Advertisement

Opposite subgenual cingulate cortical functional connectivity and metabolic activity patterns in refractory melancholic major depression

  • Guo-Rong Wu
  • Rudi De Raedt
  • Peter Van Schuerbeek
  • Chris Baeken
ORIGINAL RESEARCH
  • 25 Downloads

Abstract

Although in treatment-resistant depression (TRD) subgenual anterior cingulate cortex (sgACC) functional connectivity (FC) is frequently used to examine deregulated brain networks, neurobiological data from other sources may be required to interpret these FC findings. In 16 melancholic TRD patients with a high level of treatment resistance and 16 closely matched healthy never-depressed individuals we verified whether sgACC FC patterns were related to regional metabolic activity (CMRglc) with 18FDG PET imaging. Notwithstanding that TRD patients displayed stronger sgACC FC with the right lateral frontotemporal cortex, metabolically they exhibited the opposite pattern. Our results indicate that the sgACC seed and its functionally connected regions not automatically follow a similar metabolic pattern in TRD, possibly reflecting the refractory state of the sample. Multimodal brain imaging may help to increase our insight into the pathophysiology of TRD.

Keywords

Major depressive disorder Refractory, sgACC Resting state fMRI, 18FDG PET 

Notes

Funding

This study was funded by a grant from the Scientific Fund W. Gepts, by the Ghent University Multidisciplinary Research Partnership “The integrative neuroscience of behavioural control”, by a grant BOF16/GOA/017 for a Concerted Research Action of Ghent University, and by a grant from the National Natural Foundation of China (Grant No. 61876156).

Compliance with ethical standards

Conflict of interest

All authors report no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2018_11_MOESM1_ESM.docx (1.4 mb)
ESM 1 (DOCX 1415 kb)

References

  1. Aiello, M., Salvatore, E., Cachia, A., Pappatà, S., Cavaliere, C., Prinster, A., et al. (2015). Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: A PET/MR hybrid scanner study. NeuroImage, 113, 111–121.CrossRefPubMedGoogle Scholar
  2. Alavi, A., Dann, R., Chawluk, J., Alavi, J., Kushner, M., & Reivich, M. (1986). Positron emission tomography imaging of regional cerebral glucose metabolism. Seminars in Nuclear Medicine, 16, 2–34.CrossRefPubMedGoogle Scholar
  3. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8, 170–177.CrossRefPubMedGoogle Scholar
  4. Aron, A. R., Robbins, T. W., & Poldrack, R. A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Sciences, 18, 177–185.CrossRefPubMedGoogle Scholar
  5. Backes, H., Walberer, M., Endepols, H., Neumaier, B., Graf, R., Wienhard, K., et al. (2011). Whiskers area as extracerebral reference tissue for quantification of rat brain metabolism using (18)F-FDG PET: Application to focal cerebral ischemia. Journal of Nuclear Medicine, 52, 1252–1260.CrossRefPubMedGoogle Scholar
  6. Baeken, C., Van Schuerbeek, P., De Raedt, R., Ramsey, N. F., Bossuyt, A., De Mey, J., et al. (2010). Reduced left subgenual anterior cingulate cortical activity during withdrawal-related emotions in melancholic depressed female patients. Journal of Affective Disorders, 127, 326–331.CrossRefPubMedGoogle Scholar
  7. Baeken, C., Marinazzo, D., Wu, G. R., Van Schuerbeek, P., De Mey, J., Marchetti, I., et al. (2014). Accelerated HF-rTMS in treatment-resistant unipolar depression: Insights from subgenual anterior cingulate functional connectivity. World Journal of Biological Psychiatry, 15, 286–297.CrossRefPubMedGoogle Scholar
  8. Baeken, C., Marinazzo, D., Everaert, H., Wu, G. R., Van Hove, C., Audenaert, K., et al. (2015). The impact of accelerated HF-rTMS on the Subgenual anterior cingulate cortex in refractory unipolar major depression: Insights from 18FDG PET brain imaging. Brain Stimulation, 8, 808–815.CrossRefPubMedGoogle Scholar
  9. Baeken, C., Lefaucheur, J. P., & Van Schuerbeek, P. (2017). The impact of accelerated high frequency rTMS on brain neurochemicals in treatment-resistant depression: Insights from 1H MR spectroscopy. Clinical Neurophysiology, 128, 1664–1672.CrossRefPubMedGoogle Scholar
  10. Baeken, C., Wu, G. R., & De Raedt, R. (2018). Dorsomedial frontal cortical metabolic differences of comorbid generalized anxiety disorder in refractory major depression: A [18F] FDG PET brain imaging study. Journal of Affective Disorders, 227, 550–553.CrossRefPubMedGoogle Scholar
  11. Beck, A. T., & Steer, R. A. (1984). Internal consistencies of the original and revised Beck depression inventory. Journal of Clinical Neurophysiology, 40, 1365–1367.Google Scholar
  12. Bernier, M., Croteau, E., Castellano, C. A., Cunnane, S. C., & Whittingstall, K. (2017). Spatial distribution of resting-state BOLD regional homogeneity as a predictor of brain glucose uptake: A study in healthy aging. NeuroImage, 150, 14–22.CrossRefPubMedGoogle Scholar
  13. Brett, M., Anton, J-L., Valabregue, R. (2002). Region of interest analysis using an SPM toolbox [abstract]. Presented at the Eighth international conference of functional mapping of the human brain, June 2–6, 2002, Sendai, Japan, vol. 16(2). Available on CD-ROM in NeuroImage 2002.Google Scholar
  14. Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16, 832–837.CrossRefPubMedGoogle Scholar
  15. Cisler, J. M., James, G. A., Tripathi, S., Mletzko, T., Heim, C., Hu, X. P., et al. (2013). Differential functional connectivity within an emotion regulation neural network among individuals resilient and susceptible to the depressogenic effects of early life stress. Psychological Medicine, 43, 507–518.CrossRefPubMedGoogle Scholar
  16. Connolly, C. G., Wu, J., Ho, T. C., Hoeft, F., Wolkowitz, O., Eisendrath, S., et al. (2013). Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biological Psychiatry, 74, 898–907.CrossRefPubMedCentralPubMedGoogle Scholar
  17. Dambacher, F., Sack, A. T., Lobbestael, J., Arntz, A., Brugmann, S., & Schuhmann, T. (2014). The role of right prefrontal and medial cortex in response inhibition: Interfering with action restraint and action cancellation using transcranial magnetic brain stimulation. Journal of Cognitive Neuroscience, 26, 1775–1784.CrossRefPubMedGoogle Scholar
  18. De Raedt, R., Vanderhasselt, M. A., & Baeken, C. (2015). Neurostimulation as an intervention for treatment resistant depression: From research on mechanisms towards targeted neurocognitive strategies. Clinical Psychology Review, 41, 61–69.CrossRefPubMedGoogle Scholar
  19. Di, X., & Biswal, B. B. (2012). Alzheimer's disease neuroimaging initiative. Metabolic brain covariant networks as revealed by FDG-PET with reference to resting-state fMRI networks. Brain Connectivity, 2, 275–283.CrossRefPubMedCentralPubMedGoogle Scholar
  20. Disner, S. G., Beevers, C. G., Haigh, E. A., et al. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12, 467–477.CrossRefPubMedGoogle Scholar
  21. Drevets, W. C., Price, J. L., Simpson Jr., J. R., Todd, R. D., Reich, T., Vannier, M., et al. (1997). Subgenual prefrontal cortex abnormalities in mood disorders. Nature, 386, 824–827.CrossRefPubMedGoogle Scholar
  22. Drevets, W. C., Savitz, J., & Trimble, M. (2008). The subgenual anterior cingulate cortex in mood disorders. CNS Spectrums, 13, 663–681.CrossRefPubMedCentralPubMedGoogle Scholar
  23. Drysdale, A. T., Grosenick, L., Downar, J., Dunlop, K., Mansouri, F., Meng, Y., et al. (2017). Resting-state connectivity biomarkers define neurophysiological subtypes of depression. Nature Medicine, 23, 28–38.CrossRefPubMedGoogle Scholar
  24. Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8, 1784–1790.CrossRefPubMedGoogle Scholar
  25. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15, 85–93.CrossRefGoogle Scholar
  26. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.PubMedCentralPubMedGoogle Scholar
  27. Gold, P. W., & Chrousos, G. P. (2002). Organization of the stress system and its dysregulation in melancholic and atypical depression: High vs low CRH/NE states. Molecular Psychiatry, 7, 254–275.CrossRefPubMedGoogle Scholar
  28. Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., et al. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62, 429–437.CrossRefPubMedCentralPubMedGoogle Scholar
  29. Hahn, A., Gryglewski, G., Nics, L., Rischka, L., Ganger, S., Sigurdardottir, H., et al. (2018). Task-relevant brain networks identified with simultaneous PET/MR imaging of metabolism and connectivity. Brain Structure and Function, 223, 1369–1378.PubMedGoogle Scholar
  30. Ho, T. C., Yang, G., Wu, J., Cassey, P., Brown, S. D., Hoang, N., et al. (2014). Functional connectivity of negative emotional processing in adolescent depression. Journal of Affective Disorders, 155, 65–74.CrossRefPubMedGoogle Scholar
  31. Holtzheimer, P. E., & Mayberg, H. S. (2011). Stuck in a rut: Rethinking depression and its treatment. Trends in Neurosciences, 34, 1–9.CrossRefPubMedGoogle Scholar
  32. Ji, G.-J., Liao, W., Chen, F.-F., Zhang, L., & Wang, K. (2017). Low-frequency blood oxygen level-dependent fluctuations in the brain white matter: More than just noise. Scientific Bulletin, 62, 656–657.Google Scholar
  33. Killeen, P. R., Russell, V. A., & Tannock, R. (2016). Neuroenergetics. Current Directions in Psychological Science, 25, 124–129.CrossRefGoogle Scholar
  34. Kim, H. K., Nunes, P. V., Oliveira, K. C., Young, L. T., & Lafer, B. (2016). Neuropathological relationship between major depression and dementia: A hypothetical model and review. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 67, 51–57.CrossRefGoogle Scholar
  35. Li, J., Duan, X., Cui, Q., Chen, H., & Liao, W. (in press, 2018). More than just statics: Temporal dynamics of intrinsic brain activity predicts the suicidal ideation in depressed patients. Psycholological Medicine.  https://doi.org/10.1017/S0033291718001502.
  36. Liao, W., Li, J., Duan, X., Cui, Q., Chen, H., & Chen, H. (2018). Static and dynamic connectomics differentiate between depressed patients with and without suicidal ideation. Human Brain Mapping, 39, 4105–4118.CrossRefPubMedGoogle Scholar
  37. Liston, C., Chen, A. C., Zebley, B. D., Drysdale, A. T., Gordon, R., Leuchter, B., et al. (2014). Default mode network mechanisms of transcranial magnetic stimulation in depression. Biological Psychiatry, 76, 517–526.CrossRefPubMedCentralPubMedGoogle Scholar
  38. Lythe, K. E., Moll, J., Gethin, J. A., Workman, C. I., Green, S., Lambon Ralph, M. A., et al. (2015). Self-blame-selective Hyperconnectivity between anterior temporal and Subgenual cortices and prediction of recurrent depressive episodes. JAMA Psychiatry, 72, 1119–1126.CrossRefPubMedGoogle Scholar
  39. Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., et al. (2009). Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences U S A, 106, 20069–20074.CrossRefGoogle Scholar
  40. Matthews, S. C., Strigo, I. A., Simmons, A. N., Yang, T. T., & Paulus, M. P. (2008). Decreased functional coupling of the amygdala and supragenual cingulate is related to increased depression in unmedicated individuals with current major depressive disorder. Journal of Affective Disorders, 111, 13–20.CrossRefPubMedGoogle Scholar
  41. Mayberg, H. S., Brannan, S. K., Mahurin, R. K., Jerabek, P. A., Brickman, J. S., Tekell, J. L., et al. (1997). Cingulate function in depression: A potential predictor of treatment response. Neuroreport, 8, 1057–1061.CrossRefPubMedGoogle Scholar
  42. Passow, S., Specht, K., Adamsen, T. C., Biermann, M., Brekke, N., Craven, A. R., et al. (2015). Default-mode network functional connectivity is closely related to metabolic activity. Human Brain Mapping, 36, 2027–2038.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Pflanz, C. P., Pringle, A., Filippini, N., Warren, M., Gottwald, J., Cowen, P. J., et al. (2015). Effects of seven-day diazepam administration on resting-state functional connectivity in healthy volunteers: A randomized, double-blind study. Psychopharmacology (Berlin), 232, 2139–2147.CrossRefGoogle Scholar
  44. Raichle, M. E. (2015). The restless brain: How intrinsic activity organizes brain function. Philosophical transactions of the Royal Society of London, 370(1668), 20140172.CrossRefPubMedGoogle Scholar
  45. Riedl, V., Bienkowska, K., Strobel, C., Tahmasian, M., Grimmer, T., Förster, S., et al. (2014). Local activity determines functional connectivity in the resting human brain: A simultaneous FDG-PET/fMRI study. Journal of Neuroscience, 34, 6260–6266.CrossRefPubMedGoogle Scholar
  46. Rush, A. J., Thase, M. E., & Dubé, S. (2003). Research issues in the study of difficult-to-treat depression. Biological Psychiatry, 53, 743–753.CrossRefPubMedGoogle Scholar
  47. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-international neuropsychiatric interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 20, 22–57.Google Scholar
  48. Sheng, J., Shen, Y., Qin, Y., Zhang, L., Jiang, B., Li, Y., et al. (2018). Spatiotemporal, metabolic, and therapeutic characterization of altered functional connectivity in major depressive disorder. Human Brain Mapping, 39, 1957–1971.CrossRefPubMedGoogle Scholar
  49. Spetsieris, P. G., Ko, J. H., Tang, C. C., Nazem, A., Sako, W., Peng, S., et al. (2015). Metabolic resting-state brain networks in health and disease. Proceedings of the National Academy of Sciences U S A, 112, 2563–2568.CrossRefGoogle Scholar
  50. Tomasi, D., Wang, G. J., & Volkow, N. D. (2013). Energetic cost of brain functional connectivity. Proceedings of the National Academy of Sciences U S A, 110, 13642–13647.CrossRefGoogle Scholar
  51. Vaishnavi, S. N., Vlassenko, A. G., Rundle, M. M., Snyder, A. Z., Mintun, M. A., & Raichle, M. E. (2010). Regional aerobic glycolysis in the human brain. Proceedings of the National Academy of Sciences U S A, 107, 17757–17762.CrossRefGoogle Scholar
  52. Vandenberghe, S., & Marsden, P. K. (2015). PET-MRI: A review of challenges and solutions in the development of integrated multimodality imaging. Physics in Medicine and Biology, 60, 115–154.CrossRefGoogle Scholar
  53. Vanderhasselt, M. A., Baeken, C., Van Schuerbeek, P., Luypaert, R., De Mey, J., & De Raedt, R. (2013). How brooding minds inhibit negative material: An event-related fMRI study. Brain and Cognition, 81, 352–359.CrossRefPubMedGoogle Scholar
  54. Wang, L., Hermans, D. F., Hickie, I. B., & Lagopoulos, J. (2012). A systematic review of resting-state functional-MRI studies in major depression. Journal of Affective Disorders, 142, 6–12.CrossRefPubMedGoogle Scholar
  55. Wehrl, H. F., Hossain, M., Lankes, K., Liu, C. C., Bezrukov, I., Martirosian, P., et al. (2013). Simultaneous PET-MRI reveals brain function in activated and resting state on metabolic, hemodynamic and multiple temporal scales. Nature Medicine, 19, 1184–1189.CrossRefPubMedGoogle Scholar
  56. Wu, J. T., Wu, H. Z., Yan, C. G., Chen, W. X., Zhang, H. Y., He, Y., et al. (2011). Aging-related changes in the default mode network and its anti-correlated networks: A resting-state fMRI study. Neuroscience Letters, 504, 62–67.CrossRefPubMedGoogle Scholar
  57. Yu, X., Glen, D., Wang, S., Hirano, Y., Saad, Z., Reynolds, R., et al. (2012). Direct imaging of macrovascular and microvascular contributions to BOLD fMRI in layers IV-V of the rat whisker-barrel cortex. NeuroImage, 59, 1451–1460.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of PsychologyJiangxi Normal UniversityNanchangChina
  2. 2.Key Laboratory of Cognition and Personality, Faculty of PsychologySouthwest UniversityChongqingChina
  3. 3.Department of Experimental Clinical and Health PsychologyGhent UniversityGhentBelgium
  4. 4.Department of Radiology and Medical ImagingUniversity Hospital (UZBrussel)BrusselsBelgium
  5. 5.Department of Psychiatry and Medical PsychologyGhent UniversityGhentBelgium
  6. 6.Ghent Experimental Psychiatry (GHEP) LabGhent UniversityGhentBelgium
  7. 7.Department of PsychiatryUniversity Hospital (UZBrussel), Vrije Universiteit Brussel (VUB)BrusselsBelgium

Personalised recommendations