Advertisement

Individual variations of the human corticospinal tract and its hand-related motor fibers using diffusion MRI tractography

  • Kyriakos Dalamagkas
  • Magdalini Tsintou
  • Yogesh Rathi
  • Lauren J. O’Donnell
  • Ofer Pasternak
  • Xue Gong
  • Anne Zhu
  • Peter Savadjiev
  • George M. Papadimitriou
  • Marek Kubicki
  • Edward H. Yeterian
  • Nikos MakrisEmail author
ORIGINAL RESEARCH
  • 58 Downloads

Abstract

The corticospinal tract (CST) is one of the most well studied tracts in human neuroanatomy. Its clinical significance can be demonstrated in many notable traumatic conditions and diseases such as stroke, spinal cord injury (SCI) or amyotrophic lateral sclerosis (ALS). With the advent of diffusion MRI and tractography the computational representation of the human CST in a 3D model became available. However, the representation of the entire CST and, specifically, the hand motor area has remained elusive. In this paper we propose a novel method, using manually drawn ROIs based on robustly identifiable neuroanatomic structures to delineate the entire CST and isolate its hand motor representation as well as to estimate their variability and generate a database of their volume, length and biophysical parameters. Using 37 healthy human subjects we performed a qualitative and quantitative analysis of the CST and the hand-related motor fiber tracts (HMFTs). Finally, we have created variability heat maps from 37 subjects for both the aforementioned tracts, which could be utilized as a reference for future studies with clinical focus to explore neuropathology in both trauma and disease states.

Keywords

Two-tensor tractography Diffusion tensor imaging Corticospinal tract Neural repair Quantification 

Abbreviations

CST

corticospinal tract

HMFT(s)

hand-related motor fiber tract(s)

PT

pyramidal tract

BA

Brodmann area

dMRI

diffusion magnetic resonance imaging

DTI

diffusion tensor imaging

HARDI

high angular resolution diffusion imaging

IC

internal capsule

SCI

spinal cord injury

TBI

traumatic brain injury

MS

multiple sclerosis

ALS

amyotrophic lateral sclerosis

AF

arcuate fascicle

SLF

superior longitudinal fascicle

CC

corpus callosum

HCP

Human Connectome Project

UKF

deterministic tractography - unscented Kalman filter deterministic tractography

FA

fractional anisotropy

AD

axial diffusivity

RD

radial diffusivity

SD

standard deviation

WU-Minn HCP consortium

Washington University-University of Minnesota and Oxford University Human Connectome Project consortium

ROIs

regions of interest

WMQL

White Matter Query Language

AC

anterior commissure

SI

Symmetry index

WashU

Washington University

MNI

Montreal Neurological Institute

CBPS

congenital bilateral perisylvian syndrome

OFF

occipitofrontal fascicle

Notes

Acknowledgements

We would like to thank the anonymous reviewers for providing useful comments on the manuscript. We would also like to thank Prof. Myron Spector for fruitful discussions and for his support.

Funding

K.D. was partially supported by the Foundation for Education and European Culture (IPEP). M.T. was supported by the American Association of University Women (AAUW) and the Onassis Foundation. E.Y. was supported by Colby College Research Fund 01 2836. NIH P41 EB015902. P.S. was supported by a NARSAD Young Investigator Award, grant number 22591 from the Brain and Behavior Research Foundation. N.M. was supported by RO1AG042512 (National Institute of Aging & National Institute of Mental Health), RO1MH112748 (National Institute of Mental Health), RO1MH111917 (National Institute of Mental Health), R21AT008865 (National Center for Complementary and Integrative Health), R21DA042271 (National Institute of Drug Abuse), and K24MH116366 (National Institute of Mental Health).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

For this type of study formal consent is not required.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Aertker, B. M., Bedi, S., & Cox Jr., C. S. (2016). Strategies for CNS repair following TBI. Experimental Neurology, 275(3), 411–426.  https://doi.org/10.1016/j.expneurol.2015.01.008.PubMedGoogle Scholar
  2. Alexander, A. L., Hasan, K. M., Lazar, M., Tsuruda, J. S., & Parker, D. L. (2001). Analysis of partial volume effects in diffusion-tensor MRI. Magnetic Resonance in Medicine, 45(5), 770–780.PubMedGoogle Scholar
  3. Alshikho, M. J., Zürcher, N. R., Loggia, M. L., Cernasov, P., Chonde, D. B., Izquierdo Garcia, D., et al. (2016). Glial activation colocalizes with structural abnormalities in amyotrophic lateral sclerosis. Neurology, 87(24), 2554–2561.  https://doi.org/10.1212/WNL.0000000000003427.PubMedPubMedCentralGoogle Scholar
  4. Barnard, J. W., & Woolsey, C. N. (1956). A study of localization in the corticospinal tracts of monkey and rat. Journal of Comparative Neurology, 105(1), 25–50.PubMedGoogle Scholar
  5. Basser, P. J. (2004). Scaling laws for myelinated axons derived from an electrotonic core-conductor model. Journal of Integrative Neuroscience, 3(2), 227–244.PubMedGoogle Scholar
  6. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.PubMedPubMedCentralGoogle Scholar
  7. Baumgartner, C. F., Michailovich, O., Levitt, J., Pasternak, O., Bouix, S., Westin, C. F., & Rathi, Y. (2012). A unified tractography framework for comparing diffusion models on clinical scans. Presented at the CDMRI workshop-MICCAI '12, Nice, France.Google Scholar
  8. Berman, J. I., Berger, M. S., Mukherjee, P., & Henry, R. G. (2004). Diffusion-tensor imaging-guided tracking of fibers of the pyramidal tract combined with intraoperative cortical stimulation mapping in patients with gliomas. Journal of Neurosurgery, 101(1), 66–72.  https://doi.org/10.3171/jns.2004.101.1.0066.PubMedGoogle Scholar
  9. Berman, J. I., Berger, M. S., Chung, S., Nagarajan, S. S., & Henry, R. G. (2007). Accuracy of diffusion tensor magnetic resonance imaging tractography assessed using intraoperative subcortical stimulation mapping and magnetic source imaging. Journal of Neurosurgery, 107(3), 488–494.  https://doi.org/10.3171/JNS-07/09/0488.PubMedGoogle Scholar
  10. Berman, J. I., Lanza, M. R., Blaskey, L., Edgar, J. C., & Roberts, T. P. L. (2013). High angular resolution diffusion imaging (HARDI) probabilistic tractography of the auditory radiation. American Journal of Neuroradiology, 34(8), 1573–1578.  https://doi.org/10.3174/ajnr.A3471.PubMedGoogle Scholar
  11. Bernal, B., Rey, G., Dunoyer, C., Shanbhag, H., & Altman, N. (2010). Agenesis of the arcuate fasciculi in congenital bilateral perisylvian syndrome: A diffusion tensor imaging and tractography study. Archives of Neurology, 67(4), 501–505.  https://doi.org/10.1001/archneurol.2010.59.PubMedGoogle Scholar
  12. Bertrand, G., Blundell, J., & Musella, R. (1965). Electrical exploration of the internal capsule and neighbouring structures during stereotaxic procedures. Journal of Neurosurgery, 22(4), 333–343.PubMedGoogle Scholar
  13. Betz, W. (1874). Anatomischer Nachweis zweier Gehirncentra. Zentralblatt für die medizinischen Wissenschaften, 12, 578–580; 595–599.Google Scholar
  14. Bouchard, C. (1866). Secondary degenerations of the spinal cord. Translated into English by E.R. Hun (Utica, NY 1869). Cited by A. M. Lassek, The pyramidal tract (Springfield, IL: Thomas 1954).Google Scholar
  15. Bucci, M., Mandelli, M. L., Berman, J. I., Amirbekian, B., Nguyen, C., Berger, M. S., & Henry, R. G. (2013). Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. NeuroImage: Clinical, 3, 361–368.  https://doi.org/10.1016/j.nicl.2013.08.008.Google Scholar
  16. Caiazzo, G., Fratello, M., Di Nardo, F., Trojsi, F., Tedeschi, G., & Esposito, F. (2018). Structural connectome with high angular resolution diffusion imaging MRI: Assessing the impact of diffusion weighting and sampling on graph-theoretic measures. Neuroradiology, 60(5), 497–504.  https://doi.org/10.1007/s00234-018-2003-7.PubMedPubMedCentralGoogle Scholar
  17. Campbell, A. W. (1905). Histological studies on the localization of cerebral function. Cambridge: Cambridge University Press.Google Scholar
  18. Carlson, H. L., Laliberté, C., Brooks, B. L., Hodge, J., Kirton, A., Bello-Espinosa, L., et al. (2014). Reliability and variability of diffusion tensor imaging (DTI) tractography in pediatric epilepsy. Epilepsy & Behavior, 37, 116–122.  https://doi.org/10.1016/j.yebeh.2014.06.020.Google Scholar
  19. Catani, M. (2007). From hodology to function. Brain, 130(3), 602–605.  https://doi.org/10.1093/brain/awm008.PubMedGoogle Scholar
  20. Chen, Z., Tie, Y., Olubiyi, O., Zhang, F., Mehrtash, A., Rigolo, L., et al. (2016). Corticospinal tract modeling for neurosurgical planning by tracking through regions of peritumoral edema and crossing fibers using two-tensor unscented Kalman filter tractography. International Journal of Computer Assisted Radiology and Surgery, 11(8), 1475–1486.  https://doi.org/10.1007/s11548-015-1344-5.PubMedPubMedCentralGoogle Scholar
  21. Chronister, R. B., & Hardy, S. G. P. (1997). The limbic system. In D. E. Haines (Ed.), Fundamental neuroscience (pp. 443–454). London: Churchill Livingstone.Google Scholar
  22. Clark, C. A., Barrick, T. R., Murphy, M. M., & Bell, B. A. (2003). White matter fiber tracking in patients with space-occupying lesions of the brain: A new technique for neurosurgical planning? NeuroImage, 20(3), 1601–1608.  https://doi.org/10.1016/j.neuroimage.2003.07.022.PubMedGoogle Scholar
  23. Clarke, E., & O’Malley, C. D. (1996). The human brain and spinal cord: A historical study illustrated by writings from antiquity to the twentieth century (2nd ed.). San Francisco: Norman Publishing.Google Scholar
  24. Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.  https://doi.org/10.1007/BF02310555.Google Scholar
  25. Cruveilhier, J. (1853). Sur la paralysie musculaire progressive atrophique. Archives Générales de Médecine, 1, 561–603.Google Scholar
  26. Davidoff, R. A. (1990). The pyramidal tract. Neurology, 40(2), 332–332.PubMedGoogle Scholar
  27. Dejerine, J. J., & Dejerine-Klumpke, A. (1895). Anatomie des centres nerveux (Vol. 1). Paris: Rueff et Cie.Google Scholar
  28. Dini, L., Vedolin, L., Bertholdo, D., Grando, R., Mazzola, A., Dini, S., et al. (2013). Reproducibility of quantitative fiber tracking measurements in diffusion tensor imaging of frontal lobe tracts: A protocol based on the fiber dissection technique. Surgical Neurology International, 4(1), 51.  https://doi.org/10.4103/2152-7806.110508.PubMedPubMedCentralGoogle Scholar
  29. Ellis, C. M., Suckling, J., Amaro Jr., E., Bullmore, E. T., Simmons, A., Williams, S. C. R., & Leigh, P. N. (2001). Volumetric analysis reveals corticospinal tract degeneration and extramotor involvement in ALS. Neurology, 57(9), 1571–1578.PubMedGoogle Scholar
  30. Farquharson, S., Tournier, J. D., Calamante, F., Fabinyi, G., Schneider-Kolsky, M., Jackson, G. D., & Connelly, A. (2013). White matter fiber tractography: Why we need to move beyond DTI. Journal of Neurosurgery, 118(6), 1367–1377.  https://doi.org/10.3171/2013.2.JNS121294.PubMedGoogle Scholar
  31. Fedorov, A., Beichel, R., Kalpathy-Cramer, J., Finet, J., Fillion-Robin, J. C., Pujol, S., et al. (2012). 3D slicer as an image computing platform for the quantitative imaging network. Magnetic Resonance Imaging, 30(9), 1323–1341.  https://doi.org/10.1016/j.mri.2012.05.001.PubMedPubMedCentralGoogle Scholar
  32. Feng, W., Wang, J., Chhatbar, P. Y., Doughty, C., Landsittel, D., Lioutas, V. A., et al. (2015). Corticospinal tract lesion load: An imaging biomarker for stroke motor outcomes. Annals of Neurology, 78(6), 860–870.  https://doi.org/10.1002/ana.24510.PubMedPubMedCentralGoogle Scholar
  33. Filippi, M., Pagani, E., Preziosa, P., & Rocca, M. A. (2016). The role of DTI in multiple sclerosis and other demyelinating conditions. In W. V. Hecke, L. Emsell, & S. Sunaert (Eds.), Diffusion tensor imaging (pp. 331–341). New York: Springer.  https://doi.org/10.1007/978-1-4939-3118-7_16.Google Scholar
  34. Finger, S. (1994). Origins of neuroscience: A history of explorations into brain function. New York: Oxford University Press.Google Scholar
  35. Flechsig, P. E. (1877). Pyramidal tract in brain and cord. Archiv für der Heilkunde, 18, 101–141.Google Scholar
  36. Flechsig, P. E. (1904). Einige Bemerkungen über die Untersuchungsmethoden der Grosshirnrinde, insbesondere des Menschen. Berichie über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig, Mathematik-Physik Klasse, 56, 50–104; 177–248.Google Scholar
  37. Ford, J. C., & Hackney, D. B. (1997). Numerical model for calculation of apparent diffusion coefficients (ADC) in permeable cylinders: Comparison with measured ADC in spinal cord white matter. Magnetic Resonance in Medicine, 37(3), 387–394.  https://doi.org/10.1002/mrm.1910370315.PubMedGoogle Scholar
  38. Galaburda, A. M., Corsiglia, J., Rosen, G. D., & Sherman, G. F. (1987). Planum temporale asymmetry, reappraisal since Geschwind and Levitsky. Neuropsychologia, 25(6), 853–868.  https://doi.org/10.1016/0028-3932(87)90091-1.Google Scholar
  39. Gall, F. J., & Spurzheim, J. C. (1810). Anatomie et physiologie du système nerveux en général, et du cerveau en particuler. Paris: Schoell et al.Google Scholar
  40. Glasser, M. F., Sotiropoulos, S. N., Wilson, J. A., Coalson, T. S., Fischl, B., Andersson, J. L., et al. (2013). The minimal preprocessing pipelines for the human connectome project. NeuroImage, 80, 105–124.  https://doi.org/10.1016/j.neuroimage.2013.04.127.PubMedPubMedCentralGoogle Scholar
  41. Gropman, A. L., Barkovich, A. J., Vezina, L. G., Conry, J. A., Dubovsky, E. C., & Packer, R. J. (1997). Pediatric congenital bilateral perisylvian syndrome: Clinical and MRI features in 12 patients. Neuropediatrics, 28(4), 198–203.  https://doi.org/10.1055/s-2007-973700.PubMedGoogle Scholar
  42. Hamidian, S., Vachha, B., Jenabi, M., Karimi, S., Young, R. J., Holodny, A. I., & Peck, K. K. (2018). Resting state fMRI and probabilistic DTI demonstrate that the greatest functional and structural connectivity in the hand motor homunculus occurs in the area of the thumb. Brain Connectivity8(6).  https://doi.org/10.1089/brain.2018.0589
  43. Heiervang, E., Behrens, T. E. J., Mackay, C. E., Robson, M. D., & Johansen-Berg, H. (2006). Between session reproducibility and between subject variability of diffusion MR and tractography measures. NeuroImage, 33(3), 867–877.  https://doi.org/10.1016/j.neuroimage.2006.07.037.PubMedGoogle Scholar
  44. Hille, B. (2001). Ion channels of excitable membranes (3rd ed.). Sunderland: Sinauer Associates Inc..Google Scholar
  45. Hirayama, K., Tsubaki, T., Toyokura, Y., & Okinaka, S. (1962). The representation of the pyramidal tract in the internal capsule and basis pedunculi: A study based on three cases of amyotrophic lateral sclerosis. Neurology, 12, 337-342.Google Scholar
  46. Holmes, G., & May, W. P. (1909). On the exact origin of the pyramidal tracts in man and other mammals. Brain, 32(1), 1–43.Google Scholar
  47. Holodny, A. I., Gor, D. M., Watts, R., Gutin, P. H., & Ulug, A. M. (2005). Diffusion-tensor MR tractography of somatotopic organization of corticospinal tracts in the internal capsule: Initial anatomic results in contradistinction to prior reports. Radiology, 234(3), 649–653.PubMedGoogle Scholar
  48. Huang, H., Zhang, J., Jiang, H., Wakana, S., Poetscher, L., Miller, M. I., et al. (2005). DTI tractography based parcellation of white matter: Application to the mid-sagittal morphology of corpus callosum. NeuroImage, 26(1), 195–205.  https://doi.org/10.1016/j.neuroimage.2005.01.019.PubMedGoogle Scholar
  49. Irfanoglu, M. O., Modi, P., Nayak, A., Hutchinson, E. B., Sarlls, J., & Pierpaoli, C. (2015). DR-BUDDI (diffeomorphic registration for blip-up blip-down diffusion imaging) method for correcting echo planar imaging distortions. NeuroImage, 106, 284–299.  https://doi.org/10.1016/j.neuroimage.2014.11.042.PubMedGoogle Scholar
  50. Itoh, D., Aoki, S., Maruyama, K., Masutani, Y., Mori, H., Masumoto, T., et al. (2006). Corticospinal tracts by diffusion tensor tractography in patients with arteriovenous malformations. Journal of Computer Assisted Tomography, 30(4), 618–623.PubMedGoogle Scholar
  51. Jeong, J. W., Lee, J., Kamson, D. O., Chugani, H. T., & Juhász, C. (2015). Detection of hand and leg motor tract injury using novel diffusion tensor MRI tractography in children with central motor dysfunction. Magnetic Resonance Imaging, 33(7), 895–902.  https://doi.org/10.1016/j.mri.2015.05.003.PubMedPubMedCentralGoogle Scholar
  52. Jones, D. K., Knösche, T. R., & Turner, R. (2013). White matter integrity, fiber count, and other fallacies: The do’s and don’ts of diffusion MRI. NeuroImage, 73, 239–254.  https://doi.org/10.1016/j.neuroimage.2012.06.081.PubMedGoogle Scholar
  53. Kilinc, O., Ekinci, G., Demirkol, E., & Agan, K. (2015). Bilateral agenesis of arcuate fasciculus demonstrated by fiber tractography in congenital bilateral perisylvian syndrome. Brain & Development, 37(3), 352–355.  https://doi.org/10.1016/j.braindev.2014.05.003.Google Scholar
  54. Kinoshita, M., Yamada, K., Hashimoto, N., Kato, A., Izumoto, S., Baba, T., et al. (2005). Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: Initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. NeuroImage, 25(2), 424–429.  https://doi.org/10.1016/j.neuroimage.2004.07.076.PubMedGoogle Scholar
  55. Kuo, H., Ferre, C. L., Carmel, J. B., Gowatsky, J. L., Stanford, A. D., Rowny, S. B., et al. (2017). Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Developmental Medicine and Child Neurology, 59(1), 65–71.  https://doi.org/10.1111/dmcn.13192.PubMedGoogle Scholar
  56. Kuypers, H. (1958). Some projections from the peri-central cortex to the pons and lower brain stem in monkey and chimpanzee. Journal of Comparative Neurology, 110(2), 221–255.PubMedGoogle Scholar
  57. Kuypers, H. G. (1964). The descending pathways to the spinal cord, their anatomy and function. Progress in Brain Research, 11, 178–202.PubMedGoogle Scholar
  58. Lassek, A. M., & Rasmussen, G. L. (1939). The human pyramidal tract: A fiber and numerical analysis. Archives of Neurology and Psychiatry, 42(5), 872–876.Google Scholar
  59. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–407.PubMedGoogle Scholar
  60. Le Gros Clark, W. E. (1959). The antecedents of man: An introduction to the evolution of the primates. Edinburgh: Edinburgh University Press.Google Scholar
  61. Lee, D. H., Park, J. W., Park, S. H., & Hong, C. (2015). Have you ever seen the impact of crossing fiber in DTI?: Demonstration of the corticospinal tract pathway. PLoS One, 10(7), e0112045.  https://doi.org/10.1371/journal.pone.0112045.PubMedPubMedCentralGoogle Scholar
  62. Lee, D. H., Lee, D. W., & Han, B. S. (2016). Symmetrical location characteristics of corticospinal tract associated with hand movement in the human brain. Medicine, 95(15), e3317.  https://doi.org/10.1097/MD.0000000000003317.PubMedPubMedCentralGoogle Scholar
  63. Levin, P. M., & Beadford, F. K. (1938). The exact origin of the cortico-spinal tract in the monkey. Journal of Comparative Neurology, 68(4), 411–422.Google Scholar
  64. Lori, N. F., Akbudak, E., Shimony, J. S., Cull, T. S., Snyder, A. Z., Guillory, R. K., & Conturo, T. E. (2002). Diffusion tensor fiber tracking of human brain connectivity: Acquisition methods, reliability analysis and biological results. NMR in Biomedicine, 15(7–8), 494–515.PubMedGoogle Scholar
  65. Lu, P., Ahmad, R., & Tuszynski, M. H. (2016). Neural stem cells for spinal cord injury. In M. H. Tuszynski (Ed.), Translational neuroscience (pp. 297–315). New York: Springer.  https://doi.org/10.1007/978-1-4899-7654-3_16.Google Scholar
  66. Mai, J. K., & Paxinos, G. (2011). The human nervous system (3rd ed.). New York: Academic Press.Google Scholar
  67. Makris, N., Worth, A. J., Papadimitriou, G. M., Stakes, J. W., Caviness, V. S., Kennedy, D. N., et al. (1997). Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Annals of Neurology, 42(6), 951–962.PubMedGoogle Scholar
  68. Makris, N., Meyer, J. W., Bates, J. F., Yeterian, E. H., Kennedy, D. N., & Caviness Jr., V. S. (1999). MRI-based topographic parcellation of human cerebral white matter and nuclei: II. Rationale and applications with systematics of cerebral connectivity. NeuroImage, 9(1), 18–45.  https://doi.org/10.1006/nimg.1998.0384.PubMedGoogle Scholar
  69. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness, V. S., & Pandya, D. N. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6), 854–869.  https://doi.org/10.1093/cercor/bhh186.PubMedGoogle Scholar
  70. Makris, N., Papadimitriou, G. M., Sorg, S., Kennedy, D. N., Caviness, V. S., & Pandya, D. N. (2007). The occipitofrontal fascicle in humans: A quantitative, in vivo, DT-MRI study. NeuroImage, 37(4), 1100–1111.  https://doi.org/10.1016/j.neuroimage.2007.05.042.PubMedPubMedCentralGoogle Scholar
  71. Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2010). Filtered multitensor tractography. IEEE Transactions on Medical Imaging, 29(9), 1664–1675.  https://doi.org/10.1109/TMI.2010.2048121.PubMedPubMedCentralGoogle Scholar
  72. Mandelli, M. L., Berger, M. S., Bucci, M., Berman, J. I., Amirbekian, B., & Henry, R. G. (2014). Quantifying accuracy and precision of diffusion MR tractography of the corticospinal tract in brain tumors. Journal of Neurosurgery, 121(2), 349–358.  https://doi.org/10.3171/2014.4.JNS131160.PubMedGoogle Scholar
  73. Manley, N. C., Azevedo-Pereira, R. L., Bliss, T. M., & Steinberg, G. K. (2015). Neural stem cells in stroke: Intracerebral approaches. In D. C. Hess (Ed.), Cell therapy for brain injury (pp. 91–109). New York: Springer.  https://doi.org/10.1007/978-3-319-15063-5_7.Google Scholar
  74. Mikuni, N., Okada, T., Enatsu, R., Miki, Y., Hanakawa, T., Urayama, S., et al. (2007). Clinical impact of integrated functional neuronavigation and subcortical electrical stimulation to preserve motor function during resection of brain tumors. Journal of Neurosurgery, 106(4), 593–598.  https://doi.org/10.3171/jns.2007.106.4.593.PubMedGoogle Scholar
  75. Mistichelli, D. (1709). Trattado dell’Apoplessia. Rome: A. de Rossi alla Piazza di Ceri.Google Scholar
  76. Mori, S., Crain, B. J., Chacko, V. P., & Van Zijl, P. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.PubMedGoogle Scholar
  77. Mormina, E., Longo, M., Arrigo, A., Alafaci, C., Tomasello, F., Calamuneri, A., et al. (2015). MRI tractography of corticospinal tract and arcuate fasciculus in high-grade gliomas performed by constrained spherical deconvolution: Qualitative and quantitative analysis. American Journal of Neuroradiology, 36(10), 1853–1858.  https://doi.org/10.3174/ajnr.A4368.PubMedGoogle Scholar
  78. Nimsky, C., Bauer, M., & Carl, B. (2016). Merits and limits of tractography techniques for the uninitiated. In J. Schramm (Ed.), Advances and technical standards in neurosurgery (pp. 37–60). New York: Springer.  https://doi.org/10.1007/978-3-319-21359-0_2.Google Scholar
  79. Norton, I., Essayed, W. I., Zhang, F., Pujol, S., Yarmarkovich, A., Golby, A., et al. (2017). SlicerDMRI: Open source diffusion MRI software for brain Cancer research. Cancer Research, 77(21), e101–e103.  https://doi.org/10.1158/0008-5472.CAN-17-0332.PubMedPubMedCentralGoogle Scholar
  80. Nyberg-Hansen, R., & Rinvik, E. (1963). Some comments on the pyramidal tract, with special reference to its individual variations in man. Acta Neurologica Scandinavica, 39(1), 1–30.Google Scholar
  81. O’Donnell, L. J., & Pasternak, O. (2015). Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophrenia Research, 161(1), 133–141.  https://doi.org/10.1016/j.schres.2014.09.007.PubMedGoogle Scholar
  82. O’Donnell, L. J., & Westin, C. F. (2011). An introduction to diffusion tensor image analysis. Neurosurgery Clinics of North America, 22(2), 185–196, viii.  https://doi.org/10.1016/j.nec.2010.12.004.PubMedPubMedCentralGoogle Scholar
  83. Okada, T., Miki, Y., Kikuta, K., Mikuni, N., Urayama, S., Fushimi, Y., et al. (2007). Diffusion tensor fiber tractography for arteriovenous malformations: Quantitative analyses to evaluate the corticospinal tract and optic radiation. American Journal of Neuroradiology, 28(6), 1107–1113.  https://doi.org/10.3174/ajnr.A0493.PubMedGoogle Scholar
  84. Parent, A. (1996). Carpenter’s human neuroanatomy (9th ed.). Baltimore: Williams & Wilkins.Google Scholar
  85. Peele, T. L. (1942). Cytoarchitecture of individual parietal areas in the monkey (Macaca mulatta) and the distribution of the efferent fibers. Journal of Comparative Neurology, 77(3), 693–737.Google Scholar
  86. Pellegrino, R. G., Spencer, P. S., & Ritchie, J. M. (1984). Sodium channels in the axolemma of unmyelinated axons: A new estimate. Brain Research, 305(2), 357–360.  https://doi.org/10.1016/0006-8993(84)90442-6.PubMedGoogle Scholar
  87. Petersen, M. V., Lund, T. E., Sunde, N., Frandsen, J., Rosendal, F., Juul, N., & Østergaard, K. (2016). Probabilistic versus deterministic tractography for delineation of the cortico-subthalamic hyperdirect pathway in patients with Parkinson disease selected for deep brain stimulation. Journal of Neurosurgery, 126(5), 1657–1668.  https://doi.org/10.3171/2016.4.JNS1624.PubMedGoogle Scholar
  88. Petrou, P., Gothelf, Y., Argov, Z., Gotkine, M., Levy, Y. S., Kassis, I., et al. (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: Results of phase 1/2 and 2a clinical trials. JAMA Neurology, 73(3), 337–344.  https://doi.org/10.1001/jamaneurol.2015.4321.PubMedGoogle Scholar
  89. Pierpaoli, C., Barnett, A., Pajevic, S., Chen, R., Penix, L., Virta, A., & Basser, P. (2001). Water diffusion changes in Wallerian degeneration and their dependence on white matter architecture. Neuroimage, 13(6), 1174–1185.PubMedGoogle Scholar
  90. Pitres, J. A. (1884). Recherches anatomo-cliniques sur les scléroses bilatérales de la moelle épinière consécutives à des lésions unilatérales du cerveau. Paris: G. Masson.Google Scholar
  91. Pourfour du Petit, F. (1710). Theory of contralateral innervation: Trois lettres d’un médecin des hôpitaux du Roy. contient un nouveau système du cerveau, etc. Namur, Belgium: C. G. Albert.Google Scholar
  92. Pujol, S., Wells, W., Pierpaoli, C., Brun, C., Gee, J., Cheng, G., et al. (2015). The DTI challenge: Toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. Journal of Neuroimaging, 25(6), 875–882.  https://doi.org/10.1111/jon.12283.PubMedPubMedCentralGoogle Scholar
  93. Qazi, A. A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Whalen, S., et al. (2009). Resolving crossings in the corticospinal tract by two-tensor streamline tractography: Method and clinical assessment using fMRI. NeuroImage, 47(Suppl. 2), T98–T106.  https://doi.org/10.1016/j.neuroimage.2008.06.034.PubMedGoogle Scholar
  94. Radmanesh, A., Zamani, A. A., Whalen, S., Tie, Y., Suarez, R. O., & Golby, A. J. (2015). Comparison of seeding methods for visualization of the corticospinal tracts using single tensor tractography. Clinical Neurology and Neurosurgery, 129, 44–49.  https://doi.org/10.1016/j.clineuro.2014.11.021.PubMedGoogle Scholar
  95. Ropper, A. H., Samuels, M. A., & Klein, J. (2014). Adams and Victor’s principles of neurology (10th ed.). New York: McGraw-Hill Education.Google Scholar
  96. Russell, J. R., & DeMyer, W. (1961). The quantitative cortical origin of pyramidal axons of Macaca rhesus with some remarks on the slow rate of axolysis. Neurology, 11(2), 96–96.PubMedGoogle Scholar
  97. Saporta, A. S. D., Kumar, A., Govindan, R. M., Sundaram, S. K., & Chugani, H. T. (2011). Arcuate fasciculus and speech in congenital bilateral perisylvian syndrome. Pediatric Neurology, 44(4), 270–274.  https://doi.org/10.1016/j.pediatrneurol.2010.11.006.PubMedGoogle Scholar
  98. Schäfer, E. A. (1883). Report on the lesions, primary and secondary, in the brain and spinal cord of the macacque monkey, exhibited by professors Ferrier and yeo. Journal of Physiology, 4(4–5), 316–326.PubMedGoogle Scholar
  99. Schäfer, E. A. (1910). Experiments on the paths taken by volitional impulses passing from the cerebral cortex to the cord: The pyramids and the ventro-laterla descending tracts. Quarterly Journal of Experimental Physiology, 3(4), 355–373.Google Scholar
  100. Schmahmann, J. D., & Pandya, D. N. (2006). Fiber pathways of the brain. New York: Oxford Univeristy Press.Google Scholar
  101. Sherbondy, A. J., Dougherty, R. F., Napel, S., & Wandell, B. A. (2008). Identifying the human optic radiation using diffusion imaging and fiber tractography. Journal of Vision, 8(10), 12.1–12.1211.  https://doi.org/10.1167/8.10.12.
  102. Skirven, T. M., Osterman, A. L., Fedorczyk, J., & Amadio, P. C. (2011). Rehabilitation of the hand and upper extremity (6th ed.). Philadelphia: Elsevier Mosley.Google Scholar
  103. Snow, N. J., Peters, S., Borich, M. R., Shirzad, N., Auriat, A. M., Hayward, K. S., & Boyd, L. A. (2016). A reliability assessment of constrained spherical deconvolution-based diffusion-weighted magnetic resonance imaging in individuals with chronic stroke. Journal of Neuroscience Methods, 257, 109–120.  https://doi.org/10.1016/j.jneumeth.2015.09.025.PubMedGoogle Scholar
  104. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.PubMedGoogle Scholar
  105. Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20(3), 1714–1722.PubMedGoogle Scholar
  106. Stieltjes, B., Kaufmann, W. E., van Zijl, P. C., Fredericksen, K., Pearlson, G. D., Solaiyappan, M., & Mori, S. (2001). Diffusion tensor imaging and axonal tracking in the human brainstem. NeuroImage, 14(3), 723–735.  https://doi.org/10.1006/nimg.2001.0861.PubMedGoogle Scholar
  107. Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., & Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4), 577–582.PubMedGoogle Scholar
  108. Tukey, J. W. (1977). Exploratory data analysis. Reading, MA: Pearson.Google Scholar
  109. Türck, L. (1851). Über den Zustand der Sensibilität nach teilweiser Trennung des Rückenmarks. Zeitschrift für die Gesellschaft der Aerzte zu Wien, 189.Google Scholar
  110. Türck L. Über secundäre Erkrankung einzelner Rückenmarkstränge und ihrer Fortsetzung zum Gehirne. Akad Wissensch Wien Math Naturwiss Class Sitzungber 1852;8:511–534.Google Scholar
  111. Uğurbil, K., Xu, J., Auerbach, E. J., Moeller, S., Vu, A., Duarte-Carvajalino, J. M., et al. (2013). Pushing spatial and temporal resolution for functional and diffusion MRI in the human connectome project. NeuroImage, 80, 80–104.  https://doi.org/10.1016/j.neuroimage.2013.05.012.PubMedPubMedCentralGoogle Scholar
  112. van der Graaff, M. M., Sage, C. A., Caan, M. W. A., Akkerman, E. M., Lavini, C., Majoie, C. B., et al. (2011). Upper and extra-motoneuron involvement in early motoneuron disease: A diffusion tensor imaging study. Brain, 134(4), 1211–1228.  https://doi.org/10.1093/brain/awr016.PubMedGoogle Scholar
  113. Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., & Westin, C. F. (2013). On describing human white matter anatomy: The white matter query language. Medical Image Computing and Computer Assisted Intervention, 16(Part 1), 647–654.Google Scholar
  114. Wassermann, D., Makris, N., Rathi, Y., Shenton, M., Kikinis, R., Kubicki, M., & Westin, C. F. (2016). The white matter query language: A novel approach for describing human white matter anatomy. Brain Structure and Function, 221(9), 4705–4721.  https://doi.org/10.1007/s00429-015-1179-4.PubMedGoogle Scholar
  115. Weiss, C., Tursunova, I., Neuschmelting, V., Lockau, H., Nettekoven, C., Oros-Peusquens, A. M., et al. (2015). Improved nTMS- and DTI-derived CST tractography through anatomical ROI seeding on anterior pontine level compared to internal capsule. NeuroImage: Clinical, 7, 424–437.  https://doi.org/10.1016/j.nicl.2015.01.006.Google Scholar
  116. Willis, T. (1664). Cerebri anatome: Cui accessit nervorum descriptio et usus. London: J. Martyn and J. Allestry. Tercentenary ed., 1664–1964, Thomas Willis: The anatomy of the brain and nerves. Montreal: McGill University Press, 1965.Google Scholar
  117. Yagishita, A., Nakano, I., Oda, M., & Hirano, A. (1994). Location of the corticospinal tract in the internal capsule at MR imaging. Radiology, 191(2), 455–460.PubMedGoogle Scholar
  118. Yamada, K., Kizu, O., Ito, H., Kubota, T., Akada, W., Goto, M., et al. (2005). Tractography for arteriovenous malformations near the sensorimotor cortices. American Journal of Neuroradiology, 26(3), 598–602.PubMedGoogle Scholar
  119. Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., & Winkler, P. (1997). Localization of the motor hand area to a knob on the precentral gyrus: A new landmark. Brain, 120(1), 141–157.  https://doi.org/10.1093/brain/120.1.141.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kyriakos Dalamagkas
    • 1
    • 2
    • 3
    • 4
    • 5
  • Magdalini Tsintou
    • 1
    • 2
    • 5
    • 6
  • Yogesh Rathi
    • 2
  • Lauren J. O’Donnell
    • 2
  • Ofer Pasternak
    • 2
    • 7
  • Xue Gong
  • Anne Zhu
  • Peter Savadjiev
    • 2
    • 7
  • George M. Papadimitriou
    • 6
  • Marek Kubicki
    • 2
    • 6
    • 7
  • Edward H. Yeterian
    • 8
  • Nikos Makris
    • 2
    • 6
    • 9
    Email author
  1. 1.Surgical Planning Laboratory, Brigham and Women′s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women′s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Department of Physical Medicine and RehabilitationThe University of Texas Health Science Center at HoustonHoustonUSA
  4. 4.TIRR Memorial Hermann Research CenterTIRR Memorial Hermann HospitalHoustonUSA
  5. 5.UCL Division of Surgery & Interventional Science, Center for Nanotechnology & Regenerative MedicineUniversity College LondonLondonUK
  6. 6.Departments of Psychiatry and Neurology Services, Center for Neural Systems Investigations, Center for Morphometric Analysis, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  7. 7.Department of Radiology, Brigham and Women′s HospitalHarvard Medical SchoolBostonUSA
  8. 8.Department of PsychologyColby CollegeWatervilleUSA
  9. 9.Department of Anatomy & NeurobiologyBoston University School of MedicineBostonUSA

Personalised recommendations