Brain Imaging and Behavior

, Volume 11, Issue 2, pp 591–610 | Cite as

Structural imaging of mild traumatic brain injury may not be enough: overview of functional and metabolic imaging of mild traumatic brain injury

  • Samuel S. Shin
  • James W. Bales
  • C. Edward Dixon
  • Misun HwangEmail author
Review Article


A majority of patients with traumatic brain injury (TBI) present as mild injury with no findings on conventional clinical imaging methods. Due to this difficulty of imaging assessment on mild TBI patients, there has been much emphasis on the development of diffusion imaging modalities such as diffusion tensor imaging (DTI). However, basic science research in TBI shows that many of the functional and metabolic abnormalities in TBI may be present even in the absence of structural damage. Moreover, structural damage may be present at a microscopic and molecular level that is not detectable by structural imaging modality. The use of functional and metabolic imaging modalities can provide information on pathological changes in mild TBI patients that may not be detected by structural imaging. Although there are various differences in protocols of positron emission tomography (PET), single photon emission computed tomography (SPECT), functional magnetic resonance imaging (fMRI), electroencephalography (EEG), and magnetoencephalography (MEG) methods, these may be important modalities to be used in conjunction with structural imaging in the future in order to detect and understand the pathophysiology of mild TBI. In this review, studies of mild TBI patients using these modalities that detect functional and metabolic state of the brain are discussed. Each modality’s advantages and disadvantages are compared, and potential future applications of using combined modalities are explored.


Mild traumatic brain injury TBI Concussion Imaging Diffusion tensor imaging; DTI 


Compliance with ethical standards


This study was not funded my any agency.

Conflict of interest

The authors report no conflict of interest in this study.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abbas, K., Shenk, T. E., Poole, V. N., Breedlove, E. L., Leverenz, L. J., Nauman, E. A., et al. (2015). Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connectivity, 5(2), 91–101.PubMedCrossRefGoogle Scholar
  2. Abdel-Dayem, H. M., Abu-Judeh, H., Kumar, M., Atay, S., Naddaf, S., El-Zeftawy, H., et al. (1998). SPECT brain perfusion abnormalities in mild or moderate traumatic brain injury. Clinical Nuclear Medicine, 23(5), 309–317.PubMedCrossRefGoogle Scholar
  3. Abend, N. S., Dlugos, D. J., Hahn, C. D., Hirsch, L. J., & Herman, S. T. (2010). Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocritical Care, 12(3), 382–389.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Abu-Judeh, H. H., Singh, M., Masdeu, J. C., & Abdel-Dayem, H. M. (1998). Discordance between FDG uptake and technetium-99 m-HMPAO brain perfusion in acute traumatic brain injury. Journal of Nuclear Medicine, 39(8), 1357–1359.PubMedGoogle Scholar
  5. Agrawal, D., Gowda, N. K., Bal, C. S., Pant, M., & Mahapatra, A. K. (2005). Is medial temporal injury responsible for pediatric postconcussion syndrome? A prospective controlled study with single-photon emission computerized tomography. Journal of Neurosurgery, 102(2 Suppl), 167–171.PubMedCrossRefGoogle Scholar
  6. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.PubMedPubMedCentralCrossRefGoogle Scholar
  7. Alway, Y., McKay, A., Gould, K. R., Johnston, L., & Ponsford, J. (2016). Factors associated with posttraumatic stress disorder following moderate to severe traumatic brain injury: a prospective study. Depression and Anxiety, 33(1), 19–26.PubMedCrossRefGoogle Scholar
  8. Amen, D. G., Raji, C. A., Willeumier, K., Taylor, D., Tarzwell, R., Newberg, A., et al. (2015). Functional neuroimaging distinguishes posttraumatic stress disorder from traumatic brain injury in focused and large community datasets. PloS One, 10(7), e0129659.PubMedPubMedCentralCrossRefGoogle Scholar
  9. Andersen, A. R. (1989). 99mTc-D,L-hexamethylene-propyleneamine oxime (99mTc-HMPAO): basic kinetic studies of a tracer of cerebral blood flow. Cerebrovascular and Brain Metabolism Reviews, 1(4), 288–318.PubMedGoogle Scholar
  10. Aoki, Y., Inokuchi, R., Gunshin, M., Yahagi, N., & Suwa, H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 83(9), 870–876.PubMedPubMedCentralCrossRefGoogle Scholar
  11. Arciniegas, D. B. (2011). Clinical electrophysiologic assessments and mild traumatic brain injury: state-of-the-science and implications for clinical practice. International Journal of Psychophysiology, 82(1), 41–52.PubMedCrossRefGoogle Scholar
  12. Attwell, D., Buchan, A. M., Charpak, S., Lauritzen, M., Macvicar, B. A., & Newman, E. A. (2010). Glial and neuronal control of brain blood flow. Nature, 468(7321), 232–243.PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bailes, J. E., Petraglia, A. L., Omalu, B. I., Nauman, E., & Talavage, T. (2013). Role of subconcussion in repetitive mild traumatic brain injury. Journal of Neurosurgery, 119(5), 1235–1245.PubMedCrossRefGoogle Scholar
  14. Barbeau, E. B., Lewis, J. D., Doyon, J., Benali, H., Zeffiro, T. A., & Mottron, L. (2015). A greater involvement of posterior brain areas in interhemispheric transfer in autism: fMRI, DWI and behavioral evidences. Neuroimage Clin, 8, 267–280.PubMedPubMedCentralCrossRefGoogle Scholar
  15. Barr, W. B., Prichep, L. S., Chabot, R., Powell, M. R., & McCrea, M. (2012). Measuring brain electrical activity to track recovery from sport-related concussion. Brain Injury, 26(1), 58–66.PubMedCrossRefGoogle Scholar
  16. Barrio, J. R., Small, G. W., Wong, K. P., Huang, S. C., Liu, J., Merrill, D. A., et al. (2015). In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 112(16), E2039–E2047.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bergsneider, M., Hovda, D. A., Shalmon, E., Kelly, D. F., Vespa, P. M., Martin, N. A., et al. (1997). Cerebral hyperglycolysis following severe traumatic brain injury in humans: a positron emission tomography study. Journal of Neurosurgery, 86(2), 241–251.PubMedCrossRefGoogle Scholar
  18. Bigler, E. D., & Maxwell, W. L. (2012). Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. Brain Imaging and Behavior, 6(2), 108–136.PubMedCrossRefGoogle Scholar
  19. Bluhm, R. L., Clark, C. R., McFarlane, A. C., Moores, K. A., Shaw, M. E., & Lanius, R. A. (2011). Default network connectivity during a working memory task. Human Brain Mapping, 32(7), 1029–1035.PubMedCrossRefGoogle Scholar
  20. Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344(8929), 1055–1056.PubMedCrossRefGoogle Scholar
  21. Blumbergs, P. C., Scott, G., Manavis, J., Wainwright, H., Simpson, D. A., & McLean, A. J. (1995). Topography of axonal injury as defined by amyloid precursor protein and the sector scoring method in mild and severe closed head injury. Journal of Neurotrauma, 12(4), 565–572.PubMedCrossRefGoogle Scholar
  22. Boly, M., Phillips, C., Tshibanda, L., Vanhaudenhuyse, A., Schabus, M., Dang-Vu, T. T., et al. (2008). Intrinsic brain activity in altered states of consciousness: how conscious is the default mode of brain function? Annals of the New York Academy of Sciences, 1129, 119–129.PubMedPubMedCentralCrossRefGoogle Scholar
  23. Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C., Ledoux, D., et al. (2009). Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Human Brain Mapping, 30(8), 2393–2400.PubMedCrossRefGoogle Scholar
  24. Bonne, O., Gilboa, A., Louzoun, Y., Kempf-Sherf, O., Katz, M., Fishman, Y., et al. (2003). Cerebral blood flow in chronic symptomatic mild traumatic brain injury. Psychiatry Research, 124(3), 141–152.PubMedCrossRefGoogle Scholar
  25. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Bramlett, H. M., & Dietrich, W. D. (2015). Long-term consequences of traumatic brain injury: current status of potential mechanisms of injury and neurological outcomes. Journal of Neurotrauma, 32(23), 1834–1848.PubMedPubMedCentralCrossRefGoogle Scholar
  27. Breton, F., Pincemaille, Y., Tarriere, C., & Renault, B. (1991). Event-related potential assessment of attention and the orienting reaction in boxers before and after a fight. Biological Psychology, 31(1), 57–71.PubMedCrossRefGoogle Scholar
  28. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.PubMedCrossRefGoogle Scholar
  29. Buki, A., Okonkwo, D. O., & Povlishock, J. T. (1999). Postinjury cyclosporin a administration limits axonal damage and disconnection in traumatic brain injury. Journal of Neurotrauma, 16(6), 511–521.PubMedCrossRefGoogle Scholar
  30. Buxton, R. B., Wong, E. C., & Frank, L. R. (1998). Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magnetic Resonance in Medicine, 39(6), 855–864.PubMedCrossRefGoogle Scholar
  31. Buxton, R. B., Uludag, K., Dubowitz, D. J., & Liu, T. T. (2004). Modeling the hemodynamic response to brain activation. NeuroImage, 23(Suppl 1), S220–S233.PubMedCrossRefGoogle Scholar
  32. Caeyenberghs, K., Leemans, A., Leunissen, I., Michiels, K., & Swinnen, S. P. (2013). Topological correlations of structural and functional networks in patients with traumatic brain injury. Frontiers in Human Neuroscience, 7, 726.PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chen, S. H., Kareken, D. A., Fastenau, P. S., Trexler, L. E., & Hutchins, G. D. (2003). A study of persistent post-concussion symptoms in mild head trauma using positron emission tomography. Journal of Neurology, Neurosurgery, and Psychiatry, 74(3), 326–332.PubMedPubMedCentralCrossRefGoogle Scholar
  34. Coburn, K. L., Lauterbach, E. C., Boutros, N. N., Black, K. J., Arciniegas, D. B., & Coffey, C. E. (2006). The value of quantitative electroencephalography in clinical psychiatry: a report by the committee on research of the American neuropsychiatric association. The Journal of Neuropsychiatry and Clinical Neurosciences, 18(4), 460–500.PubMedCrossRefGoogle Scholar
  35. Coughlin, J. M., Wang, Y., Munro, C. A., Ma, S., Yue, C., Chen, S., et al. (2015). Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. Neurobiology of Disease, 74, 58–65.PubMedCrossRefGoogle Scholar
  36. Courtney, A., & Courtney, M. (2015). The complexity of biomechanics causing primary blast-induced traumatic brain injury: a review of potential mechanisms. Frontiers in Neurology, 6, 221.PubMedPubMedCentralCrossRefGoogle Scholar
  37. Coutin-Churchman, P., Anez, Y., Uzcategui, M., Alvarez, L., Vergara, F., Mendez, L., et al. (2003). Quantitative spectral analysis of EEG in psychiatry revisited: drawing signs out of numbers in a clinical setting. Clinical Neurophysiology, 114(12), 2294–2306.PubMedCrossRefGoogle Scholar
  38. Crane, P. D., Pardridge, W. M., Braun, L. D., Nyerges, A. M., & Oldendorf, W. H. (1981). The interaction of transport and metabolism on brain glucose utilization: a reevaluation of the lumped constant. Journal of Neurochemistry, 36(4), 1601–1604.PubMedCrossRefGoogle Scholar
  39. Cubon, V. A., Putukian, M., Boyer, C., & Dettwiler, A. (2011). A diffusion tensor imaging study on the white matter skeleton in individuals with sports-related concussion. Journal of Neurotrauma, 28(2), 189–201.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Davenport, N. D., Lamberty, G. J., Nelson, N. W., Lim, K. O., Armstrong, M. T., & Sponheim, S. R. (2016). PTSD confounds detection of compromised cerebral white matter integrity in military veterans reporting a history of mild traumatic brain injury. Brain Injury, 30(12), 1491–1500.PubMedCrossRefGoogle Scholar
  41. Delouche, A., Attye, A., Heck, O., Grand, S., Kastler, A., Lamalle, L., et al. (2016). Diffusion MRI: pitfalls, literature review and future directions of research in mild traumatic brain injury. European Journal of Radiology, 85(1), 25–30.PubMedCrossRefGoogle Scholar
  42. Dusick, J. R., Glenn, T. C., Lee, W. N., Vespa, P. M., Kelly, D. F., Lee, S. M., et al. (2007). Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. Journal of Cerebral Blood Flow and Metabolism, 27(9), 1593–1602.PubMedCrossRefGoogle Scholar
  43. Fenton, G. W. (1996). The postconcussional syndrome reappraised. Clinical Electroencephalography, 27(4), 174–182.PubMedGoogle Scholar
  44. Fishman, I., Datko, M., Cabrera, Y., Carper, R. A., & Muller, R. A. (2015). Reduced integration and differentiation of the imitation network in autism: a combined functional connectivity magnetic resonance imaging and diffusion-weighted imaging study. Annals of Neurology, 78(6), 958–969.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Folkersma, H., Boellaard, R., Yaqub, M., Kloet, R. W., Windhorst, A. D., Lammertsma, A. A., et al. (2011). Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. Journal of Nuclear Medicine, 52(8), 1235–1239.PubMedCrossRefGoogle Scholar
  46. Fontaine, A., Azouvi, P., Remy, P., Bussel, B., & Samson, Y. (1999). Functional anatomy of neuropsychological deficits after severe traumatic brain injury. Neurology, 53(9), 1963–1968.PubMedCrossRefGoogle Scholar
  47. Galea, L. A., Wainwright, S. R., Roes, M. M., Duarte-Guterman, P., Chow, C., & Hamson, D. K. (2013). Sex, hormones and neurogenesis in the hippocampus: hormonal modulation of neurogenesis and potential functional implications. Journal of Neuroendocrinology, 25(11), 1039–1061.PubMedCrossRefGoogle Scholar
  48. Gatson, J. W., Stebbins, C., Mathews, D., Harris, T. S., Madden, C., Batjer, H., et al. (2016). Evidence of increased brain amyloid in severe TBI survivors at 1, 12, and 24 months after injury: report of 2 cases. Journal of Neurosurgery, 124(6), 1646–1653.PubMedCrossRefGoogle Scholar
  49. Gentry, L. R., Godersky, J. C., & Thompson, B. (1988). MR imaging of head trauma: review of the distribution and radiopathologic features of traumatic lesions. AJR. American Journal of Roentgenology, 150(3), 663–672.PubMedCrossRefGoogle Scholar
  50. Giza, C. C., & Hovda, D. A. (2001). The Neurometabolic Cascade of concussion. Journal of Athletic Training, 36(3), 228–235.PubMedPubMedCentralGoogle Scholar
  51. Gjedde, A., Wienhard, K., Heiss, W. D., Kloster, G., Diemer, N. H., Herholz, K., et al. (1985). Comparative regional analysis of 2-fluorodeoxyglucose and methylglucose uptake in brain of four stroke patients. With special reference to the regional estimation of the lumped constant. Journal of Cerebral Blood Flow and Metabolism, 5(2), 163–178.PubMedCrossRefGoogle Scholar
  52. Glenn, T. C., Kelly, D. F., Boscardin, W. J., McArthur, D. L., Vespa, P., Oertel, M., et al. (2003). Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. Journal of Cerebral Blood Flow and Metabolism, 23(10), 1239–1250.PubMedCrossRefGoogle Scholar
  53. Gowda, N. K., Agrawal, D., Bal, C., Chandrashekar, N., Tripati, M., Bandopadhyaya, G. P., et al. (2006). Technetium Tc-99 m ethyl cysteinate dimer brain single-photon emission CT in mild traumatic brain injury: a prospective study. AJNR. American Journal of Neuroradiology, 27(2), 447–451.PubMedGoogle Scholar
  54. Grady, M. S., McLaughlin, M. R., Christman, C. W., Valadka, A. B., Fligner, C. L., & Povlishock, J. T. (1993). The use of antibodies targeted against the neurofilament subunits for the detection of diffuse axonal injury in humans. Journal of Neuropathology and Experimental Neurology, 52(2), 143–152.PubMedCrossRefGoogle Scholar
  55. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.PubMedCrossRefGoogle Scholar
  56. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.PubMedCrossRefGoogle Scholar
  57. Gross, H., Kling, A., Henry, G., Herndon, C., & Lavretsky, H. (1996). Local cerebral glucose metabolism in patients with long-term behavioral and cognitive deficits following mild traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 8(3), 324–334.PubMedCrossRefGoogle Scholar
  58. Haglund, Y., & Eriksson, E. (1993). Does amateur boxing lead to chronic brain damage? A review of some recent investigations. The American Journal of Sports Medicine, 21(1), 97–109.PubMedCrossRefGoogle Scholar
  59. Haglund, Y., & Persson, H. E. (1990). Does Swedish amateur boxing lead to chronic brain damage? 3. A retrospective clinical neurophysiological study. Acta Neurologica Scandinavica, 82(6), 353–360.PubMedCrossRefGoogle Scholar
  60. Hagmann, P., Jonasson, L., Maeder, P., Thiran, J. P., Wedeen, V. J., & Meuli, R. (2006). Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics, 26(Suppl 1), S205–S223.PubMedCrossRefGoogle Scholar
  61. Han, K., Mac Donald, C. L., Johnson, A. M., Barnes, Y., Wierzechowski, L., Zonies, D., et al. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive 'mild' blast-related traumatic brain injury. NeuroImage, 84, 76–96.PubMedCrossRefGoogle Scholar
  62. Hattori, N., Huang, S. C., Wu, H. M., Liao, W., Glenn, T. C., Vespa, P. M., et al. (2003). PET investigation of post-traumatic cerebral blood volume and blood flow. Acta Neurochirurgica. Supplement, 86, 49–52.PubMedGoogle Scholar
  63. Hattori, N., Swan, M., Stobbe, G. A., Uomoto, J. M., Minoshima, S., Djang, D., et al. (2009). Differential SPECT activation patterns associated with PASAT performance may indicate frontocerebellar functional dissociation in chronic mild traumatic brain injury. Journal of Nuclear Medicine, 50(7), 1054–1061.PubMedCrossRefGoogle Scholar
  64. Hessen, E., & Nestvold, K. (2009). Indicators of complicated mild TBI predict MMPI-2 scores after 23 years. Brain Injury, 23(3), 234–242.PubMedCrossRefGoogle Scholar
  65. Honce, J. M., Nyberg, E., Jones, I., & Nagae, L. (2016). Neuroimaging of concussion. Physical Medicine and Rehabilitation Clinics of North America, 27(2), 411–428.PubMedCrossRefGoogle Scholar
  66. Hong, Y. T., Veenith, T., Dewar, D., Outtrim, J. G., Mani, V., Williams, C., et al. (2014). Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. JAMA Neurology, 71(1), 23–31.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Huang, M. X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., et al. (2012). An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. NeuroImage, 61(4), 1067–1082.PubMedCrossRefGoogle Scholar
  68. Huang, M. X., Nichols, S., Baker, D. G., Robb, A., Angeles, A., Yurgil, K. A., et al. (2014). Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. Neuroimage Clin, 5, 109–119.PubMedPubMedCentralCrossRefGoogle Scholar
  69. Humayun, M. S., Presty, S. K., Lafrance, N. D., Holcomb, H. H., Loats, H., Long, D. M., et al. (1989). Local cerebral glucose abnormalities in mild closed head injured patients with cognitive impairments. Nuclear Medicine Communications, 10(5), 335–344.PubMedCrossRefGoogle Scholar
  70. Hunter, J. V., Wilde, E. A., Tong, K. A., & Holshouser, B. A. (2012). Emerging imaging tools for use with traumatic brain injury research. Journal of Neurotrauma, 29(4), 654–671.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Hutton, B. F. (2014). The origins of SPECT and SPECT/CT. European Journal of Nuclear Medicine and Molecular Imaging, 41(Suppl 1), S3–16.PubMedCrossRefGoogle Scholar
  72. Inglese, M., Makani, S., Johnson, G., Cohen, B. A., Silver, J. A., Gonen, O., et al. (2005). Diffuse axonal injury in mild traumatic brain injury: a diffusion tensor imaging study. Journal of Neurosurgery, 103(2), 298–303.PubMedCrossRefGoogle Scholar
  73. Iraji, A., Benson, R. R., Welch, R. D., O'Neil, B. J., Woodard, J. L., Ayaz, S. I., et al. (2015). Resting state functional connectivity in mild traumatic brain injury at the acute stage: independent component and seed-based analyses. Journal of Neurotrauma, 32(14), 1031–1045.PubMedPubMedCentralCrossRefGoogle Scholar
  74. Israel, I., Ohsiek, A., Al-Momani, E., Albert-Weissenberger, C., Stetter, C., Mencl, S., et al. (2016). Combined [(18)F]DPA-714 micro-positron emission tomography and autoradiography imaging of microglia activation after closed head injury in mice. Journal of Neuroinflammation, 13(1), 140.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Jacobs, A., Put, E., Ingels, M., Put, T., & Bossuyt, A. (1996). One-year follow-up of technetium-99 m-HMPAO SPECT in mild head injury. Journal of Nuclear Medicine, 37(10), 1605–1609.PubMedGoogle Scholar
  76. Jantzen, K. J., Anderson, B., Steinberg, F. L., & Kelso, J. A. (2004). A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR. American Journal of Neuroradiology, 25(5), 738–745.PubMedGoogle Scholar
  77. Jarbo, K., & Verstynen, T. D. (2015). Converging structural and functional connectivity of orbitofrontal, dorsolateral prefrontal, and posterior parietal cortex in the human striatum. The Journal of Neuroscience, 35(9), 3865–3878.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: where do we go from here? Brain Connectivity, 1(3), 169–183.PubMedPubMedCentralCrossRefGoogle Scholar
  79. Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43.PubMedCrossRefGoogle Scholar
  80. Johnstone, J., & Thatcher, R. W. (1991). Quantitative EEG analysis and rehabilitation issues in mild traumatic brain injury. Journal of Insurance Medicine, 23(4), 228–232.PubMedGoogle Scholar
  81. Jorge, R. E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., et al. (2012). White matter abnormalities in veterans with mild traumatic brain injury. The American Journal of Psychiatry, 169(12), 1284–1291.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kant, R., Smith-Seemiller, L., Isaac, G., & Duffy, J. (1997). Tc-HMPAO SPECT in persistent post-concussion syndrome after mild head injury: comparison with MRI/CT. Brain Injury, 11(2), 115–124.PubMedCrossRefGoogle Scholar
  83. Kennedy, M. R., Wozniak, J. R., Muetzel, R. L., Mueller, B. A., Chiou, H. H., Pantekoek, K., et al. (2009). White matter and neurocognitive changes in adults with chronic traumatic brain injury. Journal of the International Neuropsychological Society, 15(1), 130–136.PubMedPubMedCentralCrossRefGoogle Scholar
  84. Koerte, I. K., Hufschmidt, J., Muehlmann, M., Lin, A. P., & Shenton, M. E. (2016). Advanced Neuroimaging of Mild Traumatic Brain Injury. In D. Laskowitz, & G. Grant (Eds.), Translational Research in Traumatic Brain Injury (Frontiers in Neuroscience). Boca Raton (FL).Google Scholar
  85. Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130(Pt 10), 2508–2519.PubMedCrossRefGoogle Scholar
  86. Krishnamurthy, K., & Laskowitz, D. T. (2016). Cellular and Molecular Mechanisms of Secondary Neuronal Injury following Traumatic Brain Injury. In D. Laskowitz, & G. Grant (Eds.), Translational Research in Traumatic Brain Injury (Frontiers in Neuroscience). Boca Raton (FL).Google Scholar
  87. Laskowski, R. A., Creed, J. A., & Raghupathi, R. (2015). Pathophysiology of Mild TBI: Implications for Altered Signaling Pathways. In F. H. Kobeissy (Ed.), Brain Neurotrauma: Molecular, Neuropsychological, and Rehabilitation Aspects (Frontiers in Neuroengineering). Boca Raton (FL).Google Scholar
  88. Lee, R. R., & Huang, M. (2014). Magnetoencephalography in the diagnosis of concussion. Progress in Neurological Surgery, 28, 94–111.PubMedCrossRefGoogle Scholar
  89. Len, T. K., & Neary, J. P. (2011). Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical Physiology and Functional Imaging, 31(2), 85–93.PubMedGoogle Scholar
  90. Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Barroso y Martin, J. M., & Dominguez-Morales, M. R. (2008a). Brain function in the minimally conscious state: a quantitative neurophysiological study. Clinical Neurophysiology, 119(7), 1506–1514.PubMedCrossRefGoogle Scholar
  91. Leon-Carrion, J., Martin-Rodriguez, J. F., Damas-Lopez, J., Martin, J. M., & Dominguez-Morales Mdel, R. (2008b). A QEEG index of level of functional dependence for people sustaining acquired brain injury: the Seville independence index (SINDI). Brain Injury, 22(1), 61–74.PubMedCrossRefGoogle Scholar
  92. Leveille, J., Demonceau, G., & Walovitch, R. C. (1992). Intrasubject comparison between technetium-99 m-ECD and technetium-99 m-HMPAO in healthy human subjects. Journal of Nuclear Medicine, 33(4), 480–484.PubMedGoogle Scholar
  93. Levin, H. S., Wilde, E., Troyanskaya, M., Petersen, N. J., Scheibel, R., Newsome, M., et al. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. Journal of Neurotrauma, 27(4), 683–694.PubMedCrossRefGoogle Scholar
  94. Lewine, J. D., Davis, J. T., Sloan, J. H., Kodituwakku, P. W., & Orrison Jr., W. W. (1999). Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR. American Journal of Neuroradiology, 20(5), 857–866.PubMedGoogle Scholar
  95. Lipton, M. L., Gulko, E., Zimmerman, M. E., Friedman, B. W., Kim, M., Gellella, E., et al. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology, 252(3), 816–824.PubMedCrossRefGoogle Scholar
  96. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.PubMedCrossRefGoogle Scholar
  97. Loosemore, M., Knowles, C. H., & Whyte, G. P. (2007). Amateur boxing and risk of chronic traumatic brain injury: systematic review of observational studies. BMJ, 335(7624), 809.PubMedPubMedCentralCrossRefGoogle Scholar
  98. MacFarlane, M. P., & Glenn, T. C. (2015). Neurochemical cascade of concussion. Brain Injury, 29(2), 139–153.PubMedCrossRefGoogle Scholar
  99. Magistretti, P. J., & Pellerin, L. (1996). The contribution of astrocytes to the 18F-2-deoxyglucose signal in PET activation studies. Molecular Psychiatry, 1(6), 445–452.PubMedGoogle Scholar
  100. Magistretti, P. J., Pellerin, L., Rothman, D. L., & Shulman, R. G. (1999). Energy on demand. Science, 283(5401), 496–497.PubMedCrossRefGoogle Scholar
  101. Marks, W., Lasek, J., Witkowski, Z., Lass, P., Deja, W., Bialko, M., et al. (2006). Early brain spect in patients after minor craniocerebral trauma. The Neuroradiology Journal, 19(5), 569–576.PubMedCrossRefGoogle Scholar
  102. Marquez de la Plata, C. D., Garces, J., Shokri Kojori, E., Grinnan, J., Krishnan, K., Pidikiti, R., et al. (2011). Deficits in functional connectivity of hippocampal and frontal lobe circuits after traumatic axonal injury. Archives of Neurology, 68(1), 74–84.PubMedPubMedCentralCrossRefGoogle Scholar
  103. Mattioli, F., Grassi, F., Perani, D., Cappa, S. F., Miozzo, A., & Fazio, F. (1996). Persistent post-traumatic retrograde amnesia: a neuropsychological and (18F)FDG PET study. Cortex, 32(1), 121–129.PubMedCrossRefGoogle Scholar
  104. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32(11), 1825–1835.PubMedPubMedCentralCrossRefGoogle Scholar
  105. McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308.PubMedCrossRefGoogle Scholar
  106. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.PubMedCrossRefGoogle Scholar
  107. McCrea, M., Prichep, L., Powell, M. R., Chabot, R., & Barr, W. B. (2010). Acute effects and recovery after sport-related concussion: a neurocognitive and quantitative brain electrical activity study. The Journal of Head Trauma Rehabilitation, 25(4), 283–292.PubMedCrossRefGoogle Scholar
  108. McCrory, P., Meeuwisse, W., Johnston, K., Dvorak, J., Aubry, M., Molloy, M., et al. (2009). Consensus statement on concussion in sport: the 3rd international conference on concussion in sport held in Zurich, November 2008. Journal of Athletic Training, 44(4), 434–448.PubMedPubMedCentralCrossRefGoogle Scholar
  109. McLatchie, G., Brooks, N., Galbraith, S., Hutchison, J. S., Wilson, L., Melville, I., et al. (1987). Clinical neurological examination, neuropsychology, electroencephalography and computed tomographic head scanning in active amateur boxers. Journal of Neurology, Neurosurgery, and Psychiatry, 50(1), 96–99.PubMedPubMedCentralCrossRefGoogle Scholar
  110. Mendez, M. F., Owens, E. M., Reza Berenji, G., Peppers, D. C., Liang, L. J., & Licht, E. A. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. Neuro Rehabilitation, 32(2), 397–407.Google Scholar
  111. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function, 214(5–6), 655–667.CrossRefGoogle Scholar
  112. Messe, A., Caplain, S., Paradot, G., Garrigue, D., Mineo, J. F., Soto Ares, G., et al. (2011). Diffusion tensor imaging and white matter lesions at the subacute stage in mild traumatic brain injury with persistent neurobehavioral impairment. Human Brain Mapping, 32(6), 999–1011.PubMedCrossRefGoogle Scholar
  113. Mitsis, E. M., Riggio, S., Kostakoglu, L., Dickstein, D. L., Machac, J., Delman, B., et al. (2014). Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. Translational Psychiatry, 4, e441.PubMedPubMedCentralCrossRefGoogle Scholar
  114. Mouzon, B. C., Bachmeier, C., Ferro, A., Ojo, J. O., Crynen, G., Acker, C. M., et al. (2014). Chronic neuropathological and neurobehavioral changes in a repetitive mild traumatic brain injury model. Annals of Neurology, 75(2), 241–254.PubMedCrossRefGoogle Scholar
  115. Nakayama, N., Okumura, A., Shinoda, J., Nakashima, T., & Iwama, T. (2006). Relationship between regional cerebral metabolism and consciousness disturbance in traumatic diffuse brain injury without large focal lesions: an FDG-PET study with statistical parametric mapping analysis. Journal of Neurology, Neurosurgery, and Psychiatry, 77(7), 856–862.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Newton, M. R., Greenwood, R. J., Britton, K. E., Charlesworth, M., Nimmon, C. C., Carroll, M. J., et al. (1992). A study comparing SPECT with CT and MRI after closed head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 55(2), 92–94.PubMedPubMedCentralCrossRefGoogle Scholar
  117. Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R. A., Sarkar, R., et al. (2008). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3 T diffusion tensor imaging study of mild traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(5), 967–973.PubMedCrossRefGoogle Scholar
  118. Niskanen, J. P., Airaksinen, A. M., Sierra, A., Huttunen, J. K., Nissinen, J., Karjalainen, P. A., et al. (2013). Monitoring functional impairment and recovery after traumatic brain injury in rats by FMRI. Journal of Neurotrauma, 30(7), 546–556.PubMedPubMedCentralCrossRefGoogle Scholar
  119. Nuwer, M. (1997). Assessment of digital EEG, quantitative EEG, and EEG brain mapping: report of the American Academy of Neurology and the American clinical neurophysiology society. Neurology, 49(1), 277–292.PubMedCrossRefGoogle Scholar
  120. O'Donnell, L. J., & Pasternak, O. (2015). Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophrenia Research, 161(1), 133–141.PubMedCrossRefGoogle Scholar
  121. Paans, A. M. (1997). Positron emission tomography: background, possibilities and perspectives in neuroscience. Acta Neurologica Belgica, 97(3), 150–153.PubMedGoogle Scholar
  122. Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68.PubMedCrossRefGoogle Scholar
  123. Peerless, S. J., & Rewcastle, N. B. (1967). Shear injuries of the brain. Canadian Medical Association Journal, 96(10), 577–582.PubMedPubMedCentralGoogle Scholar
  124. Peskind, E. R., Petrie, E. C., Cross, D. J., Pagulayan, K., McCraw, K., Hoff, D., et al. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war veterans with persistent post-concussive symptoms. NeuroImage, 54(Suppl 1), S76–S82.PubMedCrossRefGoogle Scholar
  125. Petrie, E. C., Cross, D. J., Yarnykh, V. L., Richards, T., Martin, N. M., Pagulayan, K., et al. (2014). Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. Journal of Neurotrauma, 31(5), 425–436.PubMedPubMedCentralCrossRefGoogle Scholar
  126. Povlishock, J. T. (1993). Pathobiology of traumatically induced axonal injury in animals and man. Annals of Emergency Medicine, 22(6), 980–986.PubMedCrossRefGoogle Scholar
  127. Povlishock, J. T., Marmarou, A., McIntosh, T., Trojanowski, J. Q., & Moroi, J. (1997). Impact acceleration injury in the rat: evidence for focal axolemmal change and related neurofilament sidearm alteration. Journal of Neuropathology and Experimental Neurology, 56(4), 347–359.PubMedCrossRefGoogle Scholar
  128. Provenzano, F. A., Jordan, B., Tikofsky, R. S., Saxena, C., Van Heertum, R. L., & Ichise, M. (2010). F-18 FDG PET imaging of chronic traumatic brain injury in boxers: a statistical parametric analysis. Nuclear Medicine Communications, 31(11), 952–957.PubMedCrossRefGoogle Scholar
  129. Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. Annals of Neurology, 70(3), 374–383.PubMedCrossRefGoogle Scholar
  130. Randolph, C., & Miller, M. H. (1988). EEG and cognitive performance following closed head injury. Neuropsychobiology, 20(1), 43–50.PubMedCrossRefGoogle Scholar
  131. Robinson, M. E., Lindemer, E. R., Fonda, J. R., Milberg, W. P., McGlinchey, R. E., & Salat, D. H. (2015). Close-range blast exposure is associated with altered functional connectivity in veterans independent of concussion symptoms at time of exposure. Human Brain Mapping, 36(3), 911–922.PubMedCrossRefGoogle Scholar
  132. Romero, K., Lobaugh, N. J., Black, S. E., Ehrlich, L., & Feinstein, A. (2015). Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury. Psychiatry Research, 231(1), 15–24.PubMedCrossRefGoogle Scholar
  133. Roy, D., McCann, U., Han, D., & Rao, V. (2015). Pathological laughter and crying and psychiatric comorbidity after traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 27(4), 299–303.PubMedCrossRefGoogle Scholar
  134. Rutgers, D. R., Fillard, P., Paradot, G., Tadie, M., Lasjaunias, P., & Ducreux, D. (2008). Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury. AJNR. American Journal of Neuroradiology, 29(9), 1730–1735.PubMedCrossRefGoogle Scholar
  135. Saatman, K. E., Duhaime, A. C., Bullock, R., Maas, A. I., Valadka, A., Manley, G. T., et al. (2008). Classification of traumatic brain injury for targeted therapies. Journal of Neurotrauma, 25(7), 719–738.PubMedPubMedCentralCrossRefGoogle Scholar
  136. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Lin, X., Steinberg, J. L., Radaideh, M., et al. (2012). Altered brain activation in military personnel with one or more traumatic brain injuries following blast. Journal of the International Neuropsychological Society, 18(1), 89–100.PubMedCrossRefGoogle Scholar
  137. Scott, G., Ramlackhansingh, A. F., Edison, P., Hellyer, P., Cole, J., Veronese, M., et al. (2016). Amyloid pathology and axonal injury after brain trauma. Neurology, 86(9), 821–828.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Shin, Y. B., Kim, S. J., Kim, I. J., Kim, Y. K., Kim, D. S., Park, J. H., et al. (2006). Voxel-based statistical analysis of cerebral blood flow using Tc-99 m ECD brain SPECT in patients with traumatic brain injury: group and individual analyses. Brain Injury, 20(6), 661–667.PubMedCrossRefGoogle Scholar
  139. Shin, S. S., Verstynen, T., Pathak, S., Jarbo, K., Hricik, A. J., Maserati, M., et al. (2012). High-definition fiber tracking for assessment of neurological deficit in a case of traumatic brain injury: finding, visualizing, and interpreting small sites of damage. Journal of Neurosurgery, 116(5), 1062–1069.PubMedCrossRefGoogle Scholar
  140. Shin, S. S., Pathak, S., Presson, N., Bird, W., Wagener, L., Schneider, W., et al. (2014). Detection of white matter injury in concussion using high-definition fiber tractography. Progress in Neurological Surgery, 28, 86–93.PubMedCrossRefGoogle Scholar
  141. Sjaardema, H., & Glaser, M. A. (1942). The electro-encephalographic diagnosis of subdural hemorrhage. Annals of Surgery, 116(3), 452–460.PubMedPubMedCentralCrossRefGoogle Scholar
  142. Skudlarski, P., Jagannathan, K., Calhoun, V. D., Hampson, M., Skudlarska, B. A., & Pearlson, G. (2008). Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. NeuroImage, 43(3), 554–561.PubMedPubMedCentralCrossRefGoogle Scholar
  143. Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727.PubMedPubMedCentralCrossRefGoogle Scholar
  144. Smits, M., Houston, G. C., Dippel, D. W., Wielopolski, P. A., Vernooij, M. W., Koudstaal, P. J., et al. (2011). Microstructural brain injury in post-concussion syndrome after minor head injury. Neuroradiology, 53(8), 553–563.PubMedCrossRefGoogle Scholar
  145. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. NeuroImage, 17(3), 1429–1436.PubMedCrossRefGoogle Scholar
  146. Sours, C., Zhuo, J., Janowich, J., Aarabi, B., Shanmuganathan, K., & Gullapalli, R. P. (2013). Default mode network interference in mild traumatic brain injury - a pilot resting state study. Brain Research, 1537, 201–215.PubMedCrossRefGoogle Scholar
  147. Sours, C., Rosenberg, J., Kane, R., Roys, S., Zhuo, J., Shanmuganathan, K., et al. (2015). Associations between interhemispheric functional connectivity and the automated neuropsychological assessment metrics (ANAM) in civilian mild TBI. Brain Imaging and Behavior, 9(2), 190–203.PubMedPubMedCentralCrossRefGoogle Scholar
  148. Spence, A. M., Muzi, M., Graham, M. M., O'Sullivan, F., Krohn, K. A., Link, J. M., et al. (1998). Glucose metabolism in human malignant gliomas measured quantitatively with PET, 1-[C-11]glucose and FDG: analysis of the FDG lumped constant. Journal of Nuclear Medicine, 39(3), 440–448.PubMedGoogle Scholar
  149. Spritzer, M. D., & Galea, L. A. (2007). Testosterone and dihydrotestosterone, but not estradiol, enhance survival of new hippocampal neurons in adult male rats. Developmental Neurobiology, 67(10), 1321–1333.PubMedCrossRefGoogle Scholar
  150. Stocker, R. P., Cieply, M. A., Paul, B., Khan, H., Henry, L., Kontos, A. P., et al. (2014). Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans. NeuroImage, 99, 207–214.PubMedCrossRefGoogle Scholar
  151. Strich, S. J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19(3), 163–185.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Stulemeijer, M., Vos, P. E., van der Werf, S., van Dijk, G., Rijpkema, M., & Fernandez, G. (2010). How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. Journal of Neurotrauma, 27(9), 1585–1595.PubMedCrossRefGoogle Scholar
  153. Sunami, K., Nakamura, T., Ozawa, Y., Kubota, M., Namba, H., & Yamaura, A. (1989). Hypermetabolic state following experimental head injury. Neurosurgical Review, 12(Suppl 1), 400–411.PubMedCrossRefGoogle Scholar
  154. Tebano, M. T., Cameroni, M., Gallozzi, G., Loizzo, A., Palazzino, G., Pezzini, G., et al. (1988). EEG spectral analysis after minor head injury in man. Electroencephalography and Clinical Neurophysiology, 70(2), 185–189.PubMedCrossRefGoogle Scholar
  155. Terry, D. P., Adams, T. E., Ferrara, M. S., & Miller, L. S. (2015). FMRI hypoactivation during verbal learning and memory in former high school football players with multiple concussions. Archives of Clinical Neuropsychology, 30(4), 341–355.PubMedCrossRefGoogle Scholar
  156. Thatcher, R. W., Walker, R. A., Gerson, I., & Geisler, F. H. (1989). EEG discriminant analyses of mild head trauma. Electroencephalography and Clinical Neurophysiology, 73(2), 94–106.PubMedCrossRefGoogle Scholar
  157. Thatcher, R. W., North, D. M., Curtin, R. T., Walker, R. A., Biver, C. J., Gomez, J. F., et al. (2001). An EEG severity index of traumatic brain injury. The Journal of Neuropsychiatry and Clinical Neurosciences, 13(1), 77–87.PubMedCrossRefGoogle Scholar
  158. Thelin, E. P., Just, D., Frostell, A., Haggmark-Manberg, A., Risling, M., Svensson, M., et al. (2016). Protein profiling in serum after traumatic brain injury in rats reveals potential injury markers. Behavioural Brain Research. doi: 10.1016/j.bbr.2016.08.058.
  159. Thomassen, A., Juul-Jensen, P., de Fine Olivarius, B., Braemer, J., & Christensen, A. L. (1979). Neurological, electroencephalographic and neuropsychological examination of 53 former amateur boxers. Acta Neurologica Scandinavica, 60(6), 352–362.PubMedCrossRefGoogle Scholar
  160. Thornton, K. E. (1999). Exploratory investigation into mild brain injury and discriminant analysis with high frequency bands (32-64 Hz). Brain Injury, 13(7), 477–488.PubMedCrossRefGoogle Scholar
  161. Toth, P., Szarka, N., Farkas, E., Ezer, E., Czeiter, E., Amrein, K., et al. (2016). Traumatic brain injury-induced autoregulatory dysfunction and spreading depression-related neurovascular uncoupling: Pathomechanisms, perspectives, and therapeutic implications. American Journal of Physiology. Heart and Circulatory Physiology, 311(5), H1118–H1131.PubMedCrossRefGoogle Scholar
  162. Trudeau, D. L., Anderson, J., Hansen, L. M., Shagalov, D. N., Schmoller, J., Nugent, S., et al. (1998). Findings of mild traumatic brain injury in combat veterans with PTSD and a history of blast concussion. The Journal of Neuropsychiatry and Clinical Neurosciences, 10(3), 308–313.PubMedCrossRefGoogle Scholar
  163. Turner, G. R., McIntosh, A. R., & Levine, B. (2011). Prefrontal compensatory engagement in TBI is due to altered functional engagement of existing networks and not functional reorganization. Frontiers in Systems Neuroscience, 5, 9.PubMedPubMedCentralCrossRefGoogle Scholar
  164. Uruma, G., Hashimoto, K., & Abo, M. (2013). A new method for evaluation of mild traumatic brain injury with neuropsychological impairment using statistical imaging analysis for Tc-ECD SPECT. Annals of Nuclear Medicine, 27(3), 187–202.PubMedCrossRefGoogle Scholar
  165. van den Heuvel, M., Mandl, R., Luigjes, J., & Hulshoff Pol, H. (2008). Microstructural organization of the cingulum tract and the level of default mode functional connectivity. The Journal of Neuroscience, 28(43), 10844–10851.PubMedCrossRefGoogle Scholar
  166. Van Horn, J. D., Bhattrai, A., & Irimia, A. (2016). Multimodal imaging of Neurometabolic pathology due to traumatic brain injury. Trends in Neurosciences, 40(1),39–59.Google Scholar
  167. Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L. J., Bruno, M. A., Boveroux, P., Schnakers, C., et al. (2010). Default network connectivity reflects the level of consciousness in non-communicative brain-damaged patients. Brain, 133(Pt 1), 161–171.PubMedCrossRefGoogle Scholar
  168. Vecchio, F., Miraglia, F., Curcio, G., Altavilla, R., Scrascia, F., Giambattistelli, F., et al. (2015). Cortical brain connectivity evaluated by graph theory in dementia: a correlation study between functional and structural data. Journal of Alzheimer's Disease, 45(3), 745–756.PubMedGoogle Scholar
  169. Vespa, P. M., Boscardin, W. J., Hovda, D. A., McArthur, D. L., Nuwer, M. R., Martin, N. A., et al. (2002). Early and persistent impaired percent alpha variability on continuous electroencephalography monitoring as predictive of poor outcome after traumatic brain injury. Journal of Neurosurgery, 97(1), 84–92.PubMedCrossRefGoogle Scholar
  170. Walker, R. C., Purnell, G. L., Jones-Jackson, L. B., Thomas, K. L., Brito, J. A., & Ferris, E. J. (2004). Introduction to PET imaging with emphasis on biomedical research. Neurotoxicology, 25(4), 533–542.PubMedCrossRefGoogle Scholar
  171. Wang, Y., Yue, X., Kiesewetter, D. O., Niu, G., Teng, G., & Chen, X. (2014). PET imaging of neuroinflammation in a rat traumatic brain injury model with radiolabeled TSPO ligand DPA-714. European Journal of Nuclear Medicine and Molecular Imaging, 41(7), 1440–1449.PubMedPubMedCentralCrossRefGoogle Scholar
  172. Ware, J. B., Biester, R. C., Whipple, E., Robinson, K. M., Ross, R. J., & Nucifora, P. G. (2016). Combat-related mild traumatic brain injury: association between baseline diffusion-tensor imaging findings and long-term outcomes. Radiology, 280(1), 212–219.PubMedCrossRefGoogle Scholar
  173. Wheeler-Kingshott, C. A., & Cercignani, M. (2009). About "axial" and "radial" diffusivities. Magnetic Resonance in Medicine, 61(5), 1255–1260.PubMedCrossRefGoogle Scholar
  174. Wilde, E. A., McCauley, S. R., Hunter, J. V., Bigler, E. D., Chu, Z., Wang, Z. J., et al. (2008). Diffusion tensor imaging of acute mild traumatic brain injury in adolescents. Neurology, 70(12), 948–955.PubMedCrossRefGoogle Scholar
  175. Wilde, E. A., Bouix, S., Tate, D. F., Lin, A. P., Newsome, M. R., Taylor, B. A., et al. (2015). Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits. Brain Imaging and Behavior, 9(3), 367–402.PubMedCrossRefGoogle Scholar
  176. Wu, H. M., Huang, S. C., Vespa, P., Hovda, D. A., & Bergsneider, M. (2013). Redefining the pericontusional penumbra following traumatic brain injury: evidence of deteriorating metabolic derangements based on positron emission tomography. Journal of Neurotrauma, 30(5), 352–360.PubMedPubMedCentralCrossRefGoogle Scholar
  177. Yamaki, T., Imahori, Y., Ohmori, Y., Yoshino, E., Hohri, T., Ebisu, T., et al. (1996). Cerebral hemodynamics and metabolism of severe diffuse brain injury measured by PET. Journal of Nuclear Medicine, 37(7), 1166–1170.PubMedGoogle Scholar
  178. Yang, J., Wu, Z., Renier, N., Simon, D. J., Uryu, K., Park, D. S., et al. (2015). Pathological axonal death through a MAPK cascade that triggers a local energy deficit. Cell, 160(1–2), 161–176.PubMedPubMedCentralCrossRefGoogle Scholar
  179. Yokoyama, K., Matsuki, M., Shimano, H., Sumioka, S., Ikenaga, T., Hanabusa, K., et al. (2008). Diffusion tensor imaging in chronic subdural hematoma: correlation between clinical signs and fractional anisotropy in the pyramidal tract. AJNR. American Journal of Neuroradiology, 29(6), 1159–1163.PubMedCrossRefGoogle Scholar
  180. Yuh, E. L., Cooper, S. R., Mukherjee, P., Yue, J. K., Lingsma, H. F., Gordon, W. A., et al. (2014). Diffusion tensor imaging for outcome prediction in mild traumatic brain injury: a TRACK-TBI study. Journal of Neurotrauma, 31(17), 1457–1477.PubMedPubMedCentralCrossRefGoogle Scholar
  181. Zhang, K., Johnson, B., Pennell, D., Ray, W., Sebastianelli, W., & Slobounov, S. (2010b). Are functional deficits in concussed individuals consistent with white matter structural alterations: combined FMRI & DTI study. Experimental Brain Research, 204(1), 57–70.PubMedPubMedCentralCrossRefGoogle Scholar
  182. Zhang, J., Mitsis, E. M., Chu, K., Newmark, R. E., Hazlett, E. A., & Buchsbaum, M. S. (2010a). Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. Journal of Neurotrauma, 27(1), 35–49.PubMedCrossRefGoogle Scholar
  183. Zhou, Y., Milham, M. P., Lui, Y. W., Miles, L., Reaume, J., Sodickson, D. K., et al. (2012). Default-mode network disruption in mild traumatic brain injury. Radiology, 265(3), 882–892.PubMedPubMedCentralCrossRefGoogle Scholar
  184. Zhu, D. C., Covassin, T., Nogle, S., Doyle, S., Russell, D., Pearson, R. L., et al. (2015). A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. Journal of Neurotrauma, 32(5), 327–341.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Samuel S. Shin
    • 1
  • James W. Bales
    • 2
  • C. Edward Dixon
    • 3
  • Misun Hwang
    • 4
    Email author
  1. 1.Department of MedicineThe Johns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Department of Neurological SurgeryUniversity of Washington School of MedicineSeattleUSA
  3. 3.Department of NeurosurgeryUniversity of Pittsburgh School of MedicinePittsburghUSA
  4. 4.Russel H. Morgan Department of Radiology and Radiological ScienceThe Johns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations