Brain Imaging and Behavior

, Volume 12, Issue 5, pp 1457–1465 | Cite as

Cigarette smoking and schizophrenia independently and reversibly altered intrinsic brain activity

  • Huan Liu
  • Qi Luo
  • Wanyi Du
  • Xingbao Li
  • Zhiwei Zhang
  • Renqiang Yu
  • Xiaolu Chen
  • Huaqing Meng
  • Lian DuEmail author


Schizophrenia patients are at high risk for cigarette smoking, but the neurobiological mechanisms of this comorbid association are relatively unknown. Long-term nicotine intake may impact brain that are independently and additively associated with schizophrenia. We investigated whether altered intrinsic brain activity (iBA) related to schizophrenia pathology is also associated with nicotine addiction. Forty-two schizophrenia patients (21 smokers and 21 nonsmokers) and 21 sex- and age-matched healthy nonsmokers underwent task-free functional MRI. Whole brain iBA was measured by the amplitude of spontaneous low frequency fluctuation. Furthermore, correlation analyses between iBA, symptom severity and nicotine addiction severity were performed. We found that prefrontal cortex, right caudate, and right postcentral gyrus were related to both disease and nicotine addiction effects. More importantly, schizophrenia smokers, compared to schizophrenia nonsmokers showed reversed iBA in the above brain regions. In addition, schizophrenia smokers, relative to nonsmokers, altered iBA in the left striatal and motor cortices. The iBA of the right caudate was negatively correlated with symptom severity. The iBA of the right postcentral gyrus negatively correlated with nicotine addiction severity. The striatal and motor cortices could potentially increase the vulnerability of smoking in schizophrenia. More importantly, smoking reversed iBA in the right striatal and prefrontal cortices, consistent with the self-medication theory in schizophrenia. Smoking altered left striatal and motor cortices activity, suggesting that the nicotine addiction effect was independent of disease. These results provide a local property of intrinsic brain activity mechanism that contributes to cigarette smoking and schizophrenia.


Cigarette smoking Intrinsic brain activity Resting-state Schizophrenia Self-medication 



This study was funded by the National Science and Technologic Program of China (2015BAI13B02).

Compliance with ethical standards

Disclosure of potential conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Adler, L. E., Olincy, A., Waldo, M., Harris, J. G., Griffith, J., Stevens, K., Flach, K., Nagamoto, H., Bickford, P., Leonard, S., & Freedman, R. (1998). Schizophrenia, sensory gating, and nicotinic receptors. Schizophrenia Bulletin, 24(2), 189–202.PubMedGoogle Scholar
  2. Bak, N., Rostrup, E., Larsson, H. B., Glenthoj, B. Y., & Oranje, B. (2014). Concurrent functional magnetic resonance imaging and electroencephalography assessment of sensory gating in schizophrenia. Human Brain Mapping, 35(8), 3578–3587.PubMedGoogle Scholar
  3. Bilder, R. M., Goldman, R. S., Robinson, D., Reiter, G., Bell, L., Bates, J. A., Pappadopulos, E., Willson, D. F., Alvir, J. M., Woerner, M. G., Geisler, S., Kane, J. M., & Lieberman, J. A. (2000). Neuropsychology of first-episode schizophrenia: initial characterization and clinical correlates. The American Journal of Psychiatry, 157(4), 549–559.PubMedGoogle Scholar
  4. Brody, A. L. (2006). Functional brain imaging of tobacco use and dependence. Journal of Psychiatric Research, 40(5), 404–418.PubMedGoogle Scholar
  5. Brody, A. L., Mandelkern, M. A., Jarvik, M. E., Lee, G. S., Smith, E. C., Huang, J. C., Bota, R. G., Bartzokis, G., & London, E. D. (2004a). Differences between smokers and nonsmokers in regional gray matter volumes and densities. Biological Psychiatry, 55(1), 77–84.PubMedGoogle Scholar
  6. Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Scheibal, D., Hahn, E., Shiraga, S., Zamora-Paja, E., Farahi, J., Saxena, S., London, E. D., & McCracken, J. T. (2006). Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Archives of General Psychiatry, 63(7), 808–816.PubMedPubMedCentralGoogle Scholar
  7. Brody, A. L., Olmstead, R. E., London, E. D., Farahi, J., Meyer, J. H., Grossman, P., Lee, G. S., Huang, J., Hahn, E. L., & Mandelkern, M. A. (2004b). Smoking-induced ventral striatum dopamine release. The American Journal of Psychiatry, 161(7), 1211–1218.PubMedGoogle Scholar
  8. Chakos, M. H., Lieberman, J. A., Bilder, R. M., Borenstein, M., Lerner, G., Bogerts, B., Wu, H., Kinon, B., & Ashtari, M. (1994). Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. The American Journal of Psychiatry, 151(10), 1430–1436.PubMedGoogle Scholar
  9. Chapman, S., Ragg, M., & McGeechan, K. (2009). Citation bias in reported smoking prevalence in people with schizophrenia. The Australian and New Zealand Journal of Psychiatry, 43(3), 277–282.PubMedGoogle Scholar
  10. Cullen, K. R., Wallace, S., Magnotta, V. A., Bockholt, J., Ehrlich, S., Gollub, R. L., Manoach, D. S., Ho, B. C., Clark, V. P., Lauriello, J., Bustillo, J. R., Schulz, S. C., Andreasen, N. C., Calhoun, V. D., Lim, K. O., & White, T. (2012). Cigarette smoking and white matter microstructure in schizophrenia. Psychiatry Research, 201(2), 152–158.PubMedPubMedCentralGoogle Scholar
  11. Dalack, G. W., Healy, D. J., & Meador-Woodruff, J. H. (1998). Nicotine dependence in schizophrenia: clinical phenomena and laboratory findings. The American Journal of Psychiatry, 155(11), 1490–1501.PubMedGoogle Scholar
  12. de Leon, J., & Diaz, F. J. (2005). A meta-analysis of worldwide studies demonstrates an association between schizophrenia and tobacco smoking behaviors. Schizophrenia Research, 76(2–3), 135–157.PubMedGoogle Scholar
  13. Dome, P., Lazary, J., Kalapos, M. P., & Rihmer, Z. (2010). Smoking, nicotine and neuropsychiatric disorders. Neuroscience and Biobehavioral Reviews, 34(3), 295–342.PubMedGoogle Scholar
  14. Etter, M., Mohr, S., Garin, C., & Etter, J. F. (2004). Stages of change in smokers with schizophrenia or schizoaffective disorder and in the general population. Schizophrenia Bulletin, 30(2), 459–468.PubMedGoogle Scholar
  15. Fedota, J. R., & Stein, E. A. (2015). Resting-state functional connectivity and nicotine addiction: prospects for biomarker development. Annals of the New York Academy of Sciences, 1349, 64–82.PubMedPubMedCentralGoogle Scholar
  16. Fryer, S. L., Roach, B. J., Wiley, K., Loewy, R. L., Ford, J. M., & Mathalon, D. H. (2016). Reduced amplitude of low-frequency brain oscillations in the psychosis risk syndrome and early illness schizophrenia. Neuropsychopharmacology, 41(9), 2388–2398.PubMedPubMedCentralGoogle Scholar
  17. Gong, Q., Lui, S., & Sweeney, J. A. (2016). A Selective Review of Cerebral Abnormalities in Patients With First-Episode Schizophrenia Before and After Treatment. The American Journal of Psychiatry, 173(3), 232–243.PubMedGoogle Scholar
  18. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86(9), 1119–1127.PubMedGoogle Scholar
  19. Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., & Milham, M. P. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20.PubMedGoogle Scholar
  20. Huang, X. Q., Lui, S., Deng, W., Chan, R. C., Wu, Q. Z., Jiang, L. J., Zhang, J. R., Jia, Z. Y., Li, X. L., Li, F., Chen, L., Li, T., & Gong, Q. Y. (2010). Localization of cerebral functional deficits in treatment-naive, first-episode schizophrenia using resting-state fMRI. Neuroimage, 49(4), 2901–2906.PubMedGoogle Scholar
  21. Ji, G.-J., Liao, W., Chen, F.-F., Zhang, L., & Wang, K. (2017). Low-frequency blood oxygen level-dependent fluctuations in the brain white matter: more than just noise. Scientific Bulletin, 62, 656–657.Google Scholar
  22. Judd, L. L., McAdams, L., Budnick, B., & Braff, D. L. (1992). Sensory gating deficits in schizophrenia: new results. The American Journal of Psychiatry, 149(4), 488–493.PubMedGoogle Scholar
  23. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276.PubMedGoogle Scholar
  24. Kelly, D. L., McMahon, R. P., Wehring, H. J., Liu, F., Mackowick, K. M., Boggs, D. L., Warren, K. R., Feldman, S., Shim, J. C., Love, R. C., & Dixon, L. (2011). Cigarette smoking and mortality risk in people with schizophrenia. Schizophrenia Bulletin, 37(4), 832–838.PubMedGoogle Scholar
  25. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217–238.PubMedGoogle Scholar
  26. Leyba, L., Mayer, A. R., Gollub, R. L., Andreasen, N. C., & Clark, V. P. (2008). Smoking status as a potential confound in the BOLD response of patients with schizophrenia. Schizophrenia Research, 104(1–3), 79–84.PubMedPubMedCentralGoogle Scholar
  27. Lui, S., Zhou, X. J., Sweeney, J. A., & Gong, Q. (2016). Psychoradiology: The Frontier of Neuroimaging in Psychiatry. Radiology, 281(2), 357–372.PubMedPubMedCentralGoogle Scholar
  28. Mackowick, K. M., Barr, M. S., Wing, V. C., Rabin, R. A., Ouellet-Plamondon, C., & George, T. P. (2014). Neurocognitive endophenotypes in schizophrenia: modulation by nicotinic receptor systems. Progress in Neuropsychopharmacology and Biological Psychiatry, 52, 79–85.Google Scholar
  29. Manzella, F., Maloney, S. E., & Taylor, G. T. (2015). Smoking in schizophrenic patients: A critique of the self-medication hypothesis. World Journal of Psychiatry, 5(1), 35–46.PubMedPubMedCentralGoogle Scholar
  30. Meda, S. A., Wang, Z., Ivleva, E. I., Poudyal, G., Keshavan, M. S., Tamminga, C. A., Sweeney, J. A., Clementz, B. A., Schretlen, D. J., Calhoun, V. D., Lui, S., Damaraju, E., & Pearlson, G. D. (2015). Frequency-Specific Neural Signatures of Spontaneous Low-Frequency Resting State Fluctuations in Psychosis: Evidence From Bipolar-Schizophrenia Network on Intermediate Phenotypes (B-SNIP) Consortium. Schizophrenia Bulletin, 41(6), 1336–1348.PubMedPubMedCentralGoogle Scholar
  31. Mohamed, S., Rosenheck, R. A., Lin, H., Swartz, M., McEvoy, J., & Stroup, S. (2015). Randomized Trial of the Effect of Four Second-Generation Antipsychotics and One First-Generation Antipsychotic on Cigarette Smoking, Alcohol, and Drug Use in Chronic Schizophrenia. The Journal of Nervous and Mental Disease, 203(7), 486–492.PubMedGoogle Scholar
  32. Moran, L. V., Sampath, H., Kochunov, P., & Hong, L. E. (2013). Brain circuits that link schizophrenia to high risk of cigarette smoking. Schizophrenia Bulletin, 39(6), 1373–1381.PubMedGoogle Scholar
  33. Mueller, S., Wang, D., Pan, R., Holt, D. J., & Liu, H. (2015). Abnormalities in hemispheric specialization of caudate nucleus connectivity in schizophrenia. JAMA Psychiatry, 72(6), 552–560.PubMedPubMedCentralGoogle Scholar
  34. Northoff, G., & Duncan, N. W. (2016). How do abnormalities in the brain’s spontaneous activity translate into symptoms in schizophrenia? From an overview of resting state activity findings to a proposed spatiotemporal psychopathology. Progress in Neurobiology, 145–146, 26–45.PubMedGoogle Scholar
  35. Nyback, H., Nordberg, A., Langstrom, B., Halldin, C., Hartvig, P., Ahlin, A., Swahn, C. G., & Sedvall, G. (1989). Attempts to visualize nicotinic receptors in the brain of monkey and man by positron emission tomography. Progress in Brain Research, 79, 313–319.PubMedGoogle Scholar
  36. Potvin, S., Lungu, O., Lipp, O., Lalonde, P., Zaharieva, V., Stip, E., Melun, J. P., & Mendrek, A. (2016). Increased ventro-medial prefrontal activations in schizophrenia smokers during cigarette cravings. Schizophrenia Research, 173(1–2), 30–36.PubMedGoogle Scholar
  37. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154.PubMedPubMedCentralGoogle Scholar
  38. Ren, W., Lui, S., Deng, W., Li, F., Li, M., Huang, X., Wang, Y., Li, T., Sweeney, J. A., & Gong, Q. (2013). Anatomical and functional brain abnormalities in drug-naive first-episode schizophrenia. The American Journal of Psychiatry, 170(11), 1308–1316.PubMedGoogle Scholar
  39. Schneider, C. E., White, T., Hass, J., Geisler, D., Wallace, S. R., Roessner, V., Holt, D. J., Calhoun, V. D., Gollub, R. L., & Ehrlich, S. (2014). Smoking status as a potential confounder in the study of brain structure in schizophrenia. Journal of Psychiatric Research, 50, 84–91.PubMedGoogle Scholar
  40. Schwartz, R. C. (2007). Concurrent validity of the Global Assessment of Functioning Scale for clients with schizophrenia. Psychological Reports, 100(2), 571–574.PubMedGoogle Scholar
  41. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.PubMedPubMedCentralGoogle Scholar
  42. Sorg, C., Manoliu, A., Neufang, S., Myers, N., Peters, H., Schwerthoffer, D., Scherr, M., Muhlau, M., Zimmer, C., Drzezga, A., Forstl, H., Bauml, J., Eichele, T., Wohlschlager, A. M., & Riedl, V. (2013). Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophrenia Bulletin, 39(2), 387–395.PubMedGoogle Scholar
  43. Sun, Y., Chen, Y., Collinson, S. L., Bezerianos, A., & Sim, K. (2015). Reduced Hemispheric Asymmetry of Brain Anatomical Networks Is Linked to Schizophrenia: A Connectome Study. Cereb Cortex).Google Scholar
  44. Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: Lessons learned and a road ahead. Neuroimage, 62(4), 2281–2295.PubMedPubMedCentralGoogle Scholar
  45. Tang, J., Liao, Y., Deng, Q., Liu, T., Chen, X., Wang, X., Xiang, X., Chen, H., & Hao, W. (2012). Altered spontaneous activity in young chronic cigarette smokers revealed by regional homogeneity. Behavioral and Brain Functions, 8, 44.PubMedGoogle Scholar
  46. Tidey, J. W., & Miller, M. E. (2015). Smoking cessation and reduction in people with chronic mental illness. BMJ, 351, h4065.PubMedPubMedCentralGoogle Scholar
  47. Turner, J. A., Chen, H., Mathalon, D. H., Allen, E. A., Mayer, A. R., Abbott, C. C., Calhoun, V. D., & Bustillo, J. (2012). Reliability of the amplitude of low-frequency fluctuations in resting state fMRI in chronic schizophrenia. Psychiatry Research, 201(3), 253–255.PubMedPubMedCentralGoogle Scholar
  48. Wang, H. L., Rau, C. L., Li, Y. M., Chen, Y. P., & Yu, R. (2015). Disrupted thalamic resting-state functional networks in schizophrenia. Frontiers in Behavioral Neuroscience, 9, 45.PubMedPubMedCentralGoogle Scholar
  49. Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 1092–1099.PubMedGoogle Scholar
  50. Wu, G., Yang, S., Zhu, L., & Lin, F. (2015). Altered spontaneous brain activity in heavy smokers revealed by regional homogeneity. Psychopharmacology (Berl), 232(14), 2481–2489.Google Scholar
  51. Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., Li, Q., Zuo, X. N., Castellanos, F. X., & Milham, M. P. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. Neuroimage, 76, 183–201.PubMedPubMedCentralGoogle Scholar
  52. Yang, A. C., Hong, C. J., Liou, Y. J., Huang, K. L., Huang, C. C., Liu, M. E., Lo, M. T., Huang, N. E., Peng, C. K., Lin, C. P., & Tsai, S. J. (2015). Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness. Human Brain Mapping, 36(6), 2174–2186.PubMedGoogle Scholar
  53. Yu, R., Chien, Y. L., Wang, H. L., Liu, C. M., Liu, C. C., Hwang, T. J., Hsieh, M. H., Hwu, H. G., & Tseng, W. Y. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637.PubMedGoogle Scholar
  54. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91.Google Scholar
  55. Zhang, X., Stein, E. A., & Hong, L. E. (2010). Smoking and schizophrenia independently and additively reduce white matter integrity between striatum and frontal cortex. Biological Psychiatry, 68(7), 674–677.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huan Liu
    • 1
  • Qi Luo
    • 2
  • Wanyi Du
    • 1
  • Xingbao Li
    • 3
  • Zhiwei Zhang
    • 2
  • Renqiang Yu
    • 2
  • Xiaolu Chen
    • 1
  • Huaqing Meng
    • 1
    • 4
  • Lian Du
    • 1
    • 4
    Email author
  1. 1.Department of PsychiatryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  2. 2.Department of RadiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqingPeople’s Republic of China
  3. 3.Brain Stimulation Laboratory, Department of PsychiatryMedical University of South CarolinaCharlestonUSA
  4. 4.National Clinical Research Center on Mental DisordersChangshaPeople’s Republic of China

Personalised recommendations