Brain Imaging and Behavior

, Volume 12, Issue 1, pp 188–200 | Cite as

Alteration of regional homogeneity and white matter hyperintensities in amnestic mild cognitive impairment subtypes are related to cognition and CSF biomarkers

  • Xiao Luo
  • Yerfan Jiaerken
  • Peiyu Huang
  • Xiao Jun Xu
  • Tiantian Qiu
  • Yunlu Jia
  • Zhujing Shen
  • Xiaojun Guan
  • Jiong Zhou
  • Minming Zhang
  • for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
Original Research


Amnestic mild cognitive impairment can be further classified as single-domain aMCI (SD-aMCI) with isolated memory deficit, or multi-domain aMCI (MD-aMCI) if memory deficit is combined with impairment in other cognitive domains. Prior studies reported these clinical subtypes presumably differ in etiology. Thus, we aimed to explore the possible mechanisms between different aMCI subtypes by assessing alteration in brain activity and brain vasculature, and their relations with CSF AD biomarkers. 49 healthy controls, 32 SD-aMCI, and 32 MD-aMCI, who had undergone structural scans, resting-state functional MRI (rsfMRI) scans and neuropsychological evaluations, were identified. Regional homogeneity (ReHo) was employed to analyze regional synchronization. Periventricular white matter hyperintensities (PWMH) and deep WMH (DWMH) volume of each participant was quantitatively assessed. AD biomarkers from CSF were also measured. SD-aMCI showed decreased ReHo in medial temporal gyrus (MTG), and increased ReHo in lingual gyrus (LG) and superior temporal gyrus (STG) relative to controls. MD-aMCI showed decreased ReHo, mostly located in precuneus (PCu), LG and postcentral gyrus (PCG), relative to SD-aMCI and controls. As for microvascular disease, MD-aMCI patients had more PWMH burden than SD-aMCI and controls. Correlation analyses indicated mean ReHo in differenced regions were related with memory, language, and executive function in aMCI patients. However, no significant associations between PWMH and behavioral data were found. The Aβ level was related with the ReHo value of STG in SD-aMCI. MD-aMCI displayed different patterns of abnormal regional synchronization and more severe PWMH burden compared with SD-aMCI. Therefore aMCI is not a uniform disease entity, and MD-aMCI group may show more complicated pathologies than SD-aMCI group.


Alzheimer’s disease Cognition Mild cognitive impairment CSF White matter hyperintensities Magnetic resonance imaging Precuneus 



This study was funded by the 12th Five-year Plan for National Science and Technology Supporting Program of China (Grant No. 2012BAI10B04), Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ14H180001 and Grant No. Y16H090026).

Data collection and sharing for this project was funded by the Alzheimer”s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.;Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; ElanPharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliatedcompany Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen AlzheimerImmunotherapy Research & Development, LLC.; Johnson & Johnson PharmaceuticalResearch & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; MesoScaleDiagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis PharmaceuticalsCorporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; andTransition Therapeutics. The Canadian Institutes of Health Research is providing funds tosupport ADNI clinical sites in Canada. Private sector contributions are facilitated by theFoundation for the National Institutes of Health ( The grantee organization isthe Northern California Institute for Research and Education, and the study is coordinatedby the Alzheimer”s Disease Cooperative Study at the University of California, San Diego.ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Compliance with ethical standards


This study was funded by National Key Research and Development Program of China (No. 2016YFC1306600), Zhejiang Provincial Natural Science Foundation of China (Grant No. LZ14H180001 and Grant No. Y16H090026).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

“All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.”

Informed consent

Written informed consent was obtained from all participants and/or authorized representatives and the study partners before any protocol-specific procedures were carried out in the ADNI study.


  1. Babić, M., Štrac, D. Š., Mückšeler, D. P., Nela, S., Gabrijela, H., Patrick, R., & Šimić, G. (2014). Update on the core and developing cerebrospinal fluid biomarkers for Alzheimer disease. Croatian Medical Journal, 55(4), 347–365.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., et al. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neuroscience Letters, 438(1), 111–115.CrossRefPubMedGoogle Scholar
  3. Bermejopareja, F., Contador, I., Trincado, R., Lora, D., Sánchezferro, Á., Mitchell, A. J., et al. (2016). Prognostic significance of mild cognitive impairment subtypes for dementia and mortality: data from the NEDICES cohort. Journal of Alzheimers Disease Jad, 50(3).Google Scholar
  4. Blennow, K., & Hampel, H. (2003). CSF markers for incipient Alzheimer's disease. Lancet Neurology, 2(10), 605–613.CrossRefPubMedGoogle Scholar
  5. Bombois, S., Debette, S., Delbeuck, X., Bruandet, A., Lepoittevin, S., Delmaire, C., et al. (2007). Prevalence of subcortical vascular lesions and association with executive function in mild cognitive impairment subtypes. Stroke; a journal of cerebral circulation, 38(9), 2595–2597.CrossRefGoogle Scholar
  6. Bozoki, A., Giordani, B., Heidebrink, J. L., Berent, S., & Foster, N. L. (2001). Mild cognitive impairments predict dementia in nondemented elderly patients with memory loss. JAMA Neurology, 58(3), 411–416.Google Scholar
  7. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112(4), 389–404.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Brambati, S. M., Belleville, S., Kergoat, M. J., Chayer, C., Gauthier, S., & Joubert, S. (2009). Single- and multiple-domain amnestic mild cognitive impairment: two sides of the same coin? Dementia and Geriatric Cognitive Disorders, 28(6), 541–549.CrossRefPubMedGoogle Scholar
  9. Brickman, A. M., Schupf, N., Manly, J. J., Stern, Y., Luchsinger, J. A., Provenzano, F. A., et al. (2014). APOE-ε4 and risk for Alzheimer’s disease: do regionally distributed white matter hyperintensities play a role? Alzheimers Dement, 10(6), 619–629.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Buckner, R. L., Andrewshanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124(10), 1–38.CrossRefPubMedGoogle Scholar
  11. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 29(6), 1860–1873.CrossRefGoogle Scholar
  12. Caffarra, P., Ghetti, C., Concari, L., & Venneri, A. (2008). Differential patterns of hypoperfusion in subtypes of mild cognitive impairment. Open Neuroimaging Journal, 2(1), 20–28.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Campbell KL., Grigg O, Saverino C, Churchill N, Grady C. L. (2013). Age differences in the intrinsic functional connectivity of default network subsystems. Frontiers in Aging Neuroscience, 5(12), 73.Google Scholar
  14. Chang, Y. L., Chen, T. F., Shih, Y. C., Chiu, M. J., Yan, S. H., & Tseng, W. Y. (2015). Regional cingulum disruption, not gray matter atrophy, detects cognitive changes in amnestic mild cognitive impairment subtypes. Journal of Alzheimers Disease Jad, 44(1), 125–138.PubMedGoogle Scholar
  15. Dikker, S., Silbert, L. J., Hasson, U., & Zevin, J. D. (2014). On the same wavelength: predictable language enhances speaker-listener brain-to-brain synchrony in posterior superior temporal gyrus. Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(18), 6267–6272.CrossRefGoogle Scholar
  16. Hachinski, V. C., Iliff, L. D., Zilhka, E., Du Boulay, G. H., Mcallister, V. L., Marshall, J., et al. (1988). Cerebral blood flow in dementia. New York: N Plenum Press.Google Scholar
  17. He, Y., Wang, L., Zang, Y., Tian, L., Zhang, X., Li, K., & Jiang, T. (2007). Regional coherence changes in the early stages of Alzheimer’s disease: a combined structural and resting-state functional MRI study. NeuroImage, 35(2), 488–500.CrossRefPubMedGoogle Scholar
  18. He, J., Farias, S., Martinez, O., Reed, B., Mungas, D., & Decarli, C. (2009). Differences in brain volume, hippocampal volume, cerebrovascular risk factors, and apolipoprotein E4 among mild cognitive impairment subtypes. Archives of Neurology, 66(11), 1393–1399.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Keiper, M. D., Grossman, R. I., Hirsch, J. A., Bolinger, L., Ott, I. L., Mannon, L. J., et al. (1998). MR identification of white matter abnormalities in multiple sclerosis: a comparison between 1.5 T and 4 T. American Journal of Neuroradiology, 19(8), 1489–1493.PubMedGoogle Scholar
  20. Kendall MG. (2010). Rank Correlation Methods, 4 edn. A Charles Griffin:London.Google Scholar
  21. Khan, U. A., Liu, L., Provenzano, F. A., Berman, D. E., Profaci, C. P., Sloan, R., et al. (2014). Molecular drivers and cortical spread of lateral entorhinal cortex dysfunction in preclinical Alzheimer's disease. Nature Neuroscience, 17(2), 304–311.CrossRefPubMedGoogle Scholar
  22. Kim, K. W., Macfall, J. R., & Payne, M. E. (2008). Classification of white matter lesions on magnetic resonance imaging in elderly persons. Biological Psychiatry, 64(4), 273–280.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Krishnan, M. S., O'Brien, J. T., Firbank, M. J., Pantoni, L., Carlucci, G., Erkinjuntti, T., et al. (2006). Relationship between periventricular and deep white matter lesions and depressive symptoms in older people. The LADIS study. International Journal of Geriatric Psychiatry, 21(10), 983–989.CrossRefPubMedGoogle Scholar
  24. Li, H., Liang, Y., Chen, K., Li, X., Shu, N., Zhang, Z., & Wang, Y. (2013a). Different patterns of white matter disruption among amnestic mild cognitive impairment subtypes: relationship with neuropsychological performance. Journal of Alzheimers Disease Jad, 36(2), 365–376.PubMedGoogle Scholar
  25. Li, X., Zheng, L., Zhang, J., Zhou, X., Ma, C., Chen, Y., et al. (2013b). Differences in functional brain activation and hippocampal volume among amnestic mild cognitive impairment subtypes. Current Alzheimer Research, 10(10), 1080–1089.CrossRefPubMedGoogle Scholar
  26. Li, X., Cao, M., Zhang, J., Chen, K., Chen, Y., Ma, C., et al. (2014). Structural and functional brain changes in the default mode network in subtypes of amnestic mild cognitive impairment. Journal of Geriatric Psychiatry and Neurology, 27(3), 188–198.CrossRefPubMedGoogle Scholar
  27. Li, H. J., Hou, X. H., Liu, H. H., Yue, C. L., He, Y., & Zuo, X. N. (2015). Toward systems neuroscience in mild cognitive impairment and Alzheimer's disease: a meta-analysis of 75 fMRI studies. Human Brain Mapping, 36(3), 1217–1232.CrossRefPubMedGoogle Scholar
  28. Lopez, O. L., Jagust, W. J., Dekosky, S. T., Becker, J. T., Fitzpatrick, A., Dulberg, C., et al. (2003). Prevalence and classification of mild cognitive impairment in the cardiovascular health study cognition study: part 1. Archives of Neurology, 60(10), 1385–1389.CrossRefPubMedGoogle Scholar
  29. Mechelli, A., Humphreys, G. W., Mayall, K., Olson, A., & Price, C. J. (2000). Differential effects of word length and visual contrast in the fusiform and lingual gyri during reading. Proceedings of the Biological Sciences, 267(1455), 1909–1913.CrossRefGoogle Scholar
  30. Melhem, E. R., Herskovits, E. H., Karli-Oguz, K., Golay, X., Hammoud, D. A., Fortman, B. J., et al. (2003). Defining thresholds for changes in size of simulated T2-hyperintense brain lesions on the basis of qualitative comparisons. AJR American Journal of Roentgenology, 180(1), 65–69.CrossRefPubMedGoogle Scholar
  31. Miner, T., & Ferraro, F. R. (1998). The role of speed of processing, inhibitory mechanisms, and presentation order in trail-making test performance. Brain and Cognition, 38(2), 246–253.CrossRefPubMedGoogle Scholar
  32. Nelson, A. J., & Chen, R. (2008). Digit Somatotopy within cortical areas of the postcentral gyrus in humans. Cerebral Cortex, 18(10), 2341–2351.CrossRefPubMedGoogle Scholar
  33. Onitsuka, T., Shenton, M. E., Salisbury, D. F., Dickey, C. C., Kasai, K., Toner, S. K., et al. (2007). Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. American Journal of Psychiatry, 163(12), 2103–2110.Google Scholar
  34. O'Sullivan, M., Jones, D. K., Summers, P. E., Morris, R. G., Williams, S. C., & Markus, H. S. (2001). Evidence for cortical "disconnection" as a mechanism of age-related cognitive decline. Neurology, 57(4), 632–638.CrossRefPubMedGoogle Scholar
  35. Petersen, R. C., Stevens, J. C., Ganguli, M., Tangalos, E. G., Cummings, J. L., & DeKosky, S. T. (2001). Practice parameter: early detection of dementia: mild cognitive impairment (an evidence-based review). Report of the quality standards Subcommittee of the American Academy of neurology. Neurology, 56(9), 1133–1142.CrossRefPubMedGoogle Scholar
  36. Prins, N. D., van Dijk, E. J., den Heijer, T., Vermeer, S. E., Koudstaal, P. J., Oudkerk, M., et al. (2004). Cerebral white matter lesions and the risk of dementia. JAMA Neurology, 61(10), 1531–1534.Google Scholar
  37. Reyngoudt, H., Claeys, T., Vlerick, L., Verleden, S., Acou, M., Deblaere, K., et al. (2012). Age-related differences in metabolites in the posterior cingulate cortex and hippocampus of normal ageing brain: a 1H-MRS study. European Journal of Radiology, 81(3), 223–231.CrossRefGoogle Scholar
  38. Seo, S. W., Lee, J. M., Im, K., Park, J. S., Kim, S. H., Kim, S. T., et al. (2011). Cortical thinning related to periventricular and deep white matter hyperintensities. Neurobiology of Aging, 33(7), 1156–1167.CrossRefPubMedGoogle Scholar
  39. Shaw, L. M., Vanderstichele, H., Knapikczajka, M., Figurski, M., Coart, E., Blennow, K., et al. (2011). Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathologica, 121(5), 597–609.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Shu, N., Liang, Y., Li, H., Zhang, J., Li, X., Wang, L., et al. (2012). Disrupted topological organization in white matter structural networks in amnestic mild cognitive impairment: relationship to subtype. Radiology, 265(2), 518–527.CrossRefPubMedGoogle Scholar
  41. Sicotte, N. L., Voskuhl, R. R., Bouvier, S., Klutch, R., Cohen, M. S., & Mazziotta, J. C. (2003). Comparison of multiple sclerosis lesions at 1.5 and 3.0 tesla. Investigative Radiology, 38(7), 423–427.PubMedGoogle Scholar
  42. Thomas, A. J., O'Brien, J. T., Barber, R., Mcmeekin, W., & Perry, R. (2003). A neuropathological study of periventricular white matter hyperintensities in major depression. Journal of Affective Disorders, 76(1–3), 49–54.CrossRefPubMedGoogle Scholar
  43. Tomasino, B., Marin, D., Canderan, C., Maieron, M., Budai, R., Fabbro, F., & Skrap, M. (2014). Involuntary switching into the native language induced by electrocortical stimulation of the superior temporal gyrus: a multimodal mapping study. Neuropsychologia, 62(1), 87–100.CrossRefPubMedGoogle Scholar
  44. Trachtenberg, A. J., Filippini, N., & Mackay, C. E. (2012). The effects of APOE-epsilon 4 on the BOLD response. Neurobiology of Aging, 33(2), 323–334.CrossRefPubMedGoogle Scholar
  45. Troyer, A. K., Moscovitch, M., Winocur, G., Alexander, M. P., & Stuss, D. (1998). Clustering and switching on verbal fluency: the effects of focal frontal- and temporal-lobe lesions. Neuropsychologia, 36(6), 499–504.CrossRefPubMedGoogle Scholar
  46. van de La, P., Verhey, F., Frisoni, G. B., Tsolaki, M., Papapostolou, P., Nobili, F., et al. (2009). White matter hyperintensities and medial temporal lobe atrophy in clinical subtypes of mild cognitive impairment: the DESCRIPA study. Journal of Neurology, Neurosurgery, and Psychiatry, 80(10), 1069–1074.CrossRefGoogle Scholar
  47. Whitwell, J. L., Petersen, R. C., Negash, S., Weigand, S. D., Kantarci, K., Ivnik, R. J., et al. (2007). Patterns of atrophy differ among specific subtypes of mild cognitive impairment. Archives of Neurology, 64(8), 1130–1138.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Winblad, B., Palmer, K., Kivipelto, M., Jelic, V., Fratiglioni, L., Wahlund, L. O., et al. (2004). Mild cognitive impairment--beyond controversies, towards a consensus: report of the international working group on mild cognitive impairment. Journal of Internal Medicine, 256(3), 181–182.CrossRefGoogle Scholar
  49. Xiao, L., Jiaerken, Y., Yu, X., Huang, P., Qiu, T., Jia, Y., et al. (2016). Affect of APOE on information processing speed in non-demented elderly population: a preliminary structural MRI study. Brain Imaging and Behavior, 53, 1–9.Google Scholar
  50. Yuan, X., Han, Y., Wei, Y., Xia, M., Sheng, C., Jia, J., & He, Y. (2016). Regional homogeneity changes in amnestic mild cognitive impairment patients. Neuroscience Letters, 629, 1–8.CrossRefPubMedGoogle Scholar
  51. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400.CrossRefPubMedGoogle Scholar
  52. Zhang, Z., Liu, Y., Jiang, T., Zhou, B., An, N., Dai, H., et al. (2012b). Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by regional homogeneity. NeuroImage, 59(2), 1429–1440.CrossRefPubMedGoogle Scholar
  53. Zhang, H., Sachdev, P. S., Wen, W., Kochan, N. A., Crawford, J. D., Brodaty, H., et al. (2012a). Gray matter atrophy patterns of mild cognitive impairment subtypes. Journal of the Neurological Sciences, 315(315), 26–32.CrossRefPubMedGoogle Scholar
  54. Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., et al. (2013). Toward reliable characterization of functional homogeneity in the human brain: Preprocessing, scan duration, imaging resolution and computational space. Neuroimage, 65(4), 189a.Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Xiao Luo
    • 1
  • Yerfan Jiaerken
    • 1
  • Peiyu Huang
    • 1
  • Xiao Jun Xu
    • 1
  • Tiantian Qiu
    • 1
  • Yunlu Jia
    • 1
  • Zhujing Shen
    • 1
  • Xiaojun Guan
    • 1
  • Jiong Zhou
    • 2
  • Minming Zhang
    • 1
  • for the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
  1. 1.Department of RadiologyThe 2nd Affiliated Hospital of Zhejiang University, School of MedicineHangzhouChina
  2. 2.Department of NeurologyThe 2nd Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina

Personalised recommendations