Brain Imaging and Behavior

, Volume 12, Issue 3, pp 640–652 | Cite as

Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder

  • Kristina C. Skåtun
  • Tobias Kaufmann
  • Christine L. Brandt
  • Nhat Trung Doan
  • Dag Alnæs
  • Siren Tønnesen
  • Guido Biele
  • Anja Vaskinn
  • Ingrid Melle
  • Ingrid Agartz
  • Ole A. Andreassen
  • Lars T. WestlyeEmail author
Original Research


The thalamus is a highly connected subcortical structure that relays and integrates sensory and cortical information, which is critical for coherent and accurate perceptual awareness and cognition. Thalamic dysfunction is a classical finding in schizophrenia (SZ), and resting-state functional MRI has implicated somatomotor and frontal lobe thalamic dysconnectivity. However, it remains unclear whether these findings generalize to different psychotic disorders, are confined to specific thalamic sub-regions, and how they relate to structural thalamic alterations. Within-thalamic and thalamo-cortical functional connectivity was assessed using resting-state functional MRI data obtained from patients with SZ (n = 96), bipolar disorder (BD, n = 57), and healthy controls (HC, n = 280). Further, we used thalamic sub-regions as seeds to investigate specific cortical connectivity patterns, and performed structural analyses of thalamic volume and shape. Results showed reduced within-thalamic connectivity and thalamo-frontoparietal coupling in SZ and increased thalamo-somatomotor connectivity in BD. One thalamic sub-region showed increased sensory connectivity in SZ and eight sub-regions showed reductions with frontal and posterior areas. Reduced gray matter and shape abnormalities were found in frontal-projecting regions in both SZ and BD, but did not seem to explain reduced functional connectivity. Aberrant thalamo-cortical connectivity patterns in SZ and BD supports the notion of the thalamus as a key structure in the functional connectome across the psychosis spectrum, and the frontal and somatomotor anatomical distribution is in line with the characteristic cognitive and perceptual symptoms in psychotic disorders.


Thalamus Functional connectivity Imaging Resting-state Psychosis 



We thank the study participants and the members of NORMENT involved in data collection, and the staff at the Department of Radiology and Nuclear Medicine.

Compliance with ethical standards


This work was funded by the Research Council of Norway (204966/F20, 223273, 213837); the South-Eastern Norway Regional Health Authority (2015-073, 2012-047, 2013-123); European Community’s 7th Framework Programme (602450, IMAGEMEND), and Kristian Gerhard Jebsen Foundation.

Conflict of interest

Ole A. Andreassen has received a speakers honorarium from Lilly, Otsuka, Lundbeck. Kristina Skåtun, Tobias Kaufmann, Siren Tønnesen, Dag Alnæs, Anja Vaskinn, Christine Brandt, Nhat Trung Doan, Ingrid Melle, Ingrid Agartz, Guido Biele, and Lars T. Westlye declare no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2017_9714_MOESM1_ESM.docx (1.1 mb)
ESM 1 (DOCX 1101 kb)


  1. Andreasen, N. C., Paradiso, S., & O'Leary, D. S. (1998). "Cognitive dysmetria" as an integrative theory of schizophrenia: A dysfunction in cortical-subcortical-cerebellar circuitry? Schizophrenia Bulletin, 24(2), 203–218.CrossRefPubMedGoogle Scholar
  2. Anticevic, A., Cole, M. W., Repovs, G., Murray, J. D., Brumbaugh, M. S., Winkler, A. M., et al. (2014a). Characterizing thalamo-cortical disturbances in schizophrenia and bipolar illness. Cerebral Cortex, 24(12), 3116–3130. doi: 10.1093/cercor/bht165.CrossRefPubMedGoogle Scholar
  3. Anticevic, A., Yang, G., Savic, A., Murray, J. D., Cole, M. W., Repovs, G., et al. (2014b). Mediodorsal and visual thalamic connectivity differ in schizophrenia and bipolar disorder with and without psychosis history. Schizophrenia Bulletin, 40(6), 1227–1243. doi: 10.1093/schbul/sbu100.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bak, N., Rostrup, E., Larsson, H. B., Glenthoj, B. Y., & Oranje, B. (2014). Concurrent functional magnetic resonance imaging and electroencephalography assessment of sensory gating in schizophrenia. Human Brain Mapping, 35(8), 3578–3587. doi: 10.1002/hbm.22422.CrossRefPubMedGoogle Scholar
  5. Beckmann, C. F, Mackay, C.E., Filippini, N., Smith, S.M. (2009). Group comparison of resting-state FMRI data using multi-subject ICA and dual regression. NeuroImage, 47(Supplement 1), s148.Google Scholar
  6. Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., et al. (2003a). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750–757. doi: 10.1038/nn1075.CrossRefPubMedGoogle Scholar
  7. Behrens, T. E., Woolrich, M. W., Jenkinson, M., Johansen-Berg, H., Nunes, R. G., Clare, S., et al. (2003b). Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magnetic Resonance in Medicine, 50(5), 1077–1088. doi: 10.1002/mrm.10609.CrossRefPubMedGoogle Scholar
  8. Brandt, C. L., Doan, N. T., Tønnesen, S., Agartz, I., Hugdahl, K., Melle, I., & Westlye, L. T. (2015). Assessing brain structural associations with working-memory related brain patterns in schizophrenia and healthy controls using linked independent component analysis. Neurologic Clinics, 9, 253–263. doi: 10.1016/j.nicl.2015.08.010.CrossRefGoogle Scholar
  9. Brier, M. R., Mitra, A., McCarthy, J. E., Ances, B. M., & Snyder, A. Z. (2015). Partial covariance based functional connectivity computation using Ledoit-Wolf covariance regularization. NeuroImage, 121, 29–38. doi: 10.1016/j.neuroimage.2015.07.039.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., & Snyder, A. Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. NeuroImage, 23(2), 724–738. doi: 10.1016/j.neuroimage.2004.06.018.CrossRefPubMedGoogle Scholar
  11. Byne, W., Hazlett, E. A., Buchsbaum, M. S., & Kemether, E. (2009). The thalamus and schizophrenia: Current status of research. Acta Neuropathologica, 117(4), 347–368. doi: 10.1007/s00401-008-0404-0.CrossRefPubMedGoogle Scholar
  12. Calhoun, V. D., Eichele, T., & Pearlson, G. (2009). Functional brain networks in schizophrenia: A review. Frontiers in Human Neuroscience, 3, 17. doi: 10.3389/neuro.09.017.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cerullo, M. A., Adler, C. M., Delbello, M. P., & Strakowski, S. M. (2009). The functional neuroanatomy of bipolar disorder. International Review of Psychiatry, 21(4), 314–322. doi: 10.1080/09540260902962107.CrossRefPubMedGoogle Scholar
  14. Cetin, M. S., Christensen, F., Abbott, C. C., Stephen, J. M., Mayer, A. R., Canive, J. M., et al. (2014). Thalamus and posterior temporal lobe show greater inter-network connectivity at rest and across sensory paradigms in schizophrenia. NeuroImage, 97, 117–126. doi: 10.1016/j.neuroimage.2014.04.009.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cheng, W., Palaniyappan, L., Li, M., Kendrick, K. M., Zhang, J., Luo, Q., et al. (2015). Voxel-based, brain-wide association study of aberrant functional connectivity in schizophrenia implicates thalamocortical circuitry. NPJ Schizophrenia, 1, 15016. doi: 10.1038/npjschz.2015.16.
  16. Cromwell, H. C., Mears, R. P., Wan, L., & Boutros, N. N. (2008). Sensory gating: A translational effort from basic to clinical science. Clinical EEG and Neuroscience, 39(2), 69–72 Retrieved from Scholar
  17. Cronenwett, W. J., & Csernansky, J. (2010). Thalamic pathology in schizophrenia. Current Topics in Behavioral Neurosciences, 4, 509–528.CrossRefPubMedGoogle Scholar
  18. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis - I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. doi: 10.1006/nimg.1998.0395.CrossRefPubMedGoogle Scholar
  19. Danivas, V., Kalmady, S. V., Venkatasubramanian, G., & Gangadhar, B. N. (2013). Thalamic shape abnormalities in antipsychotic naive schizophrenia. Indian Journal of Psychological Medicine, 35(1), 34–38. doi: 10.4103/0253-7176.112198.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Delvecchio, G., Fossati, P., Boyer, P., Brambilla, P., Falkai, P., Gruber, O., et al. (2012). Common and distinct neural correlates of emotional processing in bipolar disorder and major depressive disorder: A voxel-based meta-analysis of functional magnetic resonance imaging studies. European Neuropsychopharmacology, 22(2), 100–113. doi: 10.1016/j.euroneuro.2011.07.003.CrossRefPubMedGoogle Scholar
  21. Douaud, G., Smith, S., Jenkinson, M., Behrens, T., Johansen-Berg, H., Vickers, J., et al. (2007). Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain, 130(Pt 9), 2375–2386. doi: 10.1093/brain/awm184.CrossRefPubMedGoogle Scholar
  22. Filippini, N., MacIntosh, B. J., Hough, M. G., Goodwin, G. M., Frisoni, G. B., Smith, S. M., et al. (2009). Distinct patterns of brain activity in young carriers of the APOE-epsilon4 allele. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7209–7214. doi: 10.1073/pnas.0811879106.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fischer, J., & Whitney, D. (2012). Attention gates visual coding in the human pulvinar. Nature Communications, 3, 1051. doi: 10.1038/ncomms2054.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314. doi: 10.1016/j.neuroimage.2011.12.090.CrossRefPubMedGoogle Scholar
  25. Griffanti, L., Salimi-Khorshidi, G., Beckmann, C. F., Auerbach, E. J., Douaud, G., Sexton, C. E., et al. (2014). ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage, 95, 232–247. doi: 10.1016/j.neuroimage.2014.03.034.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Hale, J. R., Mayhew, S. D., Mullinger, K. J., Wilson, R. S., Arvanitis, T. N., Francis, S. T., & Bagshaw, A. P. (2015). Comparison of functional thalamic segmentation from seed-based analysis and ICA. NeuroImage. doi: 10.1016/j.neuroimage.2015.04.027.CrossRefPubMedGoogle Scholar
  27. Harms, M. P., Wang, L., Mamah, D., Barch, D. M., Thompson, P. A., & Csernansky, J. G. (2007). Thalamic shape abnormalities in individuals with schizophrenia and their nonpsychotic siblings. The Journal of Neuroscience, 27(50), 13835–13842. doi: 10.1523/jneurosci.2571-07.2007.CrossRefPubMedGoogle Scholar
  28. Herrero, M. T., Barcia, C., & Navarro, J. M. (2002). Functional anatomy of thalamus and basal ganglia. Child's Nervous System, 18(8), 386–404. doi: 10.1007/s00381-002-0604-1.CrossRefPubMedGoogle Scholar
  29. Hibar, D. P., Westlye, L. T., van Erp, T. G., Rasmussen, J., Leonardo, C. D., Faskowitz, J., et al. (2016). Subcortical volumetric abnormalities in bipolar disorder. Molecular Psychiatry, 21(12), 1710–1716.Google Scholar
  30. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62(2), 782–790. doi: 10.1016/j.neuroimage.2011.09.015.CrossRefPubMedGoogle Scholar
  31. Karbasforoushan, H., & Woodward, N. D. (2012). Resting-state networks in schizophrenia. Current Topics in Medicinal Chemistry, 12(21), 2404–2414 Retrieved from Scholar
  32. Kaufmann, T., Skåtun, K. C., Alnæs, D., Doan, N. T., Duff, E. P., Tønnesen, S., et al. (2015). Disintegration of sensorimotor brain networks in schizophrenia. Schizophrenia Bulletin. doi: 10.1093/schbul/sbv060.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kaufmann, T., Elvsashagen, T., Alnæs, D., Zak, N., Pedersen, P. O., Norbom, L. B., et al. (2016). The brain functional connectome is robustly altered by lack of sleep. NeuroImage, 127, 324–332. doi: 10.1016/j.neuroimage.2015.12.028.CrossRefPubMedGoogle Scholar
  34. Kaufmann, T., Alnæs, D., Doan, N. T., Brandt, C. L., Andreassen, O. A., & Westlye, L. T. (2017). Delayed stabilization and individualization in connectome development are related to psychiatric disorders. Nature Neuroscience, 20, 513–515. doi: 10.1038/nn.4511.CrossRefPubMedGoogle Scholar
  35. Kay, S. R., Fiszbein, A., & Opler, L. A. (1987). The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13(2), 261–276 Retrieved from Scholar
  36. Kelly Jr., R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., et al. (2010). Visual inspection of independent components: Defining a procedure for artifact removal from fMRI data. Journal of Neuroscience Methods, 189(2), 233–245. doi: 10.1016/j.jneumeth.2010.03.028.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ledoit, O., & Wolf, M. (2003). Improved estimation of the covariance matrix of stock returns with an application to portfolio selection. Journal of Empirical Finance, 10, 603–621.CrossRefGoogle Scholar
  38. Lewis, D. A., Cruz, D. A., Melchitzky, D. S., & Pierri, J. N. (2001). Lamina-specific deficits in parvalbumin-immunoreactive varicosities in the prefrontal cortex of subjects with schizophrenia: Evidence for fewer projections from the thalamus. The American Journal of Psychiatry, 158(9), 1411–1422.CrossRefPubMedGoogle Scholar
  39. Marrelec, G., Krainik, A., Duffau, H., Pelegrini-Issac, M., Lehericy, S., Doyon, J., & Benali, H. (2006). Partial correlation for functional brain interactivity investigation in functional MRI. NeuroImage, 32(1), 228–237. doi: 10.1016/j.neuroimage.2005.12.057.CrossRefPubMedGoogle Scholar
  40. Nichols, T., & Hayasaka, S. (2003). Controlling the familywise error rate in functional neuroimaging: A comparative review. Statistical Methods in Medical Research, 12(5), 419–446 Retrieved from Scholar
  41. Palaniyappan, L., & Cousins, D. A. (2010). Brain networks: Foundations and futures in bipolar disorder. Journal of Mental Health, 19(2), 157–167. doi: 10.3109/09638230903469129.CrossRefPubMedGoogle Scholar
  42. Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922. doi: 10.1016/j.neuroimage.2011.02.046.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pergola, G., Selvaggi, P., Trizio, S., Bertolino, A., & Blasi, G. (2015). The role of the thalamus in schizophrenia from a neuroimaging perspective. Neuroscience and Biobehavioral Reviews. doi: 10.1016/j.neubiorev.2015.01.013.PubMedCrossRefGoogle Scholar
  44. Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., & Beckmann, C. F. (2015a). ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data. NeuroImage, 112, 267–277. doi: 10.1016/j.neuroimage.2015.02.064.CrossRefPubMedGoogle Scholar
  45. Pruim, R. H., Mennes, M., Buitelaar, J. K., & Beckmann, C. F. (2015b). Evaluation of ICA-AROMA and alternative strategies for motion artifact removal in resting state fMRI. NeuroImage, 112, 278–287. doi: 10.1016/j.neuroimage.2015.02.063.CrossRefPubMedGoogle Scholar
  46. Radenbach, K., Flaig, V., Schneider-Axmann, T., Usher, J., Reith, W., Falkai, P., et al. (2010). Thalamic volumes in patients with bipolar disorder. European Archives of Psychiatry and Clinical Neuroscience, 260(8), 601–607. doi: 10.1007/s00406-010-0100-7.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Roalf, D. R., Quarmley, M., Elliott, M. A., Satterthwaite, T. D., Vandekar, S. N., Ruparel, K., et al. (2016). The impact of quality assurance assessment on diffusion tensor imaging outcomes in a large-scale population-based cohort. NeuroImage, 125, 903–919. doi: 10.1016/j.neuroimage.2015.10.068.CrossRefPubMedGoogle Scholar
  48. Salimi-Khorshidi, G., Douaud, G., Beckmann, C. F., Glasser, M. F., Griffanti, L., & Smith, S. M. (2014). Automatic denoising of functional MRI data: Combining independent component analysis and hierarchical fusion of classifiers. NeuroImage, 90, 449–468. doi: 10.1016/j.neuroimage.2013.11.046.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Schäfer, J., & Strimmer, K. (2005). A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics. Statistical Applications in Genetics and Molecular Biology, 4, Article32. doi: 10.2202/1544-6115.1175
  50. Sherman, S. M. (2007). The thalamus is more than just a relay. Current Opinion in Neurobiology, 17(4), 417–422. doi: 10.1016/j.conb.2007.07.003.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Skåtun, K. C., Kaufmann, T., Doan, N. T., Alnæs, D., Cordova-Palomera, A., Jonsson, E. G.,. .. Westlye, L. T. (2016a). Consistent functional connectivity alterations in schizophrenia Spectrum Disorder: A Multisite Study. Schizophr Bull. doi:  10.1093/schbul/sbw145
  52. Skåtun, K. C., Kaufmann, T., Tønnesen, S., Biele, G., Melle, I., Agartz, I., et al. (2016b). Global brain connectivity alterations in patients with schizophrenia and bipolar spectrum disorders. Journal of Psychiatry and Neuroscience, 41(3), 150159. doi: 10.1503/jpn.150159.CrossRefGoogle Scholar
  53. Smith, S. M., & Nichols, T. E. (2009). Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage, 44(1), 83–98. doi: 10.1016/j.neuroimage.2008.03.061.CrossRefPubMedGoogle Scholar
  54. Smith, S. M., Miller, K. L., Salimi-Khorshidi, G., Webster, M., Beckmann, C. F., Nichols, T. E., et al. (2011a). Network modelling methods for FMRI. NeuroImage, 54(2), 875–891. doi: 10.1016/j.neuroimage.2010.08.063.CrossRefPubMedGoogle Scholar
  55. Smith, M. J., Wang, L., Cronenwett, W., Mamah, D., Barch, D. M., & Csernansky, J. G. (2011b). Thalamic morphology in schizophrenia and schizoaffective disorder. Journal of Psychiatric Research, 45(3), 378–385. doi: 10.1016/j.jpsychires.2010.08.003.CrossRefPubMedGoogle Scholar
  56. Smith, S. M., Vidaurre, D., Beckmann, C. F., Glasser, M. F., Jenkinson, M., Miller, K. L., et al. (2013). Functional connectomics from resting-state fMRI. Trends in Cognitive Sciences, 17(12), 666–682. doi: 10.1016/j.tics.2013.09.016.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Smith, S. M., Nichols, T. E., Vidaurre, D., Winkler, A. M., Behrens, T. E., Glasser, M. F., et al. (2015). A positive-negative mode of population covariation links brain connectivity, demographics and behavior. Nature Neuroscience, 18(11), 1565–1567. doi: 10.1038/nn.4125.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Teng, S., Lu, C. F., Wang, P. S., Li, C. T., Tu, P. C., Hung, C. I., et al. (2014). Altered resting-state functional connectivity of striatal-thalamic circuit in bipolar disorder. PloS One, 9(5), e96422. doi: 10.1371/journal.pone.0096422.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Thong, J. Y., Qiu, A., Sum, M. Y., Kuswanto, C. N., Tuan, T. A., Donohoe, G., et al. (2013). Effects of the neurogranin variant rs12807809 on thalamocortical morphology in schizophrenia. PloS One, 8(12), e85603. doi: 10.1371/journal.pone.0085603.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Tregellas, J. R., Davalos, D. B., Rojas, D. C., Waldo, M. C., Gibson, L., Wylie, K., et al. (2007). Increased hemodynamic response in the hippocampus, thalamus and prefrontal cortex during abnormal sensory gating in schizophrenia. Schizophrenia Research, 92(1–3), 262–272. doi: 10.1016/j.schres.2006.12.033.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Trivedi, M. H., Rush, A. J., Ibrahim, H. M., Carmody, T. J., Biggs, M. M., Suppes, T., & Kashner, T. M. (2004). The Inventory of depressive Symptomatology, clinician rating (IDS-C) and self-report (IDS-SR), and the quick Inventory of depressive Symptomatology, clinician rating (QIDS-C) and self-report (QIDS-SR) in public sector patients with mood disorders: A psychometric evaluation. Psychological Medicine, 34(1), 73–82.CrossRefPubMedGoogle Scholar
  62. van Erp, T. G., Hibar, D. P., Rasmussen, J. M., Glahn, D. C., Pearlson, G. D., Andreassen, O. A., et al. (2016). Subcortical brain volume abnormalities in 2028 individuals with schizophrenia and 2540 healthy controls via the ENIGMA consortium. Molecular Psychiatry, 21(4), 547–53. doi: 10.1038/mp.2015.63.
  63. Wang, H. L., Rau, C. L., Li, Y. M., Chen, Y. P., & Yu, R. (2015). Disrupted thalamic resting-state functional networks in schizophrenia. Frontiers in Behavioral Neuroscience, 9, 45. doi: 10.3389/fnbeh.2015.00045.PubMedPubMedCentralCrossRefGoogle Scholar
  64. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397. doi: 10.1016/j.neuroimage.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  65. Womer, F. Y., Wang, L., Alpert, K. I., Smith, M. J., Csernansky, J. G., Barch, D. M., & Mamah, D. (2014). Basal ganglia and thalamic morphology in schizophrenia and bipolar disorder. Psychiatry Research, 223(2), 75–83. doi: 10.1016/j.pscychresns.2014.05.017.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Woodward, N. D., & Heckers, S. (2015). Mapping Thalamocortical functional connectivity in chronic and early stages of psychotic disorders. Biological Psychiatry. doi: 10.1016/j.biopsych.2015.06.026.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Woodward, N. D., Karbasforoushan, H., & Heckers, S. (2012). Thalamocortical dysconnectivity in schizophrenia. The American Journal of Psychiatry, 169(10), 1092–1099. doi: 10.1176/appi.ajp.2012.12010056.CrossRefPubMedGoogle Scholar
  68. Yuan, R., Di, X., Taylor, P. A., Gohel, S., Tsai, Y. H., & Biswal, B. B. (2015). Functional topography of the thalamocortical system in human. Brain Structure & Function. doi: 10.1007/s00429-015-1018-7.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kristina C. Skåtun
    • 1
  • Tobias Kaufmann
    • 1
  • Christine L. Brandt
    • 1
  • Nhat Trung Doan
    • 1
  • Dag Alnæs
    • 1
  • Siren Tønnesen
    • 1
  • Guido Biele
    • 2
  • Anja Vaskinn
    • 1
    • 3
  • Ingrid Melle
    • 1
  • Ingrid Agartz
    • 1
    • 4
  • Ole A. Andreassen
    • 1
  • Lars T. Westlye
    • 1
    • 3
    Email author
  1. 1.NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and AddictionOslo University Hospital & Institute of Clinical Medicine, University of OsloOsloNorway
  2. 2.Department of Child Development and Mental Health, Division of Mental HealthNorwegian Institute of Public HealthOsloNorway
  3. 3.Department of PsychologyUniversity of OsloOsloNorway
  4. 4.Department of Psychiatric ResearchDiakonhjemmet HospitalOsloNorway

Personalised recommendations