Morphological changes in subregions of hippocampus and amygdala in major depressive disorder patients

  • Zhijun Yao
  • Yu Fu
  • Jianfeng Wu
  • Wenwen Zhang
  • Yue Yu
  • Zicheng Zhang
  • Xia WuEmail author
  • Yalin WangEmail author
  • Bin HuEmail author


Despite many neuroimaging studies in the past years, the neuroanatomical substrates of major depressive disorder (MDD) subcortical structures are still not well understood. Since hippocampus and amygdala are the two vital subcortical structures that most susceptible to MDD, finding the evidence of morphological changes in their subregions may bring some new insights for MDD research. Combining structural magnetic resonance imaging (MRI) with novel morphometry analysis methods, we recruited 25 MDD patients and 28 healthy controls (HC), and investigated their volume and morphological differences in hippocampus and amygdala. Relative to volumetric method, our methods detected more significant global morphological atrophies (p<0.05). More precisely, subiculum and cornu ammonis (CA) 1 subregions of bilateral hippocampus, lateral (LA) and basolateral ventromedial (BLVM) of left amygdala and LA, BLVM, central (CE), amygdalostriatal transition area (ASTR), anterior cortical (ACO) and anterior amygdaloid area (AAA) of right amygdala were demonstrated prone to atrophy. Correlation analyses between each subject’s surface eigenvalues and Hamilton Depression Scale (HAMD) were then performed. Correlation results showed that atrophy areas in hippocampus and amygdala have slight tendencies of expanding into other subregions with the development of MDD. Finally, we performed group morphometric analysis and drew the atrophy and expansion areas between MDD-Medicated group (only 19 medicated subjects in MDD group were included) and HC group, found some preliminary evidence about subregional morphological resilience of hippocampus and amygdala. These findings revealed new pathophysiologic patterns in the subregions of hippocampus and amygdala, which can help with subsequent smaller-scale MDD research.


Hippocampus Amygdala Major depressive disorder Subcortical structures Morphometry 



This study was supported by the National Basic Research Program of China (973 Program) (No.2014CB744600), the National Natural Science Foundation of China (Grant No.61210010, No.61632014 and No.61571047), the Program of International S&T Cooperation of MOST (No.2013DFA11140), the Program of Beijing Municipal Science & Technology Commission (No.Z171100000117005), the National Key Research and Development Program of China (No.2016YFC1307203) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-kb08).

Compliance with ethical standards

Conflict of interest

All authors declared no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed written consents were obtained from all individual participants included in the study.


  1. Abercrombie, H. C., et al. (1998). Metabolic rate in the right amygdala predicts negative affect in depressed patients. Neuroreport, 9, 3301.CrossRefPubMedGoogle Scholar
  2. Adolphs, R., Tranel, D., & Damasio, H. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.CrossRefPubMedGoogle Scholar
  3. Ahmari, S. (2015). Neuroscience: Inside the fear factor. Nature, 524, 34–34.CrossRefGoogle Scholar
  4. Airaksinen, E., Wahlin, Å., Forsell, Y., & Larsson, M. (2007). Low episodic memory performance as a premorbid marker of depression: Evidence from a 3-year follow-up. European Psychiatry, 115, S221–S221.CrossRefGoogle Scholar
  5. Angelucci, F., Brenè, S., & Mathé, A. A. (2005). BDNF in schizophrenia, depression and corresponding animal models. Molecular Psychiatry, 10, 345.CrossRefPubMedGoogle Scholar
  6. Ballmaier, M., et al. (2008). Hippocampal morphology and distinguishing late-onset from early-onset elderly depression. American Journal of Psychiatry, 165, 229–237.CrossRefPubMedGoogle Scholar
  7. Bannerman, D. M., Sprengel, R., Sanderson, D. J., Mchugh, S. B., Rawlins, J. N. P., Monyer, H., & Seeburg, P. H. (2014). Hippocampal synaptic plasticity, spatial memory and anxiety. Nature Reviews Neuroscience, 15, 181–192.CrossRefPubMedGoogle Scholar
  8. Bech, P., Allerup, P., Gram, L. F., Reisby, N., Rosenberg, R., Jacobsen, O., & Nagy, A. (1981). The Hamilton Depression Scale. Acta Psychiatrica Scandinavica, 63, 290–299.CrossRefPubMedGoogle Scholar
  9. Brewer, W. F. (1986). Autobiographical Memory International Encyclopedia of the Social & Behavioral. Sciences, 3, 282–288.Google Scholar
  10. Bus, B. A. A., Molendijk, M. L., Tendolkar, I., Penninx, B. W. J. H., Prickaerts, J., Elzinga, B. M., & Voshaar, R. C. O. (2015). Chronic depression is associated with a pronounced decrease in serum brain-derived neurotrophic factor over time. Molecular Psychiatry, 20, 602.CrossRefPubMedGoogle Scholar
  11. Cádiz-Moretti, B., Abellán-Álvaro, M., Pardo-Bellver, C., Martínez-García, F., & Lanuza, E. (2017) Afferent and efferent projections of the anterior cortical amygdaloid nucleus in the mouse. Journal of Comparative Neurology, 525, 2929–2954.CrossRefPubMedGoogle Scholar
  12. Carlesimo, G. A., Piras, F., Orfei, M. D., Iorio, M., Caltagirone, C., & Spalletta, G. (2015). Atrophy of presubiculum and subiculum is the earliest hippocampal anatomical marker of Alzheimer's disease. Alzheimers Dement, 1, 24.Google Scholar
  13. Caspi, A., et al. (2003). Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science, 301, 386–389.CrossRefPubMedGoogle Scholar
  14. Cavedo, E., et al. (2011). Local amygdala structural differences with 3T MRI in patients with Alzheimer disease. Neurology, 76, 727.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chen, M. C., Hamilton, J. P., & Gotlib, I. H. (2010). Decreased hippocampal volume in healthy girls at risk of depression. Archives of General Psychiatry, 67, 270.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Christensen, G. E., Rabbitt, R. D., & Miller, M. I. (2002). Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing. Society, 5, 1435–1447.Google Scholar
  17. Chung, M. K., Dalton, K. M., & Davidson, R. J. (2008). Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Transactions on Medical Imaging, 27, 1143–1151.CrossRefPubMedGoogle Scholar
  18. Ciocchi, S., et al. (2010). Encoding of conditioned fear in central amygdala inhibitory circuits. Nature, 468, 277.CrossRefPubMedGoogle Scholar
  19. Cole, J., et al. (2010). Subregional hippocampal deformations in major depressive disorder. Journal of Affective Disorders, 126, 272–277.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18, 192.CrossRefPubMedGoogle Scholar
  21. Czéh, B., & Lucassen, P. J. (2007). What causes the hippocampal volume decrease in depression? Are neurogenesis, glial changes and apoptosis implicated? European Archives of Psychiatry and Clinical Neuroscience, 257, 250–260.CrossRefPubMedGoogle Scholar
  22. Dannlowski, U., et al. (2007). Amygdala reactivity to masked negative faces is associated with automatic judgmental bias in major depression: a 3 T fMRI study. Journal of Psychiatry & Neuroscience Jpn, 32, 423.Google Scholar
  23. Davatzikos, C. (1996). Spatial Normalization of 3D Brain Images Using Deformable Models. Journal of Computer Assisted Tomography, 20, 656–665.CrossRefPubMedGoogle Scholar
  24. Dimsdalezucker, H. R., Ritchey, M., Ekstrom, A. D., Yonelinas, A. P., & Ranganath, C. (2018). CA1 and CA3 differentially support spontaneous retrieval of episodic contexts within human hippocampal subfields. Nature Communications, 9, 294.CrossRefGoogle Scholar
  25. Dudek, S. M., Alexander, G. M., & Farris, S. (2016). Rediscovering area CA2: unique properties and functions. Nature Reviews Neuroscience, 17, 89.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eldridge, L. L., Engel, S. A., Zeineh, M. M., Bookheimer, S. Y., & Knowlton, B. J. (2005). A dissociation of encoding and retrieval processes in the human hippocampus. Journal of Neuroscience the Official Journal of the Society for. Neuroscience, 25, 3280–3286.CrossRefPubMedGoogle Scholar
  27. Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., & Hirsch, J. (2004). Individual differences in trait anxiety predict the response of the basolateral amygdala to unconsciously processed fearful faces. Neuron, 44, 1043–1055.CrossRefPubMedGoogle Scholar
  28. Ferrari, A. J., Somerville, A. J., Baxter, A. J., Norman, R., Patten, S. B., Vos, T., & Whiteford, H. A. (2013). Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychological Medicine, 43, 471–481.CrossRefPubMedGoogle Scholar
  29. First M, Spitzer R, Gibbon M, Williams J (2002) Structured Clinical Interview for DSM-IV Axis I disordersGoogle Scholar
  30. Fonberg, E. (1981) Manipulation of various aspects on the emotional behavior by amygdalar lesions and imipramine treatment. Brain & Behaviour, 17, 487-494Google Scholar
  31. Fossati, P., Harvey, P. O., Bastard, G. L., Ergis, A. M., Jouvent, R., & Allilaire, J. F. (2004). Verbal memory performance of patients with a first depressive episode and patients with unipolar and bipolar recurrent depression. Journal of Psychiatric Research, 38, 137–144.CrossRefPubMedGoogle Scholar
  32. Frodl, T., et al. (2002). Enlargement of the amygdala in patients with a first episode of major depression. Biological Psychiatry, 51, 708.CrossRefPubMedGoogle Scholar
  33. Frodl, T., et al. (2003). Larger amygdala volumes in first depressive episode as compared to recurrent major depression and healthy control subjects. Biological Psychiatry, 53, 338.CrossRefPubMedGoogle Scholar
  34. Golomb, J., Leon, M. J. D., Kluger, A., George, A. E., Tarshish, C., & Ferris, S. H. (1993). Hippocampal Atrophy in Normal Aging: An Association With Recent Memory Impairment. Archives of Neurology, 50, 967–973.CrossRefPubMedGoogle Scholar
  35. Gould, N. F., et al. (2007). Performance on a virtual reality spatial memory navigation task in depressed patients. American Journal of Psychiatry, 164, 516–519.CrossRefPubMedGoogle Scholar
  36. Greenberg, P. E., & Birnbaum, H. G. (2005). The economic burden of depression in the US: societal and patient perspectives. Expert Opinion on Pharmacotherapy, 6, 369.CrossRefPubMedGoogle Scholar
  37. Gunten, A. V., Fox, N. C., Cipolotti, L., & Ron, M. A. (2000). A Volumetric Study of Hippocampus and Amygdala in Depressed Patients With Subjective Memory Problems. Journal of Neuropsychiatry & Clinical Neurosciences, 12, 493.CrossRefGoogle Scholar
  38. Hamilton, J. P., Siemer, M., & Gotlib, I. H. (2008). Amygdala volume in Major Depressive Disorder: A meta-analysis of magnetic resonance imaging studies. Molecular Psychiatry, 13, 993.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Hasin, D. S., Goodwin, R. D., Stinson, F. S., & Grant, B. F. (2005). Epidemiology of major depressive disorder: results from the National Epidemiologic Survey on Alcoholism and Related Conditions. Archives of General Psychiatry, 62, 1097–1106. Scholar
  40. Hastings, R. S., Parsey, R. V., Oquendo, M. A., Arango, V., & Mann, J. J. (2004). Volumetric analysis of the prefrontal cortex, amygdala, and hippocampus in major depression. Neuropsychopharmacology Official Publication of the American College of. Neuropsychopharmacology, 29, 952.CrossRefPubMedGoogle Scholar
  41. Heller, A. S., et al. (2009). Reduced Capacity to Sustain Positive Emotion in Major Depression Reflects Diminished Maintenance of Fronto-Striatal Brain Activation. Proceedings of the National Academy of Sciences of the United States of America, 106, 22445–22450.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Hickie, I., et al. (2005). Reduced hippocampal volumes and memory loss in patients with early- and late-onset depression. British Journal of Psychiatry, 186, 197–202.CrossRefPubMedGoogle Scholar
  43. Hitti, F. L., & Siegelbaum, S. A. (2014). The hippocampal CA2 region is essential for social memory. Nature, 508, 88–92.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Hotelling, H. (1992). The Generalization of Student's Ratio. Springer New York.Google Scholar
  45. Joshi, S. H., et al. (2016). Structural Plasticity of the Hippocampus and Amygdala Induced by Electroconvulsive Therapy in Major Depression. Biological Psychiatry, 79, 282–292.CrossRefPubMedGoogle Scholar
  46. Kessler, R. C., et al. (2003). The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). Jama, 289, 3095.CrossRefPubMedGoogle Scholar
  47. Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. (2005). Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in the National Comorbidity Survey Replication. BMC Complementary and Alternative Medicine, 14, 422–422.Google Scholar
  48. Krishnan, V., & Nestler, E. J. (2008). The molecular neurobiology of depression. Nature, 455, 894–902.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Kronenberg, G., Tebartz, v E L., Regen, F., Deuschle, M., Heuser, I., & Colla, M. (2009). Reduced amygdala volume in newly admitted psychiatric in-patients with unipolar major depression. Journal of Psychiatric Research, 43, 1112–1117.CrossRefPubMedGoogle Scholar
  50. Lange, C., & Irle, E. (2004). Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychological Medicine, 34, 1059–1064.CrossRefPubMedGoogle Scholar
  51. Lao, Y., Wang, Y., Shi, J., Ceschin, R., Nelson, M. D., Panigrahy, A., & Leporé, N. (2016). Thalamic alterations in preterm neonates and their relation to ventral striatum disturbances revealed by a combined shape and pose analysis. Brain Structure & Function, 221, 487–506.CrossRefGoogle Scholar
  52. Ledoux, J. E., Cicchetti, P., Xagoraris, A., & Romanski, L. M. (1990). The lateral amygdaloid nucleus: sensory interface of the amygdala in fear conditioning. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 10, 1062–1069.CrossRefGoogle Scholar
  53. Lemogne, C., et al. (2006). Episodic autobiographical memory in depression: Specificity, autonoetic consciousness, and self-perspective. Consciousness and Cognition, 15, 258–268.CrossRefPubMedGoogle Scholar
  54. Lepage, M., Habib, R., & Tulving, E. (2015). Hippocampal PET activations of memory encoding and retrieval: the HIPER model. Hippocampus, 8, 313–322.CrossRefGoogle Scholar
  55. Lepore, N., et al. (2008). Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors. IEEE Transactions on Medical Imaging, 27, 129.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Lesch, K. P. (2004). Gene–environment interaction and the genetics of depression. Journal of Psychiatry & Neuroscience Jpn, 29, 174–184.Google Scholar
  57. Linden, D. J., & Connor, J. A. (2003). Long-term synaptic depression. Annual Review of Neuroscience, 18, 319–357.CrossRefGoogle Scholar
  58. Liverant, G. I., Brown, T. A., Barlow, D. H., & Roemer, L. (2008). Emotion regulation in unipolar depression: the effects of acceptance and suppression of subjective emotional experience on the intensity and duration of sadness and negative affect. Behaviour Research and Therapy, 46, 1201–1209.CrossRefPubMedGoogle Scholar
  59. Lucassen, P. J., et al. (2006) Stress, depression and hippocampal apoptosis. CNS & Neurological Disorders - Drug Targets (Formerly Current Drug Targets - CNS & Neurological Disorders), 5, 531–546.Google Scholar
  60. Maller, J. J., Daskalakis, Z. J., & Fitzgerald, P. B. (2007). Hippocampal volumetrics in depression: the importance of the posterior tail. Hippocampus, 17, 1023–1027.CrossRefPubMedGoogle Scholar
  61. Malykhin, N. V., Carter, R., Seres, P., & Coupland, N. J. (2010). Structural changes in the hippocampus in major depressive disorder: contributions of disease and treatment. Journal of Psychiatry & Neuroscience Jpn, 35, 337.CrossRefGoogle Scholar
  62. Marcus DBM, Yasamy MT, Ommeren MV, Saxena S, Dan C (2012) A Global Public Health ConcernGoogle Scholar
  63. Mervaala, E., et al. (2000). Quantitative MRI of the hippocampus and amygdala in severe depression. Psychological Medicine, 30, 117–125.CrossRefPubMedGoogle Scholar
  64. Mormino, E. C., et al. (2009). Episodic memory loss is related to hippocampal-mediated β-amyloid deposition in elderly subjects. Brain, 132, 1310–1323.CrossRefGoogle Scholar
  65. Morris, J. S., Öhman, A., & Dolan, R. J. (1998). Conscious and unconscious emotional learning in the human amygdala. Nature, 393, 467–470.CrossRefPubMedGoogle Scholar
  66. Moser, M. B., & Moser, E. I. (2015). Functional differentiation in the hippocampus. Hippocampus, 8, 608–619.CrossRefGoogle Scholar
  67. Neumeister, A., et al. (2005). Reduced hippocampal volume in unmedicated, remitted patients with major depression versus control subjects. Biological Psychiatry, 57, 935–937.CrossRefPubMedGoogle Scholar
  68. Nho, K., et al. (2015). Comprehensive Gene- and Pathway-Based Analysis of Depressive Symptoms in Older Adults. Journal of Alzheimers Disease Jad, 45, 1197–1206.CrossRefPubMedGoogle Scholar
  69. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15, 1–25.CrossRefPubMedGoogle Scholar
  70. Phelps, E. A., O'Connor, K. J., Gatenby, J. C., Gore, J. C., Grillon, C., & Davis, M. (2001). Activation of the left amygdala to a cognitive representation of fear. Nature Neuroscience, 4, 437–441.CrossRefPubMedGoogle Scholar
  71. Pizer, S. M., Fritsch, D. S., Yushkevich, P. A., Johnson, V. E., & Chaney, E. L. (1999). Segmentation, registration, and measurement of shape variation via image object shape. IEEE Transactions on Medical Imaging, 18, 851–865.CrossRefPubMedGoogle Scholar
  72. Posener, J. A., et al. (2003). High-dimensional mapping of the hippocampus in depression. American Journal of Psychiatry, 160(83).CrossRefPubMedGoogle Scholar
  73. Price, J. L., & Drevets, W. C. (2012). Neural circuits underlying the pathophysiology of mood disorders. Trends in Cognitive Sciences, 16, 61–71.CrossRefPubMedGoogle Scholar
  74. Reagh, Z. M., Noche, J. A., Tustison, N. J., Delisle, D., Murray, E. A., & Yassa, M. A. (2018). Functional Imbalance of Anterolateral Entorhinal Cortex and Hippocampal Dentate/CA3&nbsp. Underlies Age-Related Object Pattern Separation Deficits, 97, 1187–1198 e1184.Google Scholar
  75. Rodrigues, S. M., Schafe, G. E., & Ledoux, J. E. (2004). Molecular Mechanisms Underlying Emotional Learning and Memory in the Lateral Amygdala. Neuron, 44, 75.CrossRefPubMedGoogle Scholar
  76. Root, C. M., Denny, C. A., Hen, R., & Axel, R. (2014). The participation of cortical amygdala in innate, odour-driven behaviour. Nature, 515, 269–273.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Rosso, I. M., Cintron, C. M., Steingard, R. J., Renshaw, P. F., Young, A. D., & Yurgeluntodd, D. A. (2005). Amygdala and hippocampus volumes in pediatric major depression. Biological Psychiatry, 57, 21–26.CrossRefPubMedGoogle Scholar
  78. Saleh, K., Carballedo, A., Lisiecka, D., Fagan, A. J., Connoly, G., Boyle, G., & Frodl, T. (2012). Impact of family history and depression on amygdala volume. Psychiatry Research. Neuroimaging, 203, 24–30.CrossRefPubMedGoogle Scholar
  79. Saxe, M. D., et al. (2007). Paradoxical Influence of Hippocampal Neurogenesis on Working Memory. Proceedings of the National Academy of Sciences of the United States of America, 104, 4642–4646.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schmaal, L., et al. (2016). Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Molecular Psychiatry, 21, 806–812.CrossRefPubMedGoogle Scholar
  81. Schmaal, L., et al. (2017). Cortical abnormalities in adults and adolescents with major depression based on brain scans from 20 cohorts worldwide in the ENIGMA Major Depressive Disorder Working Group. Molecular Psychiatry, 22, 900.CrossRefPubMedGoogle Scholar
  82. Schnittker, J. (2010). Gene-environment correlations in the stress-depression relationship. Journal of Health and Social Behavior, 51, 229.CrossRefPubMedGoogle Scholar
  83. Shammah-Lagnado, S. J., Alheid, G. F., & Heimer, L. (1999). Afferent connections of the interstitial nucleus of the posterior limb of the anterior commissure and adjacent amygdalostriatal transition area in the rat. Neuroscience, 94, 1097–1123.CrossRefPubMedGoogle Scholar
  84. Sheline, Y. I., Wang, P. W., Gado, M. H., Csernansky, J. G., & Vannier, M. W. (1996). Hippocampal atrophy in recurrent major depression. Proceedings of the National Academy of Sciences of the United States of America, 93, 3908–3913.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Sheline, Y. I., Gado, M. H., & Price, J. L. (1998). Amygdala core nuclei volumes are decreased in recurrent major depression. Neuroreport, 9, 2023–2028.CrossRefPubMedGoogle Scholar
  86. Shi, J., Thompson, P. M., Gutman, B., & Wang, Y. (2013). Surface fluid registration of conformal representation: application to detect disease burden and genetic influence on hippocampus. Neuroimage, 78, 111.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Shi, J., et al. (2015). Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry. Neuroimage, 104, 1–20.CrossRefPubMedGoogle Scholar
  88. Silk, J. S., Steinberg, L., & Morris, A. S. (2003). Adolescents' emotion regulation in daily life: links to depressive symptoms and problem behavior. Child Development, 74, 1869–1880.CrossRefPubMedGoogle Scholar
  89. Smith, D. M., & Mizumori, S. J. (2006). Hippocampal place cells, context, and episodic memory. Hippocampus, 16, 716–729.CrossRefPubMedGoogle Scholar
  90. Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139, 81–132.CrossRefPubMedGoogle Scholar
  91. Styner, M., et al. (2006). Framework for the Statistical Shape Analysis of Brain Structures using SPHARM-PDM. Insight Journal, 1071, 242.Google Scholar
  92. Sullivan, P. F., Neale, M. C., & Kendler, K. S. (2000). Genetic Epidemiology of Major Depression: Review and Meta-Analysis. American Journal of Psychiatry, 157, 1552.CrossRefPubMedGoogle Scholar
  93. Sun, Q., Sotayo, A., Cazzulino, A. S., Snyder, A. M., Denny, C. A., & Siegelbaum, S. A. (2017). Proximodistal heterogeneity of hippocampal CA3 pyramidal neuron intrinsic properties, connectivity, and reactivation during memory recall. Neuron, 95, 656–672 e653.CrossRefPubMedPubMedCentralGoogle Scholar
  94. Tang, Y., et al. (2007). Reduced ventral anterior cingulate and amygdala volumes in medication-naïve females with major depressive disorder: A voxel-based morphometric magnetic resonance imaging study. Psychiatry Research, 156, 83.CrossRefPubMedGoogle Scholar
  95. Thompson, P., Giedd, J. N., Woods, R. P., Macdonald, D., Evans, A. C., & Toga, A. W. (2000). Growth patterns in the developing human brain detected using continuum-mechanical tensor mapping. Nature, 404, 190–193.CrossRefPubMedGoogle Scholar
  96. Thompson, P. M., et al. (2003). Dynamics of Gray Matter Loss in Alzheimer's Disease. Journal of Neuroscience the Official Journal of the Society for. Neuroscience, 23, 994–1005.CrossRefPubMedGoogle Scholar
  97. Thompson, P. M., et al. (2004). Mapping hippocampal and ventricular change in Alzheimer disease. Neuroimage, 22, 1754–1766.CrossRefPubMedGoogle Scholar
  98. Tulving, E., & Markowitsch, H. J. (1998). Episodic and declarative memory: role of the hippocampus. Hippocampus, 8, 198.CrossRefPubMedGoogle Scholar
  99. Uher, R. (2008). The implications of gene-environment interactions in depression: will cause inform cure? Molecular Psychiatry, 13, 1070–1078.CrossRefPubMedGoogle Scholar
  100. Van, E. P., et al. (2009). Amygdala volume marks the acute state in the early course of depression. Biological Psychiatry, 65, 812–818.CrossRefGoogle Scholar
  101. Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: a meta-analysis of MRI studies. American Journal of Psychiatry, 161, 1957–1966.CrossRefPubMedGoogle Scholar
  102. Viskontas, I. V., Carr, V. A., Engel, S. A., & Knowlton, B. J. (2009). The neural correlates of recollection: hippocampal activation declines as episodic memory fades. Hippocampus, 19, 265–272.CrossRefPubMedGoogle Scholar
  103. Wang Y, Gu X, Chan TF, Thompson PM. (2008). Yau ST Conformal slit mapping and its applications to brain surface parameterization. In International conference on medical image computing and computer-assisted intervention (pp. 585-593).CrossRefGoogle Scholar
  104. Wang Y, Chan TF, Toga AW. (2009) Thompson PM Multivariate Tensor-Based Brain Anatomical Surface Morphometry via Holomorphic One-Forms. In International conference on medical image computing & computer-assisted intervention (pp. 337-344)CrossRefGoogle Scholar
  105. Wang, P. S., Simon, G., & Kessler, R. C. (2010). The economic burden of depression and the cost-effectiveness of treatment. International Journal of Methods in Psychiatric Research, 12, 22–33.CrossRefGoogle Scholar
  106. Wang, Y., et al. (2011). Surface-based TBM boosts power to detect disease effects on the brain: An N = 804 ADNI study ☆. Neuroimage, 56, 1993–2010.CrossRefPubMedPubMedCentralGoogle Scholar
  107. Wang Y et al. (2013) Surface multivariate tensor-based morphometry on premature neonates: A pilot studyGoogle Scholar
  108. Wang, Y., et al. (2013a). Applying tensor-based morphometry to parametric surfaces can improve MRI-based disease diagnosis. Neuroimage, 74, 209–230.CrossRefPubMedPubMedCentralGoogle Scholar
  109. Wang Y, Panigrahy A, Ceschin R, Liu S, Thompson PM, Leporé N (2013b) Surface morphometry of subcortical structures in premature neonatesGoogle Scholar
  110. Williams, J. B. (1988). A structured interview guide for the Hamilton Depression Rating Scale. Archives of General Psychiatry, 45, 742.CrossRefPubMedGoogle Scholar
  111. Williams, J. B. (2001). Standardizing the Hamilton Depression Rating Scale: past, present, and future. European Archives of Psychiatry and Clinical Neuroscience, 251(Suppl 2), II6.CrossRefPubMedGoogle Scholar
  112. Williams, J. M., & Broadbent, K. (1986). Autobiographical memory in suicide attempters. Journal of Abnormal Psychology, 95, 144.CrossRefPubMedGoogle Scholar
  113. Williams, J. M., & Scott, J. (1988). Autobiographical memory in depression. Psychological Medicine, 18, 689.CrossRefPubMedGoogle Scholar
  114. Winocur, G., Wojtowicz, J. M., Sekeres, M., Snyder, J. S., & Wang, S. (2006). Inhibition of neurogenesis interferes with hippocampus-dependent memory function. Hippocampus, 16, 296.CrossRefPubMedGoogle Scholar
  115. Wood, E. R., Dudchenko, P. A., & Eichenbaum, H. (1999). The global record of memory in hippocampal neuronal activity. Nature, 397, 613.CrossRefPubMedGoogle Scholar
  116. Woods, R. P. (2003). Characterizing volume and surface deformations in an atlas framework: theory, applications, and implementation. Neuroimage, 18, 769.CrossRefPubMedGoogle Scholar
  117. Yoshimura, S., Ueda, K., Suzuki, S., Onoda, K., Okamoto, Y., & Yamawaki, S. (2009). Self-referential processing of negative stimuli within the ventral anterior cingulate gyrus and right amygdala. Brain and Cognition, 69, 218–225.CrossRefPubMedGoogle Scholar
  118. Zald, D. H. (2003). The human amygdala and the emotional evaluation of sensory stimuli. Brain Research. Brain Research Reviews, 41, 88–123.CrossRefPubMedGoogle Scholar
  119. Zeineh, M. M., Engel, S. A., Thompson, P. M., & Bookheimer, S. Y. (2003). Dynamics of the hippocampus during encoding and retrieval of face-name pairs. Science, 299, 577–580.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouChina
  2. 2.School of Computing, Informatics, and Decision Systems EngineeringArizona State UniversityTempeUSA
  3. 3.Department of RadiologyGansu Provincial HospitalLanzhouChina
  4. 4.State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
  5. 5.College of Information Science and TechnologyBeijing Normal UniversityBeijingChina

Personalised recommendations