Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 5, pp 1524–1528 | Cite as

White matter integrity in the fronto-striatal accumbofrontal tract predicts impulsivity

  • Toshikazu IkutaEmail author
  • Alberto del Arco
  • Katherine H. Karlsgodt
BRIEF COMMUNICATION

Abstract

Frontostriatal projections have been shown to mediate impulsivity. Recent findings have demonstrated that the projection from the prefrontal cortex to the nucleus accumbens (the accumbofrontal tract) can be isolated by using probabilistic tractography on human brain MRI data, specifically, diffusion tensor images (DTI). Using DTI tractography, we isolated the tract and tested its association with the impulsivity. DTI data from 143 individuals obtained from Nathan Kline Institute-Rockland Sample was used along with the impulsivity measure assessed by the UPPS (urgency, premeditation, perseverance, and sensation seeking) impulsive behavior total score. Probabilistic tractography was first performed between the prefrontal cortex and nucleus accumbens, then, as a measure of white matter integrity in the tract, fractional anisotropy was calculated for each individual’s tract. In the multiple regression, accumbofrontal FA showed significant positive association with the impulsivity, suggesting that the accumbofrontal tract integrity may contribute to individual differences in impulsivity. This study bridges the literature in rodents, in which this glutamatergic projection has been shown to mediate impulsive behavior, and the findings in humans which allow the in-vivo isolation of the tract and comparison with behavior.

Keywords

Diffusion tensor imaging (DTI) MRI Frontostriatal circuit Impulsivity Accumbofrontal tract Striatum Orbitofrontal cortex 

Notes

Acknowledgements

This work was supported in part by R01 MH101506 grant from the NIH to KHK. Image preprocessing was performed using the supercomputer cluster at the Mississippi Center for Supercomputing Research partly funded by the National Science Foundation (EPS-0903787).

Compliance with ethical standards

Disclosure

No conflict of interest to disclose.

References

  1. Achterberg, M., Peper, J. S., van Duijvenvoorde, A. C. K., Mandl, R. C. W., & Crone, E. A. (2016). Frontostriatal white matter integrity predicts development of delay of gratification: a longitudinal study. The Journal of Neuroscience, 36(6), 1954–1961.  https://doi.org/10.1523/JNEUROSCI.3459-15.2016.CrossRefPubMedGoogle Scholar
  2. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4, 316–329.CrossRefGoogle Scholar
  3. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophysical Journal, 66(1), 259–267.  https://doi.org/10.1016/S0006-3495(94)80775-1.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Behrens, T. E. J., Berg, H. J., Jbabdi, S., Rushworth, M. F. S., & Woolrich, M. W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34, 144–155.CrossRefGoogle Scholar
  5. Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W., & Everitt, B. J. (2008). High impulsivity predicts the switch to compulsive cocaine-taking. Science, 320(5881), 1352–1355.  https://doi.org/10.1126/science.1158136.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bjork, J. M., Momenan, R., & Hommer, D. W. (2009). Delay discounting correlates with proportional lateral frontal cortex volumes. Biological Psychiatry, 65(8), 710–713.  https://doi.org/10.1016/j.biopsych.2008.11.023.CrossRefPubMedGoogle Scholar
  7. Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S. J., Theobald, D. E. H., Lääne, K., et al. (2007). Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science, 315(5816), 1267–1270.  https://doi.org/10.1126/science.1137073.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dalley, J. W., & Robbins, T. W. (2017). Fractionating impulsivity: neuropsychiatric implications. Nature Reviews Neuroscience, 18(3), 158–171.CrossRefGoogle Scholar
  9. Del Arco, A., & Mora, F. (2008). Prefrontal cortex–nucleus accumbens interaction: in vivo modulation by dopamine and glutamate in the prefrontal cortex. Microdialysis: Recent Developments, 90(2), 226–235.  https://doi.org/10.1016/j.pbb.2008.04.011.CrossRefGoogle Scholar
  10. Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31, 968–980.CrossRefGoogle Scholar
  11. Dubourg, L., Schneider, M., Padula, M. C., Chambaz, L., Schaer, M., & Eliez, S. (2017). Implication of reward alterations in the expression of negative symptoms in 22q11.2 deletion syndrome: a behavioural and DTI study. Psychological Medicine, 1–12.  https://doi.org/10.1017/S0033291716003482.
  12. Hampton, W. H., Alm, K. H., Venkatraman, V., Nugiel, T., & Olson, I. R. (2017). Dissociable frontostriatal white matter connectivity underlies reward and motor impulsivity. NeuroImage.  https://doi.org/10.1016/j.neuroimage.2017.02.021.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hoptman, M. J., Ardekani, B. A., Butler, P. D., Nierenberg, J., Javitt, D. C., & Lim, K. O. (2004). DTI and impulsivity in schizophrenia: a first voxelwise correlational analysis. Neuroreport, 15, 2467–2470.CrossRefGoogle Scholar
  14. Hu, Y., Salmeron, B., Gu, H., Stein, E. A., & Yang, Y. (2015). Impaired functional connectivity within and between frontostriatal circuits and its association with compulsive drug use and trait impulsivity in cocaine addiction. JAMA Psychiatry, 72(6), 584–592.  https://doi.org/10.1001/jamapsychiatry.2015.1.CrossRefPubMedGoogle Scholar
  15. Jentsch, D. J., & Taylor, R. J. (1999). Impulsivity resulting from frontostriatal dysfunction in drug abuse: implications for the control of behavior by reward-related stimuli. Psychopharmacology (Berl), 146(4), 373–390.  https://doi.org/10.1007/PL00005483.CrossRefGoogle Scholar
  16. Karlsgodt, K. H., John, M., Ikuta, T., Rigoard, P., Peters, B. D., Derosse, P., et al. (2015). The accumbofrontal tract: diffusion tensor imaging characterization and developmental change from childhood to adulthood. Human Brain Mapping, 36(12), 4954–4963.  https://doi.org/10.1002/hbm.22989.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Konrad, A., Dielentheis, T. F., Masri, E., Bayerl, D., Fehr, M., Gesierich, C., T., et al. (2010). Disturbed structural connectivity is related to inattention and impulsivity in adult attention deficit hyperactivity disorder. European Journal of Neuroscience, 31(5), 912–919.  https://doi.org/10.1111/j.1460-9568.2010.07110.x.
  18. Mar, A. C., Walker, A. L., Theobald, D. E., Eagle, D. M., & Robbins, T. W. (2011). Dissociable effects of lesions to orbitofrontal cortex subregions on impulsive choice in the rat. The Journal of neuroscience: The Official Journal of the Society for Neuroscience, 31(17), 6398–6404.  https://doi.org/10.1523/JNEUROSCI.6620-10.2011.CrossRefGoogle Scholar
  19. Peper, J. S., Mandl, R. C. W., Braams, B. R., de Water, E., Heijboer, A. C., Koolschijn, P. C., M. P., & Crone, E. A. (2012). Delay discounting and frontostriatal fiber tracts: a combined DTI and MTR study on impulsive choices in healthy young adults. Cerebral Cortex.  https://doi.org/10.1093/cercor/bhs163.CrossRefPubMedGoogle Scholar
  20. Rigoard, P., Buffenoir, K., Jaafari, N., Giot, J. P., Houeto, J. L., Mertens, P., et al. (2011). The accumbofrontal fasciculus in the human brain: a microsurgical anatomical study. Neurosurgery, 68(4), 1102–1111.  https://doi.org/10.1227/NEU.0b013e3182098e48.CrossRefPubMedGoogle Scholar
  21. Roesch, M. R., Bryden, D. W., Cerri, D. H., Haney, Z. R., & Schoenbaum, G. (2012). Willingness to wait and altered encoding of time-discounted reward in the orbitofrontal cortex with normal aging. The Journal of Neuroscience, 32(16), 5525–5533.  https://doi.org/10.1523/JNEUROSCI.0586-12.2012.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Samanez-Larkin, G. R., Levens, S. M., Perry, L. M., Dougherty, R. F., & Knutson, B. (2012). Frontostriatal white matter integrity mediates adult age differences in probabilistic reward learning. The Journal of neuroscience: The Official Journal of the Society for Neuroscience, 32(15), 5333–5337.  https://doi.org/10.1523/JNEUROSCI.5756-11.2012.CrossRefGoogle Scholar
  23. Sanefuji, M., Craig, M., Parlatini, V., Mehta, M. A., Murphy, D. G., Catani, M., et al. (2017). Double-dissociation between the mechanism leading to impulsivity and inattention in attention deficit hyperactivity disorder: a resting-state functional connectivity study. Is a “single” brain model sufficient? 86, 290–302.  https://doi.org/10.1016/j.cortex.2016.06.005.CrossRefGoogle Scholar
  24. Song, S.-K., Sun, S.-W., Ju, W.-K., Lin, S.-J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. NeuroImage, 20, 1714–1722.CrossRefGoogle Scholar
  25. Song, S.-K., Sun, S.-W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17, 1429–1436.CrossRefGoogle Scholar
  26. Squeglia, L., Sorg, S., Jacobus, J., Brumback, T., Taylor, C., & Tapert, S. (2015). Structural connectivity of neural reward networks in youth at risk for substance use disorders. Psychopharmacology (Berl), 232(13), 2217–2226.  https://doi.org/10.1007/s00213-014-3857-y.CrossRefGoogle Scholar
  27. Tschernegg, M., Pletzer, B., Schwartenbeck, P., Ludersdorfer, P., Hoffmann, U., & Kronbichler, M. (2015). Impulsivity relates to striatal gray matter volumes in humans: evidence from a delay discounting paradigm. Frontiers in Human Neuroscience, 9.  https://doi.org/10.3389/fnhum.2015.00384.
  28. van den Bos, W., Rodriguez, C. A., Schweitzer, J. B., & McClure, S. M. (2014). Connectivity strength of dissociable striatal tracts predict individual differences in temporal discounting. The Journal of Neuroscience, 34(31), 10298–10310.  https://doi.org/10.1523/JNEUROSCI.4105-13.2014.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Winstanley, C. A., Eagle, D. M., & Robbins, T. W. (2006). Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Attention Deficit Hyperactivity Disorder From A Neurosciences And Behavioral Approach, 26(4), 379–395.  https://doi.org/10.1016/j.cpr.2006.01.001.CrossRefGoogle Scholar
  30. Zalocusky, K. A., Ramakrishnan, C., Lerner, T. N., Davidson, T. J., Knutson, B., & Deisseroth, K. (2016). Nucleus accumbens D2R cells signal prior outcomes and control risky decision-making. Nature.  https://doi.org/10.1038/nature17400.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Communication Sciences and Disorders, School of Applied SciencesUniversity of MississippiUniversityUSA
  2. 2.Department of Health, Exercise Science, and Recreation Management, School of Applied SciencesUniversity of MississippiUniversityUSA
  3. 3.Department of PsychologyUniversity of CaliforniaLos AngelesUSA
  4. 4.Department of Psychiatry and Biobehavioral SciencesUniversity of CaliforniaLos AngelesUSA

Personalised recommendations