Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 6, pp 1569–1582 | Cite as

Congenital olfactory impairment is linked to cortical changes in prefrontal and limbic brain regions

  • Helena Gásdal KarstensenEmail author
  • Martin Vestergaard
  • William F. C. Baaré
  • Arnold Skimminge
  • Bjarki Djurhuus
  • Bjarki Ellefsen
  • Norbert Brüggemann
  • Camilla Klausen
  • Anne-Mette Leffers
  • Niels Tommerup
  • Hartwig R. Siebner
ORIGINAL RESEARCH
  • 205 Downloads

Abstract

The human sense of smell is closely associated with morphological differences of the fronto-limbic system, specifically the piriform cortex and medial orbitofrontal cortex (mOFC). Still it is unclear whether cortical volume in the core olfactory areas and connected brain regions are shaped differently in individuals who suffer from lifelong olfactory deprivation relative to healthy normosmic individuals. To address this question, we examined if regional variations in gray matter volume were associated with smell ability in seventeen individuals with isolated congenital olfactory impairment (COI) matched with sixteen normosmic controls. All subjects underwent whole-brain magnetic resonance imaging, and voxel-based morphometry was used to estimate regional variations in grey matter volume. The analyses showed that relative to controls, COI subjects had significantly larger grey matter volumes in left middle frontal gyrus and right superior frontal sulcus (SFS). COI subjects with severe olfactory impairment (anosmia) had reduced grey matter volume in the left mOFC and increased volume in right piriform cortex and SFS. Within the COI group olfactory ability, measured with the “Sniffin’ Sticks” test, was positively associated with larger grey matter volume in right posterior cingulate and parahippocampal cortices whereas the opposite relationship was observed in controls. Across COI subjects and controls, better olfactory detection threshold was associated with smaller volume in right piriform cortex, while olfactory identification was negatively associated with right SFS volume. Our findings suggest that lifelong olfactory deprivation trigger changes in the cortical volume of prefrontal and limbic brain regions previously linked to olfactory memory.

Keywords

Anosmia Hyposmia Congenital Voxel based morphometry Olfactory Orbitofrontal cortex 

Notes

Acknowledgements

The authors thank the participants for their invaluable contribution. The authors wish to acknowledge the important contribution made by Léa Gagnon, PhD, Maurice Ptito, Professor, PhD and Ron Kupers, Professor, PhD in the assessment of olfaction and taste.

Funding

The study was supported by the Lundbeck Foundation (R32-A2947), Chevron Texaco, the Faroese Research Council (0313) and the Danish National Research Foundation (02-512-48), Gangstedfonden, Ville Heises Legat and Hvidovre Hospital’s Research Fund.

Compliance with ethical standards

Conflict of interest

Hartwig R. Siebner (HRS) has served on a scientific advisory board for Lundbeck A/S, Valby Denmark. HRS has received honoraria as speaker from Biogen Idec, Denmark A/S, Genzyme, Denmark and MerckSerono, Denmark. HRS has received honoraria as editor from Elsevier Publishers, Amsterdam, The Netherlands and Springer Publishing, Stuttgart, Germany. HRS has received travel support from MagVenture, Denmark, and a research fund from Biogen-idec. All other authors have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2017_9817_MOESM1_ESM.jpg (3 mb)
Supplementary material 1 (JPG 3078 KB)
11682_2017_9817_MOESM2_ESM.docx (47 kb)
Supplementary material 2 (DOCX 46 KB)

References

  1. Abolmaali, N.D., Hietschold, V., Vogl, T.J., Huttenbrink, K.B., & Hummel, T. (2002). MR evaluation in patients with isolated anosmia since birth or early childhood. AJNR. American Journal of Neuroradiology, 23(1), 157–164.PubMedGoogle Scholar
  2. Anderson, A.K., Christoff, K., Stappen, I., Panitz, D., Ghahremani, D.G., Glover, G.,.. . Sobel, N. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6(2), 196–202.  https://doi.org/10.1038/nn1001.CrossRefPubMedGoogle Scholar
  3. Andrade, K. C., Menezes, P. D., Carnaúba, A. T., Rodrigues, R. G., Leal, M. D., & Pereira, L. D. (2013). Non-flat audiograms in sensorineural hearing loss and speech perception. Clinics, 68(6), 815–819.CrossRefGoogle Scholar
  4. Arshamian, A., Iannilli, E., Gerber, J. C., Willander, J., Persson, J., Seo, H. S.,.. . Larsson, M. (2013). The functional neuroanatomy of odor evoked autobiographical memories cued by odors and words. Neuropsychologia, 51(1), 123–131.  https://doi.org/10.1016/j.neuropsychologia.2012.10.023.CrossRefPubMedGoogle Scholar
  5. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage, 38(1), 95–113. doi: https://doi.org/10.1016/J.Neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  6. Barbier, E. L., Marrett, S., Danek, A., Vortmeyer, A., van Gelderen, P., Duyn, J.,.. . Koretsky, A. P. (2002). Imaging cortical anatomy by high-resolution MR at 3.0T: detection of the stripe of Gennari in visual area 17. Magnetic Resonance in Medicine, 48(4), 735–738.  https://doi.org/10.1002/mrm.10255.CrossRefPubMedGoogle Scholar
  7. Bitter, T., Bruderle, J., Gudziol, H., Burmeister, H. P., Gaser, C., & Guntinas-Lichius, O. (2010a). Gray and white matter reduction in hyposmic subjects–A voxel-based morphometry study. Brain Research, 1347, 42–47.  https://doi.org/10.1016/j.brainres.2010.06.003.CrossRefPubMedGoogle Scholar
  8. Bitter, T., Gudziol, H., Burmeister, H. P., Mentzel, H. J., Guntinas-Lichius, O., & Gaser, C. (2010b). Anosmia leads to a loss of gray matter in cortical brain areas. Chemical Senses, 35(5), 407–415.  https://doi.org/10.1093/chemse/bjq028.CrossRefPubMedGoogle Scholar
  9. Bourgeois, J. P., & Rakic, P. (1993). Changes of synaptic density in the primary visual cortex of the macaque monkey from fetal to adult stage. Journal of Neuroscience, 13(7), 2801–2820.CrossRefGoogle Scholar
  10. Bridge, H., Cowey, A., Ragge, N., & Watkins, K. (2009). Imaging studies in congenital anophthalmia reveal preservation of brain architecture in ‘visual’ cortex. Brain, 132(Pt 12), 3467–3480.  https://doi.org/10.1093/brain/awp279.CrossRefPubMedGoogle Scholar
  11. Burmeister, H. P., Baltzer, P. A., Moslein, C., Bitter, T., Gudziol, H., Dietzel, M.,.. . Kaiser, W. A. (2011). Reproducibility and repeatability of volumetric measurements for olfactory bulb volumetry: which method is appropriate? An update using 3 T MRI. Academic Radiology, 18(7), 842–849.  https://doi.org/10.1016/j.acra.2011.02.018.CrossRefPubMedGoogle Scholar
  12. Burmeister, H. P., Bitter, T., Heiler, P. M., Irintchev, A., Frober, R., Dietzel, M.,.. . Kaiser, W. A. (2012). Imaging of lamination patterns of the adult human olfactory bulb and tract: in vitro comparison of standard- and high-resolution 3T MRI, and MR microscopy at 9.4 T. Neuroimage, 60(3), 1662–1670.  https://doi.org/10.1016/j.neuroimage.2012.01.101.CrossRefPubMedGoogle Scholar
  13. Buschhuter, D., Smitka, M., Puschmann, S., Gerber, J. C., Witt, M., Abolmaali, N. D., & Hummel, T. (2008). Correlation between olfactory bulb volume and olfactory function. Neuroimage, 42(2), 498–502.  https://doi.org/10.1016/j.neuroimage.2008.05.004.CrossRefPubMedGoogle Scholar
  14. Carmichael, S. T., Clugnet, M. C., & Price, J. L. (1994). Central olfactory connections in the macaque monkey. J Comp Neurol, 346(3), 403–434.  https://doi.org/10.1002/cne.903460306.CrossRefPubMedGoogle Scholar
  15. Catani, M., Dell’acqua, F., & Thiebaut de Schotten, M. (2013). A revised limbic system model for memory, emotion and behaviour. Neuroscience and Biobehavioral Reviews, 37(8), 1724–1737.  https://doi.org/10.1016/j.neubiorev.2013.07.001.CrossRefPubMedGoogle Scholar
  16. Delon-Martin, C., Plailly, J., Fonlupt, P., Veyrac, A., & Royet, J. P. (2013). Perfumers’ expertise induces structural reorganization in olfactory brain regions. Neuroimage, 68, 55–62.  https://doi.org/10.1016/j.neuroimage.2012.11.044.CrossRefPubMedGoogle Scholar
  17. Duvernoy, H. M. (1999). The Human Brain (Second edition). Wien New York: Springer.CrossRefGoogle Scholar
  18. Eickhoff, S., Walters, N. B., Schleicher, A., Kril, J., Egan, G. F., Zilles, K.,.. . Amunts, K. (2005). High-resolution MRI reflects myeloarchitecture and cytoarchitecture of human cerebral cortex. Human Brain Mapping, 24(3), 206–215.  https://doi.org/10.1002/hbm.20082.CrossRefPubMedGoogle Scholar
  19. Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113(28), 7900–7905.  https://doi.org/10.1073/pnas.1602413113.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Forkel, S. J., Thiebaut de Schotten, M., Kawadler, J. M., Dell’Acqua, F., Danek, A., & Catani, M. (2014). The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex, 56, 73–84.  https://doi.org/10.1016/j.cortex.2012.09.005.CrossRefPubMedGoogle Scholar
  21. Frasnelli, J., Fark, T., Lehmann, J., Gerber, J., & Hummel, T. (2013). Brain structure is changed in congenital anosmia. Neuroimage, 83, 1074–1080.  https://doi.org/10.1016/j.neuroimage.2013.07.070.CrossRefPubMedGoogle Scholar
  22. Frasnelli, J., Lundstrom, J. N., Boyle, J. A., Djordjevic, J., Zatorre, R. J., & Jones-Gotman, M. (2010). Neuroanatomical correlates of olfactory performance. Experimental Brain Research, 201(1), 1–11.  https://doi.org/10.1007/s00221-009-1999-7.CrossRefPubMedGoogle Scholar
  23. Gagnon, L., Kupers, R., & Ptito, M. (2013). Reduced taste sensitivity in congenital blindness. Chemical Senses, 38(6), 509–517.  https://doi.org/10.1093/chemse/bjt021.CrossRefPubMedGoogle Scholar
  24. Gagnon, L., Vestergaard, M., Madsen, K., Karstensen, H. G., Siebner, H., Tommerup, N.,.. . Ptito, M. (2014). Neural correlates of taste perception in congenital olfactory impairment. Neuropsychologia, 62, 297–305.  https://doi.org/10.1016/j.neuropsychologia.2014.07.018.CrossRefPubMedGoogle Scholar
  25. Galliot, E., Comte, A., Magnin, E., Tatu, L., Moulin, T., & Millot, J. L. (2013). Effects of an ambient odor on brain activations during episodic retrieval of objects. Brain Imaging and Behavior, 7(2), 213–219.  https://doi.org/10.1007/s11682-012-9218-8.CrossRefPubMedGoogle Scholar
  26. Gottfried, J. A. (2010). Central mechanisms of odour object perception. Nature Reviews Neuroscience, 11(9), 628–641.  https://doi.org/10.1038/nrn2883.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gottfried, J. A., & Dolan, R. J. (2003). The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception. Neuron, 39(2), 375–386.CrossRefGoogle Scholar
  28. Gottfried, J. A., & Dolan, R. J. (2004). Human orbitofrontal cortex mediates extinction learning while accessing conditioned representations of value. Nature Neuroscience, 7(10), 1144–1152.  https://doi.org/10.1038/nn1314.CrossRefPubMedGoogle Scholar
  29. Gottfried, J. A., & Zald, D. H. (2005). On the scent of human olfactory orbitofrontal cortex: meta-analysis and comparison to non-human primates. Brain Research. Brain Research Reviews, 50(2), 287–304.  https://doi.org/10.1016/j.brainresrev.2005.08.004.CrossRefPubMedGoogle Scholar
  30. Gyllensten, L., Malmfors, T., & Norrlin, M. L. (1966). Growth alteration in the auditory cortex of visually deprived mice. The Journal of Comparative Neurology, 126(3), 463–469.  https://doi.org/10.1002/cne.901260308.CrossRefPubMedGoogle Scholar
  31. Howard, J. D., Plailly, J., Grueschow, M., Haynes, J. D., & Gottfried, J. A. (2009). Odor quality coding and categorization in human posterior piriform cortex. Nature Neuroscience, 12(7), 932–938.  https://doi.org/10.1038/nn.2324.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Huart, C., Meusel, T., Gerber, J., Duprez, T., Rombaux, P., & Hummel, T. (2011). The depth of the olfactory sulcus is an indicator of congenital anosmia. AJNR. American Journal of Neuroradiology, 32(10), 1911–1914.  https://doi.org/10.3174/ajnr.A2632.CrossRefPubMedGoogle Scholar
  33. Hummel, T., Damm, M., Vent, J., Schmidt, M., Theissen, P., Larsson, M., & Klussmann, J. P. (2003). Depth of olfactory sulcus and olfactory function. Brain Research, 975(1–2), 85–89.CrossRefGoogle Scholar
  34. Hummel, T., Kobal, G., Gudziol, H., & Mackay-Sim, A. (2007). Normative data for the “Sniffin’ Sticks” including tests of odor identification, odor discrimination, and olfactory thresholds: an upgrade based on a group of more than 3,000 subjects. European Archives of Oto-Rhino-Laryngology, 264(3), 237–243.  https://doi.org/10.1007/s00405-006-0173-0.CrossRefPubMedGoogle Scholar
  35. Hummel, T., Smitka, M., Puschmann, S., Gerber, J. C., Schaal, B., & Buschhuter, D. (2011). Correlation between olfactory bulb volume and olfactory function in children and adolescents. Experimental Brain Research, 214(2), 285–291.  https://doi.org/10.1007/s00221-011-2832-7.CrossRefPubMedGoogle Scholar
  36. Hummel, T., Urbig, A., Huart, C., Duprez, T., & Rombaux, P. (2015). Volume of olfactory bulb and depth of olfactory sulcus in 378 consecutive patients with olfactory loss. Journal of Neurology, 262(4), 1046–1051.  https://doi.org/10.1007/s00415-015-7691-x.CrossRefPubMedGoogle Scholar
  37. Illig, K. R. (2005). Projections from orbitofrontal cortex to anterior piriform cortex in the rat suggest a role in olfactory information processing. Journal of Comparative Neurology, 488(2), 224–231.  https://doi.org/10.1002/cne.20595.CrossRefPubMedGoogle Scholar
  38. Jiang, J., Zhu, W., Shi, F., Liu, Y., Li, J., Qin, W.,.. . Jiang, T. (2009). Thick visual cortex in the early blind. The Journal of Neuroscience, 29(7), 2205–2211.  https://doi.org/10.1523/JNEUROSCI.5451-08.2009.CrossRefPubMedGoogle Scholar
  39. Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R.,.. . Dale, A. (2006). Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. Neuroimage, 30(2), 436–443.  https://doi.org/10.1016/j.neuroimage.2005.09.046.CrossRefPubMedGoogle Scholar
  40. Karstensen, H. G., & Tommerup, N. (2012). Isolated and syndromic forms of congenital anosmia. Clinical Genetics, 81(3), 210–215.  https://doi.org/10.1111/j.1399-0004.2011.01776.x.CrossRefPubMedGoogle Scholar
  41. Kjelvik, G., Evensmoen, H. R., Brezova, V., & Haberg, A. K. (2012). The human brain representation of odor identification. Journal of Neurophysiology, 108(2), 645–657.  https://doi.org/10.1152/jn.01036.2010.CrossRefPubMedGoogle Scholar
  42. Kobal, G., Klimek, L., Wolfensberger, M., Gudziol, H., Temmel, A., Owen, C. M.,.. . Hummel, T. (2000). Multicenter investigation of 1,036 subjects using a standardized method for the assessment of olfactory function combining tests of odor identification, odor discrimination, and olfactory thresholds. European Archives of Oto-Rhino-Laryngology, 257(4), 205–211.CrossRefGoogle Scholar
  43. Lenroot, R. K., & Giedd, J. N. (2006). Brain development in children and adolescents: insights from anatomical magnetic resonance imaging. Neuroscience and Biobehavioral Reviews, 30(6), 718–729.  https://doi.org/10.1016/j.neubiorev.2006.06.001.CrossRefPubMedGoogle Scholar
  44. Levy, L. M., Degnan, A. J., Sethi, I., & Henkin, R. I. (2013). Anatomic olfactory structural abnormalities in congenital smell loss: magnetic resonance imaging evaluation of olfactory bulb, groove, sulcal, and hippocampal morphology. Journal of Computer Assisted Tomography, 37(5), 650–657.  https://doi.org/10.1097/RCT.0b013e31829bfa3b.CrossRefPubMedGoogle Scholar
  45. Li, W., Howard, J. D., Parrish, T. B., & Gottfried, J. A. (2008). Aversive learning enhances perceptual and cortical discrimination of indiscriminable odor cues. Science, 319(5871), 1842–1845.  https://doi.org/10.1126/science.1152837.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lygonis, C. S. (1969). Familiar absence of olfaction. Hereditas, 61(3), 413–416.CrossRefGoogle Scholar
  47. Mai, J., Paxinos, G., & Voss, T. (1997). Atlas of the Human Brain (Third edition). London: Elsevier Academic Press.Google Scholar
  48. Matsunaga, M., Bai, Y., Yamakawa, K., Toyama, A., Kashiwagi, M., Fukuda, K.,.. . Ohira, H. (2013). Brain-immune interaction accompanying odor-evoked autobiographic memory. PLoS One, 8(8), e72523.  https://doi.org/10.1371/journal.pone.0072523.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mueller, A., Rodewald, A., Reden, J., Gerber, J., von Kummer, R., & Hummel, T. (2005). Reduced olfactory bulb volume in post-traumatic and post-infectious olfactory dysfunction. Neuroreport, 16(5), 475–478.CrossRefGoogle Scholar
  50. Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I.,.. . Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.  https://doi.org/10.1111/j.1532-5415.2005.53221.x.CrossRefPubMedGoogle Scholar
  51. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefGoogle Scholar
  52. Osterbauer, R. A., Matthews, P. M., Jenkinson, M., Beckmann, C. F., Hansen, P. C., & Calvert, G. A. (2005). Color of scents: chromatic stimuli modulate odor responses in the human brain. Journal of Neurophysiology, 93(6), 3434–3441.  https://doi.org/10.1152/jn.00555.2004.CrossRefPubMedGoogle Scholar
  53. Park, H. J., Lee, J. D., Kim, E. Y., Park, B., Oh, M. K., Lee, S., & Kim, J. J. (2009). Morphological alterations in the congenital blind based on the analysis of cortical thickness and surface area. Neuroimage, 47(1), 98–106.  https://doi.org/10.1016/j.neuroimage.2009.03.076.CrossRefPubMedGoogle Scholar
  54. Plailly, J., Bensafi, M., Pachot-Clouard, M., Delon-Martin, C., Kareken, D. A., Rouby, C.,.. . Royet, J. P. (2005). Involvement of right piriform cortex in olfactory familiarity judgments. Neuroimage, 24(4), 1032–1041.  https://doi.org/10.1016/j.neuroimage.2004.10.028.CrossRefPubMedGoogle Scholar
  55. Plailly, J., Tillmann, B., & Royet, J. P. (2007). The feeling of familiarity of music and odors: the same neural signature? Cereb Cortex, 17(11), 2650–2658.  https://doi.org/10.1093/cercor/bhl173.CrossRefPubMedGoogle Scholar
  56. Qureshy, A., Kawashima, R., Imran, M. B., Sugiura, M., Goto, R., Okada, K.,.. . Fukuda, H. (2000). Functional mapping of human brain in olfactory processing: a PET study. Journal of Neurophysiology, 84(3), 1656–1666.CrossRefGoogle Scholar
  57. Ray, J. P., & Price, J. L. (1992). The organization of the thalamocortical connections of the mediodorsal thalamic nucleus in the rat, related to the ventral forebrain-prefrontal cortex topography. The Journal of Comparative Neurology, 323(2), 167–197.  https://doi.org/10.1002/cne.903230204.CrossRefPubMedGoogle Scholar
  58. Roesch, M. R., Stalnaker, T. A., & Schoenbaum, G. (2007). Associative encoding in anterior piriform cortex versus orbitofrontal cortex during odor discrimination and reversal learning. Cereb Cortex, 17(3), 643–652.  https://doi.org/10.1093/cercor/bhk009.CrossRefPubMedGoogle Scholar
  59. Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain Cogn, 55(1), 11–29.  https://doi.org/10.1016/S0278-2626(03)00277-X.CrossRefPubMedGoogle Scholar
  60. Rolls, E. T., & Baylis, L. L. (1994). Gustatory, olfactory, and visual convergence within the primate orbitofrontal cortex. The Journal of Neuroscience, 14(9), 5437–5452.CrossRefGoogle Scholar
  61. Rombaux, P., Duprez, T., & Hummel, T. (2009). Olfactory bulb volume in the clinical assessment of olfactory dysfunction. Rhinology, 47(1), 3–9.PubMedGoogle Scholar
  62. Rosser, D. A., Laidlaw, D. A., & Murdoch, I. E. (2001). The development of a “reduced logMAR” visual acuity chart for use in routine clinical practice. The British Journal of Ophthalmology, 85(4), 432–436.CrossRefGoogle Scholar
  63. Royet, J. P., Hudry, J., Zald, D. H., Godinot, D., Gregoire, M. C., Lavenne, F.,.. . Holley, A. (2001). Functional neuroanatomy of different olfactory judgments. Neuroimage, 13(3), 506–519.  https://doi.org/10.1006/nimg.2000.0704.CrossRefPubMedGoogle Scholar
  64. Royet, J. P., Koenig, O., Gregoire, M. C., Cinotti, L., Lavenne, F., Le Bars, D.,.. . Froment, J. C. (1999). Functional anatomy of perceptual and semantic processing for odors. Journal of Cognitive Neuroscience, 11(1), 94–109.CrossRefGoogle Scholar
  65. Ruiz-Marcos, A., & Valverde, F. (1969). The temporal evolution of the distribution of dendritic spines in the visual cortex of normal and dark raised mice. Experimental Brain Research, 8(3), 284–294.CrossRefGoogle Scholar
  66. Ryugo, D. K., Ryugo, R., Globus, A., & Killackey, H. P. (1975). Increased spine density in auditory cortex following visual or somatic deafferentation. Brain Research, 90(1), 143–146.CrossRefGoogle Scholar
  67. Savic, I., Gulyas, B., Larsson, M., & Roland, P. (2000). Olfactory functions are mediated by parallel and hierarchical processing. Neuron, 26(3), 735–745.CrossRefGoogle Scholar
  68. Schmahmann, J. D., Pandya, D. N., Wang, R., Dai, G., D’Arceuil, H. E., de Crespigny, A. J., & Wedeen, V. J. (2007). Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. Brain, 130(Pt 3), 630–653.  https://doi.org/10.1093/brain/awl359.CrossRefPubMedGoogle Scholar
  69. Seubert, J., Freiherr, J., Djordjevic, J., & Lundstrom, J. N. (2013). Statistical localization of human olfactory cortex. Neuroimage, 66, 333–342.  https://doi.org/10.1016/j.neuroimage.2012.10.030.CrossRefPubMedGoogle Scholar
  70. Seubert, J., Freiherr, J., Frasnelli, J., Hummel, T., & Lundstrom, J. N. (2013). Orbitofrontal cortex and olfactory bulb volume predict distinct aspects of olfactory performance in healthy subjects. Cereb Cortex, 23(10), 2448–2456.  https://doi.org/10.1093/cercor/bhs230.CrossRefPubMedGoogle Scholar
  71. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.  https://doi.org/10.1523/JNEUROSCI.1798-04.2004.CrossRefPubMedGoogle Scholar
  72. Stiles, J., & Jernigan, T. L. (2010). The basics of brain development. Neuropsychology Review, 20(4), 327–348.  https://doi.org/10.1007/s11065-010-9148-4.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Valverde, F. (1971). Rate and extent of recovery from dark rearing in the visual cortex of the mouse. Brain Research, 33(1), 1–11.CrossRefGoogle Scholar
  74. Voss, P., Pike, B. G., & Zatorre, R. J. (2014). Evidence for both compensatory plastic and disuse atrophy-related neuroanatomical changes in the blind. Brain, 137(Pt 4), 1224–1240.  https://doi.org/10.1093/brain/awu030.CrossRefPubMedGoogle Scholar
  75. Voss, P., & Zatorre, R. J. (2012). Organization and reorganization of sensory-deprived cortex. Current Biology, 22(5), R168–R173.  https://doi.org/10.1016/j.cub.2012.01.030.CrossRefPubMedGoogle Scholar
  76. Weiss, T., & Sobel, N. (2012). What’s primary about primary olfactory cortex? Nature Neuroscience, 15(1), 10–12.  https://doi.org/10.1038/nn.3009.CrossRefGoogle Scholar
  77. Wilson, D. A., Best, A. R., & Brunjes, P. C. (2000). Trans-neuronal modification of anterior piriform cortical circuitry in the rat. Brain Research, 853(2), 317–322.CrossRefGoogle Scholar
  78. Zatorre, R. J., Fields, R. D., & Johansen-Berg, H. (2012). Plasticity in gray and white: neuroimaging changes in brain structure during learning. Nature Neuroscience, 15(4), 528–536.  https://doi.org/10.1038/nn.3045.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Zufferey, P. D., Jin, F., Nakamura, H., Tettoni, L., & Innocenti, G. M. (1999). The role of pattern vision in the development of cortico-cortical connections. The European Journal of Neuroscience, 11(8), 2669–2688.CrossRefGoogle Scholar
  80. Zulauf, M., LeBlanc, R. P., & Flammer, J. (1994). Normal visual fields measured with Octopus-Program G1. II. Global visual field indices. Graefes Archive for Clinical and Experimental Ophthalmology, 232(9), 516–522.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Helena Gásdal Karstensen
    • 1
    Email author
  • Martin Vestergaard
    • 2
  • William F. C. Baaré
    • 2
  • Arnold Skimminge
    • 2
  • Bjarki Djurhuus
    • 3
  • Bjarki Ellefsen
    • 3
  • Norbert Brüggemann
    • 2
  • Camilla Klausen
    • 2
  • Anne-Mette Leffers
    • 2
  • Niels Tommerup
    • 1
  • Hartwig R. Siebner
    • 2
    • 4
  1. 1.Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine, Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  2. 2.Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital HvidovreHvidovreDenmark
  3. 3.Department of ENT Head and Neck SurgeryThe National Hospital of the Faroe IslandsTórshavnFaroe Islands
  4. 4.Department of NeurologyCopenhagen University Hospital BispebjergCopenhagenDenmark

Personalised recommendations