Brain Imaging and Behavior

, Volume 12, Issue 3, pp 663–673 | Cite as

Brain size bias compensated graph-theoretical parameters are also better in women’s structural connectomes

  • Balázs Szalkai
  • Bálint Varga
  • Vince GrolmuszEmail author
Original Research


While the neuronal-scale mapping of the connections of the whole human brain with more than 80 billion neurons is not possible today, a diffusion MRI-based workflow is available for mapping these connections with much less resolution (Hagmann et al. 2012; Craddock et al. 2013; McNab et al. 2013; Daducci et al. 2012). The result of that workflow is the connectome, or the braingraph of the subject: the several hundred nodes of this graph correspond to distinct areas of the gray matter of the brain, and two nodes are connected by an edge if the workflow finds fibers of axons connecting the areas, corresponding to these two nodes.

These connectomes describe tens of thousands of connections between distinct cerebral areas in a much more detailed manner than was possible before the era of diffusion MRI imaging. Additionally, the braingraphs make possible the quantitative analysis of the connections of the human brain.

One natural question is finding the connections that are...


Connectome Sex differences 



Data were provided in part by the Human Connectome Project, WU-Minn Consortium (Principal Investigators: David Van Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16 NIH Institutes and Centers that support the NIH Blueprint for Neuroscience Research; and by the McDonnell Center for Systems Neuroscience at Washington University.

Author Contributions

V.G. initiated the study, analyzed data, wrote the paper; B.V. contributed analytic- and software tools; B.S. computed graph parameters and performed statistical analysis; all authors reviewed the manuscript.

Compliance with Ethical Standards

Conflict of interests

The authors declare no conflicts of interests.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


BS was supported through the new national excellence program of the Ministry of Human Capacities of Hungary.

Supplementary material

11682_2017_9720_MOESM1_ESM.pdf (193 kb)
(PDF 192 KB)


  1. Hagmann, P., Grant, P.E., & Fair, D.A. (2012). Mr connectomics: A conceptual framework for studying the developing brain. Frontiers in Systems Neuroscience, 6, 43. doi: 10.3389/fnsys.2012.00043.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Craddock, R.C., Milham, M.P., & LaConte, S.M. (2013). Predicting intrinsic brain activity. Neuroimage, 82, 127–136. doi: 10.1016/j.neuroimage.2013.05.072.CrossRefPubMedGoogle Scholar
  3. McNab, J.A., & et al. (2013). The Human Connectome Project and beyond: initial applications of 300 mT/m gradients. Neuroimage, 80, 234–245. doi: 10.1016/j.neuroimage.2013.05.074.CrossRefPubMedGoogle Scholar
  4. Daducci, A., & et al. (2012). The connectome mapper: an open-source processing pipeline to map connectomes with MRI. PLoS One, 7, e48121. doi: 10.1371/journal.pone.0048121.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Szalkai, B., Kerepesi, C., Varga, B., & Grolmusz, V. (2015). The Budapest Reference Connectome Server v2. 0. Neuroscience Letters, 595, 60–62.CrossRefPubMedGoogle Scholar
  6. Kerepesi, C., Szalkai, B., Varga, B., & Grolmusz, V. (2015). Comparative connectomics: Mapping the inter-individual variability of connections within the regions of the human brain. arXiv:1507.00327.
  7. Agosta, F., & et al. (2014). Disrupted brain connectome in semantic variant of primary progressive aphasia. Neurobiol Aging. doi: 10.1016/j.neurobiolaging.2014.05.017.
  8. Alexander-Bloch, A.F., & et al. (2014). Abnormal cortical growth in schizophrenia targets normative modules of synchronized development. Biological Psychiatry. doi: 10.1016/j.biopsych.2014.02.010.
  9. Baker, J.T., & et al. (2014). Disruption of cortical association networks in schizophrenia and psychotic bipolar disorder. JAMA Psychiatry, 71, 109–118. doi: 10.1001/jamapsychiatry.2013.3469.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Besson, P., & et al. (2014). Structural connectivity differences in left and right temporal lobe epilepsy. Neuroimage, 100C, 135–144. doi: 10.1016/j.neuroimage.2014.04.071.CrossRefGoogle Scholar
  11. Bonilha, L., & et al. (2014). Mapping remote subcortical ramifications of injury after ischemic strokes. Behavioural Neurology, 2014, 215380. doi: 10.1155/2014/215380.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Jahanshad, N., & et al. (2011). Sex differences in the human connectome: 4-tesla high angular resolution diffusion imaging (hardi) tractography in 234 young adult twins, 2011 IEEE international symposium on biomedical imaging: From nano to macro (pp. 939–943): IEEE.Google Scholar
  13. Ingalhalikar, M., & et al. (2014). Sex differences in the structural connectome of the human brain, Proceedings of the National Academy of Sciences USA 111. doi: 10.1073/pnas.1316909110 (pp. 823–828).Google Scholar
  14. Szalkai, B., Varga, B., & Grolmusz, V. (2015). Graph theoretical analysis reveals: Women’s brains are better connected than men’s. PLOS One, 10, e0130045. doi: 10.1371/journal.pone.0130045.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Tarjan, R.E. (1983). Data structures and network algorithms, vol 44 of CBMS-NSF Regional Conference Series in Applied Mathematics (Society for Industrial Applied Mathematics).Google Scholar
  16. Hoory, S., Linial, N., & Wigderson, A. (2006). Expander graphs and their applications. Bulletin of the American Mathematical Society, 43, 439–561.CrossRefGoogle Scholar
  17. Lubotzky, A. (2011). Expander graphs in pure and applied mathematics. 1105. arXiv:1105.2389.
  18. Kirchhoff, G. (1847). ÜBer die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annals of Physical Chemistry, 72, 497–508.CrossRefGoogle Scholar
  19. Chung, F.R. (1997). Spectral graph theory, American Mathematical Society, 92.Google Scholar
  20. Hoffman, A. (1972). Eigenvalues and partitionings of the edges of a graph. Linear Algebra and Its Applications, 5, 137–146.CrossRefGoogle Scholar
  21. Lawler, E.L. (1976). Combinatorial optimization: Networks and matroids. Courier Dover Publications.Google Scholar
  22. Dekaban, A.S. (1978). Changes in brain weights during the span of human life: Relation of brain weights to body heights and body weights. Annals of Neurology, 4, 345–356. doi: 10.1002/ana.410040410.CrossRefPubMedGoogle Scholar
  23. Allen, J.S., Damasio, H., & Grabowski, T.J. (2002). Normal neuroanatomical variation in the human brain: An mri-volumetric study. American Journal of Physical Anthropology, 118, 341–358. doi: 10.1002/ajpa.10092.CrossRefPubMedGoogle Scholar
  24. Girard, G., Whittingstall, K., Deriche, R., & Descoteaux, M. (2014). Towards quantitative connectivity analysis: Reducing tractography biases. Neuroimage, 98, 266–278. doi: 10.1016/j.neuroimage.2014.04.074.CrossRefPubMedGoogle Scholar
  25. Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: Where do we go from here?. Brain Connectivity, 1, 169–183. doi: 10.1089/brain.2011.0033.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hänggi, J., Fövenyi, L., Liem, F., Meyer, M., & Jäncke, L. (2014). The hypothesis of neuronal interconnectivity as a function of brain size-a general organization principle of the human connectome. Frontiers in Human Neuroscience, 8, 915. doi: 10.3389/fnhum.2014.00915.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Reuter, M., Schmansky, N.J., Rosas, H.D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. Neuroimage, 61, 1402–1418. doi: 10.1016/j.neuroimage.2012.02.084.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Basser, P.J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues eluciyeard by quantitative-diffusion-tensor mri. Journal of Magnetic Resonance, 213, 560–570. doi: 10.1016/j.jmr.2011.09.022.CrossRefGoogle Scholar
  29. Tournier, J., Calamante, F., Connelly, A., & et al. (2012). Mrtrix: Diffusion tractography in crossing fiber regions. International Journal of Imaging Systems and Technology, 22, 53–66.CrossRefGoogle Scholar
  30. Achterberg, T., Berthold, T., Koch, T., & Wolter, K. (2008). Constraint integer programming: A new approach to integrate CP and MIP, Integration of AI and OR techniques in constraint programming for combinatorial optimization problems (pp. 6–20): Springer.Google Scholar
  31. Achterberg, T. (2009). SCIP: Solving constraint integer programs. Mathematical Programming Computation, 1, 1–41.CrossRefGoogle Scholar
  32. Hochbaum, D.S. (1982). Approximation algorithms for the set covering and vertex cover problems. SIAM Journal on Computing, 11, 555–556.CrossRefGoogle Scholar
  33. Hoel, P.G. (1984). Introduction to mathematical statistics, 5fth edn. New York: John Wiley & Sons, Inc.Google Scholar
  34. Wonnacott, T.H., & Wonnacott, R.J. (1972). Introductory statistics Vol. 19690. New York: Wiley.Google Scholar
  35. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 65–70.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.PIT Bioinformatics GroupEötvös UniversityBudapestHungary
  2. 2.Uratim Ltd.BudapestHungary

Personalised recommendations