Brain Imaging and Behavior

, Volume 13, Issue 1, pp 210–219 | Cite as

Exploring white matter microstructure and olfaction dysfunction in early parkinson disease: diffusion MRI reveals new insight

  • Soheila Sobhani
  • Farzaneh RahmaniEmail author
  • Mohammad Hadi Aarabi
  • Alireza Vafaei Sadr
Original Research


Olfaction dysfunction is considered as a robust marker of prodromal Parkinson disease (PD). Measurement of olfaction function as a screening test is unsatisfactory due to long lead time interval and low specificity for detection of PD. Use of imaging markers might yield more accurate predictive values and provide bases for combined use of imaging and clinical markers for early PD. Diffusion MRI connectometry was conducted on 85 de novo PD patients in and 36 healthy controls to find: first, white matter tracts with significant difference in quantitative anisotropy between PD groups with various degrees of olfaction dysfunction and second, second fibers with correlation with University of Pennsylvania Smell Identification Test (UPSIT) score in each group using a multiple regression analysis considering age, sex, GDS and MoCA score. Local connectomes were determined in seven of all the possible comparisons, correcting for false discovery rate (FDR). PD patients with anosmia and normal olfaction had the highest number of fibers with decreased connectivity in left inferior longitudinal fasciculus, bilateral fornix, bilateral middle cerebellar peduncle (MCP), bilateral cingulum, bilateral corticospinal tract (CST) and body, genu and splenium of corpus callosum (CC) (FDR = 0.0013). In multiple regression analysis, connectivity in the body, genu and splenium of CC and bilateral fornix had significant negative correlation (FDR between 0.019 and 0.083), and bilateral cingulum and MCP had significant positive correlation (FDR between 0.022 and 0.092) with UPSIT score. White matter connectivity in healthy controls could not be predicted by UPSIT score using the same model. The results of this study provide compelling evidence that microstructural degenerative changes in these areas underlie the clinical phenotype of prodromal olfaction dysfunction in PD and that diffusion parameters of these areas might be able to serve as signature markers for early detection of PD. This is the first report that confirms a discriminative role for UPSIT score in identifying PD specific changes in white matter microstructure. Our results open a window to identify microstructural signatures of prodromal PD in white matter.


University of Pennsylvania Smell Identification Test (UPSIT) Connectometry Diffusion MRI Anosmia Microsomia Early Parkinson disease 



The database of this work was funded by grants from the Michael J Fox Foundation for Parkinson’s Research, the W Garfield Weston Foundation, and the Alzheimer’s Association, the Canadian Institutes for Health Research, and the Natural Sciences and Engineering Research Council of Canada. We thank Christian Beckmann and Simon Eickhoff for their advice on data analysis. Data used in this article were obtained from the Parkinson Progression Markers Initiative (PPMI) database ( For up-to-date information on the study, visit PPMI is sponsored and partially funded by the Michael J Fox Foundation for Parkinson Research and funding partners, including AbbVie, Avid Radiopharmaceuticals, Biogen, Bristol-Myers Squibb, Covance, GE Healthcare, Genentech, GlaxoSmithKline (GSK), Eli Lilly and Company, Lundbeck, Merck, Meso Scale Discovery (MSD), Pfizer, Piramal Imaging, Roche, Servier, and UCB (

Authors’ Contribution statements

All the authors agreed on the current list of authors as it appears on the first page. Soheila Sobhani, Farzaneh Rahmani and Mohammad Hadi Aarabi contributed equally to this paper as first authors.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest, nor have they received any funding from any organization or granting bodies which might pose any conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study, by the Parkinson’s Disease Progression Marker Initiative (PPMI).

Supplementary material

11682_2017_9781_MOESM1_ESM.tif (4.4 mb)
Supplementary material 1 (TIF 4501 KB)
11682_2017_9781_MOESM2_ESM.jpg (85 kb)
Supplementary material 2 (JPG 84 KB)
11682_2017_9781_MOESM3_ESM.jpg (55 kb)
Supplementary material 3 (JPG 54 KB)
11682_2017_9781_MOESM4_ESM.tif (13.1 mb)
Supplementary material 4 (TIF 13450 KB)
11682_2017_9781_MOESM5_ESM.jpg (58 kb)
Supplementary material 5 (JPG 58 KB)
11682_2017_9781_MOESM6_ESM.tif (3.3 mb)
Supplementary material 6 (TIF 3395 KB)
11682_2017_9781_MOESM7_ESM.tif (4.7 mb)
Supplementary material 7 (TIF 4860 KB)


  1. Ansari, M., Rahmani, F., Dolatshahi, M., Pooyan, A., & Aarabi, M. H. (2016). Brain pathway differences between Parkinson’s disease patients with and without REM sleep behavior disorder. Sleep & breathing = Schlaf & Atmung. Google Scholar
  2. Berg, D., Marek, K., Ross, G. W., & Poewe, W. (2012). Defining at-risk populations for Parkinson’s disease: lessons from ongoing studies. Movement disorders : Official Journal of the Movement Disorder Society, 27(5), 656 – 65.CrossRefGoogle Scholar
  3. Braak, H., Del Tredici, K., Rüb, U., de Vos, R. A., Steur, E. N. J., & Braak, E. (2003). Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiology of Aging, 24(2), 197–211.CrossRefPubMedGoogle Scholar
  4. Braak, H., Ghebremedhin, E., Rüb, U., Bratzke, H., & Del Tredici, K. (2004). Stages in the development of Parkinson’s disease-related pathology. Cell and Tissue Research, 318(1), 121 – 34.CrossRefPubMedGoogle Scholar
  5. Del Tredici, K., Rüb, U., de Vos, R. A., Bohl, J. R., & Braak, H. (2002). Where does parkinson disease pathology begin in the brain? Journal of Neuropathology & Experimental Neurology, 61(5), 413 – 26.CrossRefGoogle Scholar
  6. Doty, R. (1994). Studies of olfactory dysfunction in major neurological disorders. Advances in the Biosciences, 93, 593–602.Google Scholar
  7. Doty, R. L., Shaman, P., Kimmelman, C. P., & Dann, M. S. (1984). University of Pennsylvania Smell Identification Test: a rapid quantitative olfactory function test for the clinic. The Laryngoscope, 94(2 Pt 1), 176–178.CrossRefPubMedGoogle Scholar
  8. Fullard, M. E., Tran, B., Xie, S. X., Toledo, J. B., Scordia, C., Linder, C., et al. (2016). Olfactory impairment predicts cognitive decline in early Parkinson’s disease. Parkinsonism & Related Disorders, 25, 45–51.CrossRefGoogle Scholar
  9. Haehner, A., Hummel, T., Hummel, C., Sommer, U., Junghanns, S., & Reichmann, H. (2007). Olfactory loss may be a first sign of idiopathic Parkinson’s disease. Movement Disorders: Official Journal of the Movement Disorder Society, 22(6), 839 – 42.CrossRefGoogle Scholar
  10. Hall, J. M., Ehgoetz Martens, K. A., Walton, C. C., O’Callaghan, C., Keller, P. E., Lewis, S. J., et al. (2016). Diffusion alterations associated with Parkinson’s disease symptomatology: A review of the literature. Parkinsonism & Related Disorders, 33, 12–26.CrossRefGoogle Scholar
  11. Ham, J. H., Lee, J. J., Sunwoo, M. K., Hong, J. Y., Sohn, Y. H., & Lee, P. H. (2016). Effect of olfactory impairment and white matter hyperintensities on cognition in Parkinson’s disease. Parkinsonism & Related Disorders, 24, 95 – 9.CrossRefGoogle Scholar
  12. Ibarretxe-Bilbao, N., Junque, C., Marti, M. J., Valldeoriola, F., Vendrell, P., Bargallo, N., et al. (2010). Olfactory impairment in Parkinson’s disease and white matter abnormalities in central olfactory areas: A voxel-based diffusion tensor imaging study. Movement Disorders: Official Journal of the Movement Disorder Society, 25(12), 1888–1894.CrossRefGoogle Scholar
  13. Jennings, D., Siderowf, A., Stern, M., Seibyl, J., Eberly, S., Oakes, D., et al. (2014). Imaging prodromal Parkinson disease: The Parkinson Associated Risk Syndrome Study. Neurology, 83(19), 1739–1746.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jennings, D., Siderowf, A., Stern, M., Seibyl, J., Eberly, S., Oakes, D., et al. (2017). Conversion to Parkinson disease in the PARS Hyposmic and dopamine transporter-deficit prodromal cohort. JAMA Neurology. Google Scholar
  15. Leemans, A., Jeurissen, B., Sijbers, J., & Jones, D. (2009). ExploreDTI: a graphical toolbox for processing, analyzing, and visualizing diffusion MR data. 17th Annual Meeting of International Society for Magnetic Resonance in Medicine. 209:3537.Google Scholar
  16. Luo, C., Song, W., Chen, Q., Yang, J., Gong, Q., & Shang, H. F. (2016). Cortical thinning in drug-naive Parkinson’s disease patients with depression. Journal of Neurology, 263(10), 2114–2119.CrossRefPubMedGoogle Scholar
  17. Mahlknecht, P., Iranzo, A., Hogl, B., Frauscher, B., Muller, C., Santamaria, J., et al. (2015). Olfactory dysfunction predicts early transition to a Lewy body disease in idiopathic RBD. Neurology, 84(7), 654–658.CrossRefPubMedGoogle Scholar
  18. Marek, K., Jennings, D., Lasch, S., Siderowf, A., Tanner, C., Simuni, T., et al. (2011). The parkinson progression marker initiative (PPMI). Progress in Neurobiology, 95(4), 629 – 35.CrossRefGoogle Scholar
  19. Mole, J. P., Subramanian, L., Bracht, T., Morris, H., Metzler-Baddeley, C., & Linden, D. E. (2016). Increased fractional anisotropy in the motor tracts of Parkinson’s disease suggests compensatory neuroplasticity or selective neurodegeneration. European Radiology, 26(10), 3327–3335.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Munhoz, R. P., Moro, A., Silveira-Moriyama, L., & Teive, H. A. (2015). Non-motor signs in Parkinson’s disease: a review. Arquivos De Neuro-psiquiatria, 73(5), 454 – 62.CrossRefPubMedGoogle Scholar
  21. Murphy, C., Cain, W. S., Gilmore, M. M., & Skinner, R. B. (1991). Sensory and semantic factors in recognition memory for odors and graphic stimuli: elderly versus young persons. The American Journal of Pssychology. 161–92.Google Scholar
  22. Nigro, S., Riccelli, R., Passamonti, L., Arabia, G., Morelli, M., Nistico, R., et al. (2016). Characterizing structural neural networks in de novo Parkinson disease patients using diffusion tensor imaging. Human Brain Mapping. Google Scholar
  23. Pellicano, C., Benincasa, D., Pisani, V., Buttarelli, F. R., Giovannelli, M., & Pontieri, F. E. (2007). Prodromal non-motor symptoms of Parkinson’s disease. Neuropsychiatric Disease and Treatment, 3(1), 145 – 52.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Postuma, R. B., & Berg, D. (2016). Advances in markers of prodromal Parkinson disease. Nature Reviews Neurology, 12(11), 622 – 34.CrossRefPubMedGoogle Scholar
  25. Rahmani, F., & Aarabi, M. H. (2017). Does apolipoprotein A1 predict microstructural changes in subgenual cingulum in early Parkinson? Journal of Neurology. Google Scholar
  26. Ressler, K. J., Sullivan, S. L., & Buck, L. B. (1994). Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell, 79(7), 1245–1255.CrossRefPubMedGoogle Scholar
  27. Rodriguez-Violante, M., Gonzalez-Latapi, P., Camacho-Ordonez, A., Martinez-Ramirez, D., Morales-Briceno, H., & Cervantes-Arriaga, A. (2014). Comparing the accuracy of different smell identification tests in Parkinson’s disease: relevance of cultural aspects. Clinical Neurology and Neurosurgery, 123, 9–14.CrossRefPubMedGoogle Scholar
  28. Ross, G. W., Petrovitch, H., Abbott, R. D., Tanner, C. M., Popper, J., Masaki, K., et al. (2008). Association of olfactory dysfunction with risk for future Parkinson’s disease. Annals of Neurology, 63(2), 167 – 73.CrossRefPubMedGoogle Scholar
  29. Schapira, A. H. V., Chaudhuri, K. R., & Jenner, P. (2017). Non-motor features of Parkinson disease. Nature Reviews Neuroscience, 18(7), 435 – 50.CrossRefPubMedGoogle Scholar
  30. Scherfler, C., Schocke, M. F., Seppi, K., Esterhammer, R., Brenneis, C., Jaschke, W., et al. (2006). Voxel-wise analysis of diffusion weighted imaging reveals disruption of the olfactory tract in Parkinson’s disease. Brain: A Journal of Neurology, 129(Pt 2), 538 – 42.CrossRefGoogle Scholar
  31. Schmahmann, J. D., Smith, E. E., Eichler, F. S., & Filley, C. M. (2008). Cerebral White Matter: Neuroanatomy, Clinical Neurology, and Neurobehavioral Correlates. Annals of the New York Academy of Sciences, 1142, 266–309.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Tessa, C., Lucetti, C., Giannelli, M., Diciotti, S., Poletti, M., Danti, S., et al. (2014). Progression of brain atrophy in the early stages of Parkinson’s disease: a longitudinal tensor-based morphometry study in de novo patients without cognitive impairment. Human Brain Mapping, 35(8), 3932–3944.CrossRefPubMedGoogle Scholar
  33. The Parkinson Progression Marker Initiative (PPMI). (2011). Progress in Neurobiology.95(4):629 – 35.CrossRefGoogle Scholar
  34. Visanji, N., & Marras, C. (2015). The relevance of pre-motor symptoms in Parkinson’s disease. Expert review of Neurotherapeutics, 15(10), 1205–1217.CrossRefPubMedGoogle Scholar
  35. Wang, J., You, H., Liu, J.-F., Ni, D.-F., Zhang, Z.-X., & Guan, J. (2011). Association of Olfactory Bulb Volume and Olfactory Sulcus Depth with Olfactory Function in Patients with Parkinson Disease. American Journal of Neuroradiology, 32(4), 677 – 81.CrossRefPubMedGoogle Scholar
  36. Wilson, R. S., Yu, L., Schneider, J. A., Arnold, S. E., Buchman, A. S., & Bennett, D. A. (2011). Lewy Bodies and Olfactory Dysfunction in Old Age. Chemical Senses, 36(4), 367 – 73.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wiltshire, K., Concha, L., Gee, M., Bouchard, T., Beaulieu, C., & Camicioli, R. (2010). Corpus callosum and cingulum tractography in Parkinson’s disease. The Canadian Journal of Neurological Sciences Le Journal Canadien des Sciences Neurologiques, 37(5), 595–600.CrossRefPubMedGoogle Scholar
  38. Yeh, F. C., Badre, D., Verstynen, T. (2015). Connectometry: A statistical approach harnessing the analytical potential of the local connectome. NeuroImage. Google Scholar
  39. Yeh, F. C., & Tseng, W. Y. (2011). NTU-90: a high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction. NeuroImage, 58(1), 91 – 9.CrossRefPubMedGoogle Scholar
  40. Yeh, F.-C., Tang, P.-F., & Tseng, W.-Y.I. (2013). Diffusion MRI connectometry automatically reveals affected fiber pathways in individuals with chronic stroke. NeuroImage: Clinical, 2, 912 – 21.CrossRefGoogle Scholar
  41. Yeh, F.-C., Verstynen, T. D., Wang, Y., Fernández-Miranda, J. C., & Tseng, W.-Y.I. (2013). Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy. PloS One, 8(11), e80713.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang, Y., Wu, I. W., Tosun, D., Foster, E., & Schuff, N. (2016). Progression of Regional Microstructural Degeneration in Parkinson’s Disease: A Multicenter Diffusion Tensor Imaging Study. PloS One, 11(10), e0165540.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Basir Eye Health Research CenterTehranIran
  2. 2.Neuroimaging Network (NIN), Universal Scientific Education and Research Network (USERN)Children’s Medical Center HospitalTehranIran
  3. 3.Students’ Scientific Research CenterTehran University of Medical SciencesTehranIran
  4. 4.Department of PhysicsShahid Beheshti UniversityTehranIran
  5. 5.Département de Physique Théorique and Center for Astroparticle PhysicsUniversité de GenèveGenevaSwitzerland

Personalised recommendations