Advertisement

Brain Imaging and Behavior

, Volume 12, Issue 5, pp 1306–1317 | Cite as

Deep TMS of the insula using the H-coil modulates dopamine release: a crossover [11C] PHNO-PET pilot trial in healthy humans

  • Saima Malik
  • Mark Jacobs
  • Sang-Soo Cho
  • Isabelle Boileau
  • Daniel Blumberger
  • Markus Heilig
  • Alan Wilson
  • Zafiris J. Daskalakis
  • Antonio P. Strafella
  • Abraham Zangen
  • Bernard Le FollEmail author
Original Research

Abstract

Modulating the function of the insular cortex could be a novel therapeutic strategy to treat addiction to a variety of drugs of abuse as this region has been implicated in mediating drug reward and addictive processes. The recent advent of the H-coil has permitted the targeting of deeper brain structures which was not previously feasible. The goal of this study was to bilaterally target the insular region using the H-coil with repetitive Transcranial Magnetic Stimulation (rTMS) and subsequently measure changes in dopamine levels using Positron Emission Tomography (PET) with [11C]-(+)-propyl-hexahydro-naphtho-oxazin (PHNO). This was a within-subject, crossover, blinded and sham-controlled pilot study. Eight healthy, right-handed subjects, aged 19–45, participated in the investigation. All subjects underwent 3 PHNO-PET scans preceded by rTMS (sham, 1 Hz or 10 Hz), on 3 separate days. Low frequency rTMS (1 Hz), targeting the insular cortex, significantly decreased dopamine levels in the substantia nigra, sensorimotor striatum and associative striatum. Replicating this study in tobacco smokers or alcoholics would be a logical follow-up to assess whether H-coil stimulation of the bilateral insula can be employed as a treatment option for addiction. Trial registration: NCT02212405

Keywords

Insula PET Dopamine H-coil Deep rTMS PHNO 

Abbreviations

RTMS

Repeated Transcranial Magnetic Stimulation

PET

Positron Emission Tomography

PHNO

[11C]-(+)-propyl-hexahydro-naphtho-oxazin

BPND

[11C]-(+)-PHNO specific binding

Notes

Acknowledgements

The authors would like to thank Heather O’Leary and Annabel Fan for their assistance.

Funding

This work was funded by a research grant from the Campbell Family via the CAMH foundation fund (grant #200).

Compliance with ethical standards

Conflict of interest

Dr. Malik, Dr. Cho, Dr. Boileau, Dr. Strafella, Dr. Wilson, Dr. Heilig and Mark Jacobs reported no biomedical financial interests or potential conflicts of interest. Dr. Le Foll has received in-kind support from Brainsway that provided the equipment used in this study. In addition, Dr. Le Foll received in kind donation of drug supplies from Pfizer or GW-Pharma. He received grant and salary support for other unrelated studies from Pfizer Inc. and Bioprojet laboratory. Dr. Le Foll has been a consultant or has received honorariums for lectures from Richter Pharmaceuticals, Lundbeck, Mylan, Ethypharm, Metrum and Pfizer. Dr. Daskalakis has received research and equipment in-kind support for an investigator-initiated study through Brainsway Inc, and has also served on the advisory board for Sunovion, Hoffmann-La Roche Limited and Merck and received speaker support from Eli Lilly. Dr. Blumberger has received research support from the Canadian Institutes of Health Research (CIHR), National Institute of Health (NIH), Brain Canada and the Temerty Family through the Centre for Addiction and Mental Health (CAMH) Foundation and the Campbell Research Institute. He receives research support and in-kind equipment support for an investigator-initiated study from Brainsway Ltd. and he is the site principal investigator for three sponsor-initiated studies for Brainsway Ltd. He also receives in-kind equipment support from Magventure for an investigator-initiated study and receives medication supplies for an investigator-initiated trial from Invidior. Dr. Zangen is a co-inventor of the deep TMS H-coil system, serves as consultant for, and has financial interests in Brainsway.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Amiaz, R., Levy, D., Vainiger, D., Grunhaus, L., & Zangen, A. (2009). Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction, 104(4), 653–660.  https://doi.org/10.1111/j.1360-0443.2008.02448.x.CrossRefPubMedGoogle Scholar
  2. Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Brain Research Reviews, 22(3), 229–244.CrossRefGoogle Scholar
  3. Barrett, S. P., Boileau, I., Okker, J., Pihl, R. O., & Dagher, A. (2004). The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse, 54(2), 65–71.  https://doi.org/10.1002/syn.20066.CrossRefPubMedGoogle Scholar
  4. Berridge, K. C., & Robinson, T. E. (1998). What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Research Brain Research Reviews, 28(3), 309–369.CrossRefGoogle Scholar
  5. Bestmann, S., Baudewig, J., Siebner, H. R., Rothwell, J. C., & Frahm, J. (2005). BOLD MRI responses to repetitive TMS over human dorsal premotor cortex. Neuroimage, 28(1), 22–29.  https://doi.org/10.1016/j.neuroimage.2005.05.027.CrossRefPubMedGoogle Scholar
  6. Boileau, I., Assaad, J. M., Pihl, R. O., Benkelfat, C., Leyton, M., Diksic, M., … Dagher, A. (2003). Alcohol promotes dopamine release in the human nucleus accumbens. Synapse, 49(4), 226–231.  https://doi.org/10.1002/syn.10226.CrossRefPubMedGoogle Scholar
  7. Boileau, I., Payer, D., Houle, S., Behzadi, A., Rusjan, P. M., Tong, J., … Kish, S. J. (2012). Higher binding of the dopamine D3 receptor-preferring ligand [11C]-(+)-propyl-hexahydro-naphtho-oxazin in methamphetamine polydrug users: a positron emission tomography study. Journal of Neuroscience, 32(4), 1353–1359.  https://doi.org/10.1523/JNEUROSCI.4371-11.2012.CrossRefPubMedGoogle Scholar
  8. Boileau, I., Payer, D., Rusjan, P. M., Houle, S., Tong, J., McCluskey, T., … Kish, S. J. (2016). Heightened dopaminergic response to amphetamine at the D3 dopamine receptor in methamphetamine users. Neuropsychopharmacology, 41(13), 2994–3002.  https://doi.org/10.1038/npp.2016.108.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bossong, M. G., van Berckel, B. N., Boellaard, R., Zuurman, L., Schuit, R. C., Windhorst, A. D., … Kahn, R. S. (2009). Delta 9-tetrahydrocannabinol induces dopamine release in the human striatum. Neuropsychopharmacology, 34(3), 759–766.  https://doi.org/10.1038/npp.2008.138.CrossRefPubMedGoogle Scholar
  10. Camprodon, J. A., Martinez-Raga, J., Alonso-Alonso, M., Shih, M. C., & Pascual-Leone, A. (2007). One session of high frequency repetitive transcranial magnetic stimulation (rTMS) to the right prefrontal cortex transiently reduces cocaine craving. Drug and Alcohol Dependence, 86(1), 91–94.  https://doi.org/10.1016/j.drugalcdep.2006.06.002.CrossRefPubMedGoogle Scholar
  11. Cardenas, L., Houle, S., Kapur, S., & Busto, U. E. (2004). Oral D-amphetamine causes prolonged displacement of [11C]raclopride as measured by PET. Synapse, 51(1), 27–31.  https://doi.org/10.1002/syn.10282.CrossRefPubMedGoogle Scholar
  12. Carson, R. E., Breier, A., de Bartolomeis, A., Saunders, R. C., Su, T. P., Schmall, B., … Eckelman, W. C. (1997). Quantification of amphetamine-induced changes in [11C]raclopride binding with continuous infusion. Journal of Cerebral Blood Flow Metabolism, 17(4), 437–447.  https://doi.org/10.1097/00004647-199704000-00009.CrossRefPubMedGoogle Scholar
  13. Cho, S. S., & Strafella, A. P. (2009). rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One, 4(8), e6725.  https://doi.org/10.1371/journal.pone.0006725.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Contreras, M., Billeke, P., Vicencio, S., Madrid, C., Perdomo, G., Gonzalez, M., & Torrealba, F. (2012). A role for the insular cortex in long-term memory for context-evoked drug craving in rats. Neuropsychopharmacology, 37(9), 2101–2108.  https://doi.org/10.1038/npp.2012.59.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Contreras, M., Ceric, F., & Torrealba, F. (2007). Inactivation of the interoceptive insula disrupts drug craving and malaise induced by lithium. Science, 318(5850), 655–658.  https://doi.org/10.1126/science.1145590.CrossRefPubMedGoogle Scholar
  16. Daskalakis, Z. J., Levinson, A. J., & Fitzgerald, P. B. (2008). Repetitive transcranial magnetic stimulation for major depressive disorder: a review. Canadian Journal of Psychiatry, 53(9), 555–566.CrossRefGoogle Scholar
  17. Daskalakis, Z. J., Moller, B., Christensen, B. K., Fitzgerald, P. B., Gunraj, C., & Chen, R. (2006). The effects of repetitive transcranial magnetic stimulation on cortical inhibition in healthy human subjects. Experimental Brain Reseach, 174(3), 403–412.  https://doi.org/10.1007/s00221-006-0472-0.CrossRefGoogle Scholar
  18. de Jesus, D. R., Favalli, G. P., Hoppenbrouwers, S. S., Barr, M. S., Chen, R., Fitzgerald, P. B., & Daskalakis, Z. J. (2014). Determining optimal rTMS parameters through changes in cortical inhibition. Clinical Neurophysiology, 125(4), 755–762.  https://doi.org/10.1016/j.clinph.2013.09.011.CrossRefPubMedGoogle Scholar
  19. Di Chiara, G. (2000). Role of dopamine in the behavioural actions of nicotine related to addiction. European Journal of Pharmacology, 393(1–3), 295–314.CrossRefGoogle Scholar
  20. Di Chiara, G. (2002). Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Behavioural Brain Research, 137(1–2), 75–114.CrossRefGoogle Scholar
  21. Dinur-Klein, L., Dannon, P., Hadar, A., Rosenberg, O., Roth, Y., Kotler, M., & Zangen, A. (2014). Smoking cessation induced by deep repetitive transcranial magnetic stimulation of the prefrontal and insular cortices: a prospective, randomized controlled trial. Biological Psychiatry, 76(9), 742–749.  https://doi.org/10.1016/j.biopsych.2014.05.020.CrossRefPubMedGoogle Scholar
  22. Droutman, V., Read, S. J., & Bechara, A. (2015). Revisiting the role of the insula in addiction. Trends in Cognitive Sciences, 19(7), 414–420.  https://doi.org/10.1016/j.tics.2015.05.005.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Everitt, B. J., Dickinson, A., & Robbins, T. W. (2001). The neuropsychological basis of addictive behaviour. Brain Research Brain Research Reviews, 36(2–3), 129–138.CrossRefGoogle Scholar
  24. Everitt, B. J., Parkinson, J. A., Olmstead, M. C., Arroyo, M., Robledo, P., & Robbins, T. W. (1999). Associative processes in addiction and reward. The role of amygdala-ventral striatal subsystems. Annals of the New York Academy of Sciences, 877, 412–438.CrossRefGoogle Scholar
  25. Feil, J., & Zangen, A. (2010). Brain stimulation in the study and treatment of addiction. Neuroscience & Biobehavioral Reviews, 34(4), 559–574.  https://doi.org/10.1016/j.neubiorev.2009.11.006.CrossRefGoogle Scholar
  26. First, M., Spitzer, R. L., Gibbon, M., & Williams, J. B. (2002). Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition. (SCID-I/NP). New York: Biometrics Research, New York State Psychiatric Institute.Google Scholar
  27. Fitzgerald, P. B., Fountain, S., & Daskalakis, Z. J. (2006). A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clinical Neurophysiology, 117(12), 2584–2596.  https://doi.org/10.1016/j.clinph.2006.06.712.CrossRefPubMedGoogle Scholar
  28. Fitzgerald, P. B., Hoy, K., McQueen, S., Maller, J. J., Herring, S., Segrave, R., … Daskalakis, Z. J. (2009). A randomized trial of rTMS targeted with MRI based neuro-navigation in treatment-resistant depression. Neuropsychopharmacology, 34(5), 1255–1262.  https://doi.org/10.1038/npp.2008.233.CrossRefPubMedGoogle Scholar
  29. Forget, B., Pushparaj, A., & Le Foll, B. (2010). Granular insular cortex inactivation as a novel therapeutic strategy for nicotine addiction. Biological Psychiatry, 68(3), 265–271.  https://doi.org/10.1016/j.biopsych.2010.01.029.CrossRefPubMedGoogle Scholar
  30. Garavan, H. (2010). Insula and drug cravings. Brain Structure Function, 214(5–6), 593–601.  https://doi.org/10.1007/s00429-010-0259-8.CrossRefPubMedGoogle Scholar
  31. Gasquoine, P. G. (2014). Contributions of the insula to cognition and emotion. Neuropsychology Review, 24(2), 77–87.  https://doi.org/10.1007/s11065-014-9246-9.CrossRefPubMedGoogle Scholar
  32. Gersner, R., Kravetz, E., Feil, J., Pell, G., & Zangen, A. (2011). Long-term effects of repetitive transcranial magnetic stimulation on markers for neuroplasticity: differential outcomes in anesthetized and awake animals. Journal of Neuroscience, 31(20), 7521–7526.  https://doi.org/10.1523/JNEUROSCI.6751-10.2011.CrossRefPubMedGoogle Scholar
  33. Ginovart, N., Galineau, L., Willeit, M., Mizrahi, R., Bloomfield, P. M., Seeman, P., … Wilson, A. A. (2006). Binding characteristics and sensitivity to endogenous dopamine of [11C]-(+)-PHNO, a new agonist radiotracer for imaging the high-affinity state of D2 receptors in vivo using positron emission tomography. Journal of Neurochemistry, 97(4), 1089–1103.  https://doi.org/10.1111/j.1471-4159.2006.03840.x.CrossRefPubMedGoogle Scholar
  34. Ginovart, N., Willeit, M., Rusjan, P., Graff, A., Bloomfield, P. M., Houle, S., … Wilson, A. A. (2007). Positron emission tomography quantification of [11C]-(+)-PHNO binding in the human brain. Journal of Cerebral Blood Flow & Metabolism, 27(4), 857–871.  https://doi.org/10.1038/sj.jcbfm.9600411.CrossRefGoogle Scholar
  35. Ginovart, N., Wilson, A. A., Houle, S., & Kapur, S. (2004). Amphetamine pretreatment induces a change in both D2-Receptor density and apparent affinity: a [11C]raclopride positron emission tomography study in cats. Biological Psychiatry, 55(12), 1188–1194.  https://doi.org/10.1016/j.biopsych.2004.02.019.CrossRefPubMedGoogle Scholar
  36. Gorelick, D. A., Zangen, A., & George, M. S. (2014). Transcranial magnetic stimulation in the treatment of substance addiction. Annals of the New York Academy of Sciences, 1327, 79–93.  https://doi.org/10.1111/nyas.12479.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Graff-Guerrero, A., Willeit, M., Ginovart, N., Mamo, D., Mizrahi, R., Rusjan, P., … Kapur, S. (2008). Brain region binding of the D2/3 agonist [11C]-(+)-PHNO and the D2/3 antagonist [11C]raclopride in healthy humans. Human Brain Mapping, 29(4), 400–410.  https://doi.org/10.1002/hbm.20392.CrossRefPubMedGoogle Scholar
  38. Grall-Bronnec, M., & Sauvaget, A. (2014). The use of repetitive transcranial magnetic stimulation for modulating craving and addictive behaviours: a critical literature review of efficacy, technical and methodological considerations. Neuroscience Biobehavioral Reviews, 47, 592–613.  https://doi.org/10.1016/j.neubiorev.2014.10.013.CrossRefPubMedGoogle Scholar
  39. Hanlon, C. A., Jones, E. M., Li, X., Hartwell, K. J., Brady, K. T., & George, M. S. (2012). Individual variability in the locus of prefrontal craving for nicotine: implications for brain stimulation studies and treatments. Drug and Alcohol Dependence, 125(3), 239–243.  https://doi.org/10.1016/j.drugalcdep.2012.02.019.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hayashi, T., Ko, J. H., Strafella, A. P., & Dagher, A. (2013). Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proceedings of the National Academy of Sciences of the United States of America, 110(11), 4422–4427.  https://doi.org/10.1073/pnas.1212185110.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hoogendam, J. M., Ramakers, G. M., & Di Lazzaro, V. (2010). Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimulation, 3(2), 95–118.  https://doi.org/10.1016/j.brs.2009.10.005.CrossRefPubMedGoogle Scholar
  42. Jansen, J. M., Daams, J. G., Koeter, M. W., Veltman, D. J., van den Brink, W., & Goudriaan, A. E. (2013). Effects of non-invasive neurostimulation on craving: a meta-analysis. Neuroscience Biobehavioral Reviews, 37(10 Pt 2), 2472–2480.  https://doi.org/10.1016/j.neubiorev.2013.07.009.CrossRefPubMedGoogle Scholar
  43. Karreman, M., & Moghaddam, B. (1996). The prefrontal cortex regulates the basal release of dopamine in the limbic striatum: an effect mediated by ventral tegmental area. Journal of Neurochemistry, 66(2), 589–598.CrossRefGoogle Scholar
  44. Keck, M. E., Sillaber, I., Ebner, K., Welt, T., Toschi, N., Kaehler, S. T., … Engelmann, M. (2000). Acute transcranial magnetic stimulation of frontal brain regions selectively modulates the release of vasopressin, biogenic amines and amino acids in the rat brain. European Journal Neuroscience, 12(10), 3713–3720.CrossRefGoogle Scholar
  45. Keck, M. E., Welt, T., Muller, M. B., Erhardt, A., Ohl, F., Toschi, N., … Sillaber, I. (2002). Repetitive transcranial magnetic stimulation increases the release of dopamine in the mesolimbic and mesostriatal system. Neuropharmacology, 43(1), 101–109.CrossRefGoogle Scholar
  46. Ko, J. H., Tang, C. C., & Eidelberg, D. (2013). Brain stimulation and functional imaging with fMRI and PET. Handbok of Clinical Neurology, 116, 77–95.  https://doi.org/10.1016/B978-0-444-53497-2.00008-5.CrossRefGoogle Scholar
  47. Lammertsma, A. A., & Hume, S. P. (1996). Simplified reference tissue model for PET receptor studies. Neuroimage, 4(3 Pt 1), 153–158.  https://doi.org/10.1006/nimg.1996.0066.CrossRefPubMedGoogle Scholar
  48. Lee, L., Siebner, H. R., Rowe, J. B., Rizzo, V., Rothwell, J. C., Frackowiak, R. S., & Friston, K. J. (2003). Acute remapping within the motor system induced by low-frequency repetitive transcranial magnetic stimulation. Journal of Neuroscience, 23(12), 5308–5318.CrossRefGoogle Scholar
  49. Martinez, D., Slifstein, M., Broft, A., Mawlawi, O., Hwang, D. R., Huang, Y., … Laruelle, M. (2003). Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. Journal of Cerebral Blood Flow & Metabolism, 23(3), 285–300.CrossRefGoogle Scholar
  50. Mylius, V., Ayache, S. S., Ahdab, R., Farhat, W. H., Zouari, H. G., Belke, M., … Lefaucheur, J. P. (2013). Definition of DLPFC and M1 according to anatomical landmarks for navigated brain stimulation: inter-rater reliability, accuracy, and influence of gender and age. Neuroimage, 78, 224–232.  https://doi.org/10.1016/j.neuroimage.2013.03.061.CrossRefPubMedGoogle Scholar
  51. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: the insula. Trends Neuroscience, 32(1), 56–67.  https://doi.org/10.1016/j.tins.2008.09.009.CrossRefGoogle Scholar
  52. Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function, 214(5–6), 435–450.  https://doi.org/10.1007/s00429-010-0268-7.CrossRefPubMedGoogle Scholar
  53. Naqvi, N. H., Gaznick, N., Tranel, D., & Bechara, A. (2014). The insula: a critical neural substrate for craving and drug seeking under conflict and risk. Annals of the New York Academy of Sciences, 1316, 53–70.  https://doi.org/10.1111/nyas.12415.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315(5811), 531–534.  https://doi.org/10.1126/science.1135926.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Narendran, R., Slifstein, M., Guillin, O., Hwang, Y., Hwang, D. R., Scher, E., … Laruelle, M. (2006). Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse, 60(7), 485–495.  https://doi.org/10.1002/syn.20325.CrossRefPubMedGoogle Scholar
  56. Noda, Y., Silverstein, W. K., Barr, M. S., Vila-Rodriguez, F., Downar, J., Rajji, T. K., Blumberger, D. M. (2015). Neurobiological mechanisms of repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex in depression: a systematic review. Psychological Medicine, 45(16), 3411–3432.  https://doi.org/10.1017/S0033291715001609.CrossRefPubMedGoogle Scholar
  57. O’Shea, J., Johansen-Berg, H., Trief, D., Gobel, S., & Rushworth, M. F. (2007). Functionally specific reorganization in human premotor cortex. Neuron, 54(3), 479–490.  https://doi.org/10.1016/j.neuron.2007.04.021.CrossRefPubMedGoogle Scholar
  58. Parvaz, M. A., Alia-Klein, N., Woicik, P. A., Volkow, N. D., & Goldstein, R. Z. (2011). Neuroimaging for drug addiction and related behaviors. Reviews Neuroscience, 22(6), 609–624.  https://doi.org/10.1515/RNS.2011.055.CrossRefGoogle Scholar
  59. Pascual-Leone, A., Valls-Sole, J., Wassermann, E. M., & Hallett, M. (1994). Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain, 117(Pt 4), 847–858.CrossRefGoogle Scholar
  60. Peleman, K., Van Schuerbeek, P., Luypaert, R., Stadnik, T., De Raedt, R., De Mey, J., … Baeken, C. (2010). Using 3D-MRI to localize the dorsolateral prefrontal cortex in TMS research. World Journal of Biological Psychiatry, 11(2 Pt 2), 425–430.  https://doi.org/10.1080/15622970802669564.CrossRefPubMedGoogle Scholar
  61. Pell, G. S., Roth, Y., & Zangen, A. (2011). Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Progress Neurobiology, 93(1), 59–98.  https://doi.org/10.1016/j.pneurobio.2010.10.003.CrossRefGoogle Scholar
  62. Pogarell, O., Koch, W., Popperl, G., Tatsch, K., Jakob, F., Mulert, C., … Padberg, F. (2007). Acute prefrontal rTMS increases striatal dopamine to a similar degree as D-amphetamine. Psychiatry Research, 156(3), 251–255.  https://doi.org/10.1016/j.pscychresns.2007.05.002.CrossRefPubMedGoogle Scholar
  63. Pogarell, O., Koch, W., Popperl, G., Tatsch, K., Jakob, F., Zwanzger, P., … Padberg, F. (2006). Striatal dopamine release after prefrontal repetitive transcranial magnetic stimulation in major depression: preliminary results of a dynamic [123I] IBZM SPECT study. Journal of Psychiatric Research, 40(4), 307–314.  https://doi.org/10.1016/j.jpsychires.2005.09.001.CrossRefPubMedGoogle Scholar
  64. Pushparaj, A., Hamani, C., Yu, W., Shin, D. S., Kang, B., Nobrega, J. N., & Le Foll, B. (2013). Electrical stimulation of the insular region attenuates nicotine-taking and nicotine-seeking behaviors. Neuropsychopharmacology, 38(4), 690–698.  https://doi.org/10.1038/npp.2012.235.CrossRefPubMedGoogle Scholar
  65. Rabiner, E. A., Slifstein, M., Nobrega, J., Plisson, C., Huiban, M., Raymond, R., … Laruelle, M. A. (2009). In vivo quantification of regional dopamine-D3 receptor binding potential of (+)-PHNO: Studies in non-human primates and transgenic mice. Synapse, 63(9), 782–793.  https://doi.org/10.1002/syn.20658.CrossRefPubMedGoogle Scholar
  66. Robbins, T. W., Cador, M., Taylor, J. R., & Everitt, B. J. (1989). Limbic-striatal interactions in reward-related processes. Neuroscience & Biobehavioral Reviews, 13(2–3), 155–162.CrossRefGoogle Scholar
  67. Roth, Y., Amir, A., Levkovitz, Y., & Zangen, A. (2007). Three-dimensional distribution of the electric field induced in the brain by transcranial magnetic stimulation using figure-8 and deep H-coils. Journal of Clinical Neurophysiology, 24(1), 31–38.  https://doi.org/10.1097/WNP.0b013e31802fa393.CrossRefPubMedGoogle Scholar
  68. Roth, Y., Zangen, A., & Hallett, M. (2002). A coil design for transcranial magnetic stimulation of deep brain regions. Journal of Clinical Neurophysiology, 19(4), 361–370.CrossRefGoogle Scholar
  69. Rusjan, P., Mamo, D., Ginovart, N., Hussey, D., Vitcu, I., Yasuno, F.,… Kapur, S. (2006). An automated method for the extraction of regional data from PET images. Psychiatry Research, 147(1), 79–89.  https://doi.org/10.1016/j.pscychresns.2006.01.011.CrossRefPubMedGoogle Scholar
  70. Salamone, J. D. (1992). Complex motor and sensorimotor functions of striatal and accumbens dopamine: involvement in instrumental behavior processes. Psychopharmacology (Berlin), 107(2–3), 160–174.CrossRefGoogle Scholar
  71. Salamone, J. D., & Correa, M. (2002). Motivational views of reinforcement: implications for understanding the behavioral functions of nucleus accumbens dopamine. Behavioural Brain Research, 137(1–2), 3–25.CrossRefGoogle Scholar
  72. Salamone, J. D., Correa, M., Mingote, S., & Weber, S. M. (2003). Nucleus accumbens dopamine and the regulation of effort in food-seeking behavior: implications for studies of natural motivation, psychiatry, and drug abuse. Journal of Pharmacology Experimental Therapeutics, 305(1), 1–8.  https://doi.org/10.1124/jpet.102.035063.CrossRefPubMedGoogle Scholar
  73. Schultz, W. (2002). Getting formal with dopamine and reward. Neuron, 36(2), 241–263.CrossRefGoogle Scholar
  74. Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115.  https://doi.org/10.1146/annurev.psych.56.091103.070229.CrossRefPubMedGoogle Scholar
  75. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599.CrossRefGoogle Scholar
  76. Scott, D., & Hiroi, N. (2011). Deconstructing craving: dissociable cortical control of cue reactivity in nicotine addiction. Biological Psychiatry, 69(11), 1052–1059.  https://doi.org/10.1016/j.biopsych.2011.01.023.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Shalev, U., Grimm, J. W., & Shaham, Y. (2002). Neurobiology of relapse to heroin and cocaine seeking: a review. Pharmacological Reviews, 54(1), 1–42.CrossRefGoogle Scholar
  78. Shotbolt, P., Tziortzi, A. C., Searle, G. E., Colasanti, A., van der Aart, J., Abanades, S., … Rabiner, E. A. (2012). Within-subject comparison of [(11)C]-(+)-PHNO and [(11)C]raclopride sensitivity to acute amphetamine challenge in healthy humans. Journal of Cerebral Blood Flow & Metabolism, 32(1), 127–136.  https://doi.org/10.1038/jcbfm.2011.115.CrossRefGoogle Scholar
  79. Strafella, A. P., Paus, T., Barrett, J., & Dagher, A. (2001). Repetitive transcranial magnetic stimulation of the human prefrontal cortex induces dopamine release in the caudate nucleus. Journal of Neuroscience, 21(15), RC157.CrossRefGoogle Scholar
  80. Strafella, A. P., Paus, T., Fraraccio, M., & Dagher, A. (2003). Striatal dopamine release induced by repetitive transcranial magnetic stimulation of the human motor cortex. Brain, 126(Pt 12), 2609–2615.  https://doi.org/10.1093/brain/awg268.CrossRefPubMedGoogle Scholar
  81. Trojak, B., Meille, V., Achab, S., Lalanne, L., Poquet, H., Ponavoy, E.,… Chauvet-Gelinier, J. C. (2015). Transcranial magnetic stimulation combined with nicotine replacement therapy for smoking cessation: a randomized controlled trial. Brain Stimulation, 8(6), 1168–1174.  https://doi.org/10.1016/j.brs.2015.06.004.CrossRefPubMedGoogle Scholar
  82. Tsukada, H., Miyasato, K., Kakiuchi, T., Nishiyama, S., Harada, N., & Domino, E. F. (2002). Comparative effects of methamphetamine and nicotine on the striatal [(11)C]raclopride binding in unanesthetized monkeys. Synapse, 45(4), 207–212.  https://doi.org/10.1002/syn.10102.CrossRefPubMedGoogle Scholar
  83. Volkow, N. D., & Baler, R. D. (2015). NOW vs LATER brain circuits: implications for obesity and addiction. Trends in Neurosciences, 38(6), 345–352.  https://doi.org/10.1016/j.tins.2015.04.002.CrossRefPubMedGoogle Scholar
  84. Volkow, N. D., Fowler, J. S., Wang, G. J., Baler, R., & Telang, F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56 Suppl 1, 3–8.  https://doi.org/10.1016/j.neuropharm.2008.05.022.CrossRefPubMedGoogle Scholar
  85. Willeit, M., Ginovart, N., Graff, A., Rusjan, P., Vitcu, I., Houle, S., … Kapur, S. (2008). First human evidence of d-amphetamine induced displacement of a D2/3 agonist radioligand: a [11C]-(+)-PHNO positron emission tomography study. Neuropsychopharmacology, 33(2), 279–289.  https://doi.org/10.1038/sj.npp.1301400.CrossRefPubMedGoogle Scholar
  86. Wilson, A. A., McCormick, P., Kapur, S., Willeit, M., Garcia, A., Hussey, D., … Ginovart, N. (2005). Radiosynthesis and evaluation of [11C]-(+)-4-propyl-3,4,4a,5,6,10b-hexahydro-2H-naphtho[1,2-b][1,4]oxazin-9 -ol as a potential radiotracer for in vivo imaging of the dopamine D2 high-affinity state with positron emission tomography. Journal of Medicinal Chemistry, 48(12), 4153–4160.CrossRefGoogle Scholar
  87. Zangen, A., Roth, Y., Voller, B., & Hallett, M. (2005). Transcranial magnetic stimulation of deep brain regions: evidence for efficacy of the H-coil. Clinical Neurophysiology, 116(4), 775–779.  https://doi.org/10.1016/j.clinph.2004.11.008.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Saima Malik
    • 1
  • Mark Jacobs
    • 2
    • 3
  • Sang-Soo Cho
    • 2
    • 3
  • Isabelle Boileau
    • 2
  • Daniel Blumberger
    • 4
    • 5
    • 6
  • Markus Heilig
    • 7
  • Alan Wilson
    • 2
  • Zafiris J. Daskalakis
    • 4
    • 5
    • 6
  • Antonio P. Strafella
    • 2
    • 3
    • 8
  • Abraham Zangen
    • 9
  • Bernard Le Foll
    • 1
    • 4
    • 6
    • 10
    Email author
  1. 1.Translational Addiction Research Laboratory, Campbell Family Mental Health Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoCanada
  2. 2.Research Imaging Centre, Centre for Addiction and Mental HealthTorontoCanada
  3. 3.Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Research InstituteUniversity Health Network, University of TorontoTorontoCanada
  4. 4.Department of PsychiatryUniversity of TorontoTorontoCanada
  5. 5.Temerty Centre for Therapeutic Brain InterventionCentre for Addiction and Mental HealthTorontoCanada
  6. 6.Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoCanada
  7. 7.Center for Social and Affective Neuroscience, Department of Clinical and Experimental MedicineLinköping UniversityLinköpingSweden
  8. 8.Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western HospitalUniversity Health Network, University of TorontoTorontoCanada
  9. 9.Brain Stimulation and Behavior LabBen Gurion UniversityBeer-ShevaIsrael
  10. 10.Addiction Medicine Service, Ambulatory Care and Structured TreatmentsCentre for Addiction and Mental HealthTorontoCanada

Personalised recommendations