Brain Imaging and Behavior

, Volume 13, Issue 1, pp 172–179 | Cite as

Different patterns of gray matter density in early- and middle-late-onset Parkinson’s disease: a voxel-based morphometry study

  • Min Xuan
  • Xiaojun Guan
  • Peiyu Huang
  • Zhujing Shen
  • Quanquan Gu
  • Xinfeng Yu
  • Xiaojun Xu
  • Wei Luo
  • Minming ZhangEmail author
Original Research


Early-onset Parkinson’s disease (EOPD) has a clinical course and characteristics distinct from middle-late-onset Parkinson’s disease (M-LOPD). Although many studies have investigated these differences, the neural mechanisms of these characteristics remain unclear. This study aimed to investigate the morphological differences, and their related clinical significance, between EOPD and M-LOPD patients. We recruited two groups of patients, 28 EOPD patients and 37 M-LOPD patients, and two age- and sex-matched control groups (23 controls in each group). The voxel-based morphometry (VBM) technique was used to examine changes in gray matter (GM) density between patients and their corresponding controls. Compared with controls, EOPD patients had lower GM density in the left putamen, inferior frontal gyrus and insula, and higher GM density in the right occipital lobe and bilateral cerebellum posterior lobes. M-LOPD patients had lower GM density in the left cerebellum posterior lobe, occipital lobe and right supplementary motor area (SMA), and higher GM density in the left middle temporal gyrus. Correlation analyses showed that GM density values in the right cerebellum posterior lobe positively correlated with the Unified Parkinson’s Disease Rating Scale (UPDRS) motor scores and the Hoehn–Yahr stages in EOPD patients. Our results reveal different patterns of structural changes in EOPD and M-LOPD patients. A probable compensatory effect of the cerebellum was observed and may partly explain the slower decline of motor function in EOPD patients.


Parkinson’s disease Middle-late-onset Parkinson’s disease Early-onset Parkinson’s disease Cerebellum DARTEL-VBM 



We wish to thank all the Parkinson’s disease patients and normal controls who participated in our research.

Compliance with ethical standards

Conflicts of interest

The authors have no conflict of interest to report.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


This study was funded by the 12th Five-year Plan for National Science and Technology Supporting Program of China (Grant No. 2012BAI10B04) and the National Natural Science Foundation of China (Grant Nos. 81571654, 81371519 and 81301190).


  1. Alves, G., Wentzel-Larsen, T., Aarsland, D., & Larsen, J. P. (2005). Progression of motor impairment and disability in Parkinson disease: A population-based study. Neurology, 65(9), 1436–1441. doi: 10.1212/01.wnl.0000183359.50822.f2.CrossRefPubMedGoogle Scholar
  2. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113. doi: 10.1016/j.neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  3. Bartzokis, G., Cummings, J. L., Markham, C. H., Marmarelis, P. Z., Treciokas, L. J., Tishler, T. A., Marder, S. R., & Mintz, J. (1999). MRI evaluation of brain iron in earlier- and later-onset Parkinson’s disease and normal subjects. Magnetic Resonance Imaging, 17(2), 213–222.CrossRefGoogle Scholar
  4. Benninger, D. H., Thees, S., Kollias, S. S., Bassetti, C. L., & Waldvogel, D. (2009). Morphological differences in Parkinson's disease with and without rest tremor. Journal of Neurology, 256(2), 256–263. doi: 10.1007/s00415-009-0092-2.CrossRefPubMedGoogle Scholar
  5. Biundo, R., Formento-Dojot, P., Facchini, S., Vallelunga, A., Ghezzo, L., Foscolo, L., Meneghello, F., & Antonini, A. (2011). Brain volume changes in Parkinson's disease and their relationship with cognitive and behavioural abnormalities. Journal of the Neurological Sciences, 310(1–2), 64–69. doi: 10.1016/j.jns.2011.08.001.CrossRefPubMedGoogle Scholar
  6. Borghammer, P., Ostergaard, K., Cumming, P., Gjedde, A., Rodell, A., Hall, N., & Chakravarty, M. M. (2010). A deformation-based morphometry study of patients with early-stage Parkinson's disease. European Journal of Neurology, 17(2), 314–320. doi: 10.1111/j.1468-1331.2009.02807.x.CrossRefPubMedGoogle Scholar
  7. Camicioli, R., Gee, M., Bouchard, T. P., Fisher, N. J., Hanstock, C. C., Emery, D. J., & Martin, W. R. (2009). Voxel-based morphometry reveals extra-nigral atrophy patterns associated with dopamine refractory cognitive and motor impairment in parkinsonism. Parkinsonism & Related Disorders, 15(3), 187–195. doi: 10.1016/j.parkreldis.2008.05.002.CrossRefGoogle Scholar
  8. Catalan, M. J., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain : A Journal of Neurology, 122(Pt 3), 483–495.CrossRefGoogle Scholar
  9. DeYoe, E. A., Carman, G. J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., Miller, D., & Neitz, J. (1996). Mapping striate and extrastriate visual areas in human cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America, 93(6), 2382–2386.CrossRefGoogle Scholar
  10. Eggers, C., Gunther, M., Rothwell, J., Timmermann, L., & Ruge, D. (2015). Theta burst stimulation over the supplementary motor area in Parkinson's disease. Journal of Neurology, 262(2), 357–364. doi: 10.1007/s00415-014-7572-8.CrossRefPubMedGoogle Scholar
  11. de la Fuente-Fernandez, R., Schulzer, M., Kuramoto, L., Cragg, J., Ramachandiran, N., Au, W. L., Mak, E., McKenzie, J., McCormick, S., Sossi, V., Ruth, T. J., Lee, C. S., Calne, D. B., & Stoessl, A. J. (2011). Age-specific progression of nigrostriatal dysfunction in Parkinson's disease. Annals of Neurology, 69(5), 803–810. doi: 10.1002/ana.22284.CrossRefPubMedGoogle Scholar
  12. Garcia-Diaz, A. I., Segura, B., Baggio, H. C., Marti, M. J., Valldeoriola, F., Compta, Y., Vendrell, P., Bargallo, N., Tolosa, E., & Junque, C. (2014). Structural MRI correlates of the MMSE and pentagon copying test in Parkinson's disease. Parkinsonism & Related Disorders, 20(12), 1405–1410. doi: 10.1016/j.parkreldis.2014.10.014.CrossRefGoogle Scholar
  13. Gibb, W. R., & Lees, A. J. (1988). A comparison of clinical and pathological features of young- and old-onset Parkinson's disease. Neurology, 38(9), 1402–1406.CrossRefGoogle Scholar
  14. Hamada, M., Ugawa, Y., & Tsuji, S. (2009). High-frequency rTMS over the supplementary motor area improves bradykinesia in Parkinson's disease: Subanalysis of double-blind sham-controlled study. Journal of the Neurological Sciences, 287(1–2), 143–146. doi: 10.1016/j.jns.2009.08.007.CrossRefPubMedGoogle Scholar
  15. Hou, Y., Yang, J., Luo, C., Ou, R., Song, W., Liu, W., Gong, Q., & Shang, H. (2016). Patterns of striatal functional connectivity differ in early and late onset Parkinson's disease. Journal of Neurology. doi: 10.1007/s00415-016-8211-3.
  16. Hufner, K., Stephan, T., Flanagin, V. L., Deutschlander, A., Dera, T., Karch, C., Linn, J., Glasauer, S., Dieterich, M., Strupp, M., & Brandt, T. (2011). Cerebellar and visual gray matter brain volume increases in congenital nystagmus. Frontiers in Neurology, 2, 60. doi: 10.3389/fneur.2011.00060.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hwang, K. S., Beyer, M. K., Green, A. E., Chung, C., Thompson, P. M., Janvin, C., Larsen, J. P., Aarsland, D., & Apostolova, L. G. (2013). Mapping cortical atrophy in Parkinson's disease patients with dementia. Journal of Parkinson’s disease, 3(1), 69–76. doi: 10.3233/JPD-120151.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Knipe, M. D., Wickremaratchi, M. M., Wyatt-Haines, E., Morris, H. R., & Ben-Shlomo, Y. (2011). Quality of life in young- compared with late-onset Parkinson's disease. Movement disorders : official journal of the Movement Disorder Society, 26(11), 2011–2018. doi: 10.1002/mds.23763.CrossRefGoogle Scholar
  19. Kostic, V. S., Agosta, F., Petrovic, I., Galantucci, S., Spica, V., Jecmenica-Lukic, M., & Filippi, M. (2010). Regional patterns of brain tissue loss associated with depression in Parkinson disease. Neurology, 75(10), 857–863. doi: 10.1212/WNL.0b013e3181f11c1d.CrossRefPubMedGoogle Scholar
  20. Lee, E. Y., Sen, S., Eslinger, P. J., Wagner, D., Shaffer, M. L., Kong, L., Lewis, M. M., Du, G., & Huang, X. (2013). Early cortical gray matter loss and cognitive correlates in non-demented Parkinson's patients. Parkinsonism & Related Disorders, 19(12), 1088–1093. doi: 10.1016/j.parkreldis.2013.07.018.CrossRefGoogle Scholar
  21. Lee, H. M., Kwon, K. Y., Kim, M. J., Jang, J. W., Suh, S. I., Koh, S. B., & Kim, J. H. (2014). Subcortical grey matter changes in untreated, early stage Parkinson's disease without dementia. Parkinsonism & Related Disorders, 20(6), 622–626.CrossRefGoogle Scholar
  22. Lewis, M. M., Slagle, C. G., Smith, A. B., Truong, Y., Bai, P., McKeown, M. J., Mailman, R. B., Belger, A., & Huang, X. (2007). Task specific influences of Parkinson's disease on the striato-thalamo-cortical and cerebello-thalamo-cortical motor circuitries. Neuroscience, 147(1), 224–235. doi: 10.1016/j.neuroscience.2007.04.006.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Liu, S. Y., Wu, J. J., Zhao, J., Huang, S. F., Wang, Y. X., Ge, J. J., Wu, P., Zuo, C. T., Ding, Z. T., & Wang, J. (2015). Onset-related subtypes of Parkinson's disease differ in the patterns of striatal dopaminergic dysfunction: A positron emission tomography study. Parkinsonism & Related Disorders, 21(12), 1448–1453. doi: 10.1016/j.parkreldis.2015.10.017.CrossRefGoogle Scholar
  24. Mehanna, R., Moore, S., Hou, J. G., Sarwar, A. I., & Lai, E. C. (2014). Comparing clinical features of young onset, middle onset and late onset Parkinson's disease. Parkinsonism & Related Disorders, 20(5), 530–534. doi: 10.1016/j.parkreldis.2014.02.013.CrossRefGoogle Scholar
  25. Mentis, M. J., Dhawan, V., Nakamura, T., Ghilardi, M. F., Feigin, A., Edwards, C., Ghez, C., & Eidelberg, D. (2003). Enhancement of brain activation during trial-and-error sequence learning in early PD. Neurology, 60(4), 612–619.CrossRefGoogle Scholar
  26. Nachev, P., Kennard, C., & Husain, M. (2008). Functional role of the supplementary and pre-supplementary motor areas. Nature Reviews Neuroscience, 9(11), 856–869. doi: 10.1038/nrn2478.CrossRefPubMedGoogle Scholar
  27. Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., & Evans, A. C. (1998). Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain, 121(Pt 5), 949–965.CrossRefGoogle Scholar
  28. Quinn, N., Critchley, P., & Marsden, C. D. (1987). Young onset Parkinson's disease. Movement Disorders : Official Journal of the Movement Disorder Society, 2(2), 73–91. doi: 10.1002/mds.870020201.CrossRefGoogle Scholar
  29. Ramirez-Ruiz, B., Marti, M. J., Tolosa, E., Gimenez, M., Bargallo, N., Valldeoriola, F., & Junque, C. (2007). Cerebral atrophy in Parkinson's disease patients with visual hallucinations. European Journal of Neurology, 14(7), 750–756. doi: 10.1111/j.1468-1331.2007.01768.x.CrossRefPubMedGoogle Scholar
  30. Reijnders, J. S., Scholtissen, B., Weber, W. E., Aalten, P., Verhey, F. R., & Leentjens, A. F. (2010). Neuroanatomical correlates of apathy in Parkinson's disease: A magnetic resonance imaging study using voxel-based morphometry. Movement Disorders : Official Journal of the Movement Disorder Society, 25(14), 2318–2325. doi: 10.1002/mds.23268.CrossRefGoogle Scholar
  31. Schrag, A., & Schott, J. M. (2006). Epidemiological, clinical, and genetic characteristics of early-onset parkinsonism. The Lancet Neurology, 5(4), 355–363. doi: 10.1016/S1474-4422(06)70411-2.CrossRefPubMedGoogle Scholar
  32. Sehm, B., Taubert, M., Conde, V., Weise, D., Classen, J., Dukart, J., Draganski, B., Villringer, A., & Ragert, P. (2014). Structural brain plasticity in Parkinson's disease induced by balance training. Neurobiology of Aging, 35(1), 232–239. doi: 10.1016/j.neurobiolaging.2013.06.021.CrossRefPubMedGoogle Scholar
  33. Sheng, K., Fang, W., Zhu, Y., Shuai, G., Zou, D., Su, M., Han, Y., & Cheng, O. (2016). Different alterations of cerebral regional homogeneity in early-onset and late-onset Parkinson's disease. Frontiers in Aging Neuroscience, 8, 165. doi: 10.3389/fnagi.2016.00165.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Shih, M. C., Franco de Andrade, L. A., Amaro Jr., E., Felicio, A. C., Ferraz, H. B., Wagner, J., Hoexter, M. Q., Lin, L. F., Fu, Y. K., Mari, J. J., Tufik, S., & Bressan, R. A. (2007). Higher nigrostriatal dopamine neuron loss in early than late onset Parkinson's disease?--a [99mTc]-TRODAT-1 SPECT study. Movement Disorders : Official Journal of the Movement Disorder Society, 22(6), 863–866. doi: 10.1002/mds.21315.CrossRefGoogle Scholar
  35. Song, S. K., Lee, J. E., Park, H. J., Sohn, Y. H., Lee, J. D., & Lee, P. H. (2011). The pattern of cortical atrophy in patients with Parkinson's disease according to cognitive status. Movement Disorders : Official Journal of the Movement Disorder Society, 26(2), 289–296. doi: 10.1002/mds.23477.CrossRefGoogle Scholar
  36. Tam, C. W., Burton, E. J., McKeith, I. G., Burn, D. J., & O'Brien, J. T. (2005). Temporal lobe atrophy on MRI in Parkinson disease with dementia: A comparison with Alzheimer disease and dementia with Lewy bodies. Neurology, 64(5), 861–865. doi: 10.1212/01.WNL.0000153070.82309.D4.CrossRefPubMedGoogle Scholar
  37. Tanner, C. M., & Aston, D. A. (2000). Epidemiology of Parkinson's disease and akinetic syndromes. Current Opinion in Neurology, 13(4), 427–430.CrossRefGoogle Scholar
  38. Tomlinson, C. L., Stowe, R., Patel, S., Rick, C., Gray, R., & Clarke, C. E. (2010). Systematic review of levodopa dose equivalency reporting in Parkinson's disease. Movement Disorders : Official journal of the Movement Disorder Society, 25(15), 2649–2653. doi: 10.1002/mds.23429.CrossRefGoogle Scholar
  39. Tsai, C. H., Lo, S. K., See, L. C., Chen, H. Z., Chen, R. S., Weng, Y. H., Chang, F. C., & Lu, C. S. (2002). Environmental risk factors of young onset Parkinson's disease: A case-control study. Clinical Neurology and Neurosurgery, 104(4), 328–333.CrossRefGoogle Scholar
  40. Wu, T., & Hallett, M. (2008). Neural correlates of dual task performance in patients with Parkinson's disease. Journal of Neurology, Neurosurgery, and Psychiatry, 79(7), 760–766. doi: 10.1136/jnnp.2007.126599.CrossRefPubMedGoogle Scholar
  41. Wu, T., & Hallett, M. (2013). The cerebellum in Parkinson's disease. Brain : A Journal of Neurology, 136(Pt 3), 696–709. doi: 10.1093/brain/aws360.CrossRefGoogle Scholar
  42. Wu, T., Wang, L., Hallett, M., Li, K., & Chan, P. (2010). Neural correlates of bimanual anti-phase and in-phase movements in Parkinson's disease. Brain : A Journal of Neurology, 133(Pt 8), 2394–2409. doi: 10.1093/brain/awq151.CrossRefGoogle Scholar
  43. Yu, H., Sternad, D., Corcos, D. M., & Vaillancourt, D. E. (2007). Role of hyperactive cerebellum and motor cortex in Parkinson's disease. NeuroImage, 35(1), 222–233. doi: 10.1016/j.neuroimage.2006.11.047.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhang, J., Zhang, Y. T., Hu, W. D., Li, L., Liu, G. Y., & Bai, Y. P. (2015). Gray matter atrophy in patients with Parkinson's disease and those with mild cognitive impairment: A voxel-based morphometry study. International Journal of Clinical and Experimental Medicine, 8(9), 15383–15392.PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of RadiologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityZhejiangChina
  2. 2.Department of NeurologySecond Affiliated Hospital, School of Medicine, Zhejiang UniversityZhejiangChina

Personalised recommendations