle Scholar
  39. Steriade, M. (1970). Ascending control of thalamic and cortical responsiveness. [review]. International Review of Neurobiology, 12, 87–144.PubMedCrossRefGoogle Scholar
  40. Theodore, W. H., Porter, R. J., & Penry, J. K. (1983). Complex partial seizures: clinical characteristics and differential diagnosis. Neurology, 33(9), 1115–1121.PubMedCrossRefGoogle Scholar
  41. Tomasi, D., & Volkow, N. D. (2010). Functional connectivity density mapping. Proceedings of the National Academy of Sciences of the United States of America, 107(21), 9885–9890.  https://doi.org/10.1073/pnas.1001414107.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Ung, H., Cazares, C., Nanivadekar, A., Kini, L., Wagenaar, J., Becker, D., Krieger, A., Lucas, T., Litt, B., & Davis, K. A. (2017). Interictal epileptiform activity outside the seizure onset zone impacts cognition. Brain, 140(8), 2157–2168.  https://doi.org/10.1093/brain/awx143.PubMedPubMedCentralCrossRefGoogle Scholar
  43. Waites, A. B., Briellmann, R. S., Saling, M. M., Abbott, D. F., & Jackson, G. D. (2006). Functional connectivity networks are disrupted in left temporal lobe epilepsy. Annals of Neurology: Official Journal of the American Neurological Association and the Child Neurology. Society, 59(2), 335–343.Google Scholar
  44. Wang, J., Wang, L., Zang, Y., Yang, H., Tang, H., Gong, Q., Chen, Z., Zhu, C., & He, Y. (2009). Parcellation-dependent small-world brain functional networks: A resting-state fMRI study. [research support, non-U.S. Gov't]. Human Brain Mapping, 30(5), 1511–1523.  https://doi.org/10.1002/hbm.20623. PubMedCrossRefGoogle Scholar
  45. Zang, Z. X., Yan, C. G., Dong, Z. Y., Huang, J., & Zang, Y. F. (2012). Granger causality analysis implementation on MATLAB: A graphic user interface toolkit for fMRI data processing. Journal of Neuroscience Methods, 203(2), 418–426.  https://doi.org/10.1016/j.jneumeth.2011.10.006.PubMedCrossRefGoogle Scholar
  46. Zeng, L. L., Shen, H., Liu, L., & Hu, D. (2014a). Unsupervised classification of major depression using functional connectivity MRI. Human Brain Mapping, 35(4), 1630–1641.  https://doi.org/10.1002/hbm.22278.PubMedCrossRefGoogle Scholar
  47. Zeng, L. L., Wang, D., Fox, M. D., Sabuncu, M., Hu, D., Ge, M., Buckner, R. L., & Liu, H. (2014b). Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6058–6062.  https://doi.org/10.1073/pnas.1317424111.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Zeng, L.-L., Wang, H., Hu, P., Yang, B., Pu, W., Shen, H., Chen, X., Liu, Z., Yin, H., Tan, Q., Wang, K., & Hu, D. (2018). Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI. EBioMedicine, 30, 74–85.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Zhang, Z., Liao, W., Xu, Q., Wei, W., Zhou, H. J., Sun, K., Yang, F., Mantini, D., Ji, X., & Lu, G. (2017). Hippocampus-associated causal network of structural covariance measuring structural damage progression in temporal lobe epilepsy. Human Brain Mapping, 38(2), 753–766.  https://doi.org/10.1002/hbm.23415.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rong Li
    • 1
  • Chongyu Hu
    • 2
  • Liangcheng Wang
    • 1
  • Ding Liu
    • 3
  • Dingyang Liu
    • 4
  • Wei Liao
    • 1
  • Bo Xiao
    • 5
  • Huafu Chen
    • 1
  • Li Feng
    • 5
  1. 1.The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduPeople’s Republic of China
  2. 2.Department of NeurologyHunan Provincial People’s HospitalChangshaPeople’s Republic of China
  3. 3.Department of Neurology, The Third Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  4. 4.Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China
  5. 5.Department of Neurology, Xiangya HospitalCentral South UniversityChangshaPeople’s Republic of China

Personalised recommendations