Brain Imaging and Behavior

, Volume 12, Issue 1, pp 168–179 | Cite as

Local resting state functional connectivity in autism: site and cohort variability and the effect of eye status

  • Sangeeta Nair
  • R. Joanne Jao Keehn
  • Michael M. Berkebile
  • José Omar Maximo
  • Natalia Witkowska
  • Ralph-Axel MüllerEmail author
Original Research


Autism spectrum disorder (ASD) is a neurodevelopmental disorder with prominent impairments in sociocommunicative abilities, which have been linked to anomalous brain network organization. Despite ample evidence of atypical long-distance connectivity, the literature on local connectivity remains small and divergent. We used resting-state functional MRI regional homogeneity (ReHo) as a local connectivity measure in comparative analyses across several well-matched low-motion subsamples from the Autism Brain Imaging Data Exchange and in-house data, with a grand total of 147 ASD and 184 typically developing (TD) participants, ages 7–18 years. We tested for group differences in each subsample, with additional focus on the difference between eyes-open and eyes-closed resting states. Despite selection of highest quality data and tight demographic and motion matching between groups and across samples, few effects in exactly identical loci (voxels) were found across samples. However, there was gross consistency across all eyes-open samples of local overconnectivity (ASD > TD) in posterior, visual regions. There was also gross consistency of local underconnectivity (ASD < TD) in cingulate gyrus, although exact loci varied between mid/posterior and anterior sections. While all eyes-open datasets showed the described gross similarities, the pattern of group differences for participants scanned with eyes closed was different, with local overconnectivity in ASD in posterior cingulate gyrus, but underconnectivity in some visual regions. Our findings suggest that fMRI local connectivity measures may be relatively susceptible to site and cohort variability and that some previous inconsistencies in the ASD ReHo literature may be reconciled by more careful consideration of eye status.


Autism spectrum disorder Functional MRI Local connectivity Cingulate gyrus Visual cortex Default mode network 


Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the appropriate institutional research boards and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


This study was supported by the National Institutes of Health R01 MH081023 (PI: RAM), K01 MH097972 (PI: Inna Fishman), and IMSD R25GM058906.

Conflict of interest

All authors declare that they have no conflict of interest related to the study presented here.

Supplementary material

11682_2017_9678_MOESM1_ESM.docx (335 kb)
ESM 1 (DOCX 334 kb)
11682_2017_9678_Fig2_ESM.gif (297 kb)
Supplementary Fig. 1

Surface renderings of regional homogeneity differences between ASD and TD groups for each subsample from analyses without global signal regression and with non-standardized KCC-Z ReHo values (a), and without GSR and with standardized KCC ReHo values (b). In all supplementary figures, the two columns on the left depict the left hemisphere and the two columns on the right depict the right hemisphere (p < .05, corrected).

11682_2017_9678_MOESM2_ESM.tiff (85.8 mb)
High resolution image (TIFF 87857 kb)
11682_2017_9678_Fig3_ESM.gif (124 kb)
Supplementary Fig. 2

Surface renderings for direct comparison of ReHo between eyes open and eyes closed cohorts for ASD and TD groups without GSR and with non-standardized KCC-Z ReHo values (a) and without GSR and with standardized KCC ReHo values (b).

11682_2017_9678_MOESM3_ESM.tiff (33 mb)
High resolution image (TIFF 33839 kb)
11682_2017_9678_Fig4_ESM.gif (175 kb)
Supplementary Fig. 3

Surface renderings of regional homogeneity differences between ASD and TD groups (a), and between ABIDE eyes open and eyes closed cohorts shown separately for ASD and TD groups (b) for multi-site subsamples (with site and head motion included as nuisance covariates).

11682_2017_9678_MOESM4_ESM.tiff (55.2 mb)
High resolution image (TIFF 56561 kb)
11682_2017_9678_Fig5_ESM.gif (144 kb)
Supplementary Fig. 4

Surface renderings of regional homogeneity differences between ASD and TD groups for each subsample, limiting inclusion to sites contributing ≥10 participants per group.

11682_2017_9678_MOESM5_ESM.tiff (32.5 mb)
High resolution image (TIFF 33297 kb)


  1. Abbott, A. E., Nair, A., Keown, C. L., Datko, M. C., Jahedi, A., Fishman, I., & Müller, R.-A. (2015). Patterns of atypical functional connectivity and behavioral links in autism differ between default, salience, and executive networks. Cerebral Cortex, 26, 4034.CrossRefPubMedGoogle Scholar
  2. Agam, Y., Joseph, R. M., Barton, J. J., & Manoach, D. S. (2010). Reduced cognitive control of response inhibition by the anterior cingulate cortex in autism spectrum disorders. NeuroImage, 52(1), 336–347.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anderson, J. S., Zielinski, B. A., Nielsen, J. A., & Ferguson, M. A. (2014). Complexity of low-frequency blood oxygen level-dependent fluctuations covaries with local connectivity. Human Brain Mapping, 35(4), 1273–1283.CrossRefPubMedGoogle Scholar
  4. Assaf, M., Jagannathan, K., Calhoun, V. D., Miller, L., Stevens, M. C., Sahl, R., O'Boyle, J. G., Schultz, R. T., & Pearlson, G. D. (2010). Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. NeuroImage, 53(1), 247–256.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Belmonte, M. K., Allen, G., Beckel-Mitchener, A., Boulanger, L. M., Carper, R. A., & Webb, S. J. (2004). Autism and abnormal development of brain connectivity. The Journal of Neuroscience, 24(42), 9228–9231.CrossRefPubMedGoogle Scholar
  6. Brown, G. G., Mathalon, D. H., Stern, H., Ford, J., Mueller, B., Greve, D. N., et al. (2011). Multisite reliability of cognitive BOLD data. NeuroImage, 54(3), 2163–2175.CrossRefPubMedGoogle Scholar
  7. Burrows, C. A., Laird, A. R., & Uddin, L. Q. (2016). Functional connectivity of brain regions for self- and other-evaluation in children, adolescents and adults with autism. Developmental Science, 19, 564.CrossRefPubMedGoogle Scholar
  8. Casanova, M. F., van Kooten, I. A., Switala, A. E., van Engeland, H., Heinsen, H., Steinbusch, H. W., Hof, P. R., Trippe, J., Stone, J., & Schmitz, C. (2006). Minicolumnar abnormalities in autism. Acta Neuropathol (Berl), 112(3), 287–303.CrossRefGoogle Scholar
  9. Cerliani, L., Mennes, M., Thomas, R. M., Di Martino, A., Thioux, M., & Keysers, C. (2015). Increased functional connectivity between subcortical and cortical resting-state networks in autism Spectrum disorder. JAMA Psychiatry., 72, 767.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Cox, R. W. (1996). AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.Google Scholar
  11. Dajani D. R., Uddin L. Q. (2015) Local brain connectivity across development in autism spectrum disorder: A cross-sectional investigation. Autism research: official journal of the International Society for Autism Research. 9:43.Google Scholar
  12. Dakin, S., & Frith, U. (2005). Vagaries of visual perception in autism. Neuron, 48(3), 497–507.CrossRefPubMedGoogle Scholar
  13. Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., Anderson, J. S., Assaf, M., Bookheimer, S. Y., Dapretto, M., Deen, B., Delmonte, S., Dinstein, I., Ertl-Wagner, B., Fair, D. A., Gallagher, L., Kennedy, D. P., Keown, C. L., Keysers, C., Lainhart, J. E., Lord, C., Luna, B., Menon, V., Minshew, N. J., Monk, C. S., Mueller, S., Müller, R. A., Nebel, M. B., Nigg, J. T., O'Hearn, K., Pelphrey, K. A., Peltier, S. J., Rudie, J. D., Sunaert, S., Thioux, M., Tyszka, J. M., Uddin, L. Q., Verhoeven, J. S., Wenderoth, N., Wiggins, J. L., Mostofsky, S. H., & Milham, M. P. (2014). The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19(6), 659–667.CrossRefPubMedGoogle Scholar
  14. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., Fox, M. D., Snyder, A. Z., Vincent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104(26), 11073–11078.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Doyle-Thomas K. A., Lee W., Foster N. E., Tryfon A., Ouimet T., Hyde K. L., Evans A. C., Lewis J., Zwaigenbaum L., Anagnostou E., NeuroDevNet A. S. D. I. G. (2015) Atypical functional brain connectivity during rest in autism spectrum disorders. Annals of Neurology, 77(5), 866–876.Google Scholar
  16. Ebisch, S. J., Gallese, V., Willems, R. M., Mantini, D., Groen, W. B., Romani, G. L., Buitelaar, J. K., & Bekkering, H. (2011). Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Human Brain Mapping, 32(7), 1013–1028.CrossRefPubMedGoogle Scholar
  17. Eilam-Stock, T., Xu, P., Cao, M., Gu, X., Van Dam, N. T., Anagnostou, E., Kolevzon, A., Soorya, L., Park, Y., Siller, M., He, Y., Hof, P. R., & Fan, J. (2014). Abnormal autonomic and associated brain activities during rest in autism spectrum disorder. Brain, 137(Pt 1), 153–171.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eussen, M. L., Gool, A. R., Louwerse, A., Verhulst, F. C., & Greaves-Lord, K. (2016). Superior disembedding performance in childhood predicts adolescent severity of repetitive behaviors: a seven years follow-up of individuals with autism Spectrum disorder. Autism research : official journal of the International Society for Autism Research, 9(2), 282–291.CrossRefGoogle Scholar
  19. Falahpour, M., Thompson, W. K., Abbott, A. E., Jahedi, A., Mulvey, M. E., Datko, M., Liu, T. T., & Müller, R. A. (2016). Underconnected, but not broken? Dynamic functional connectivity MRI shows underconnectivity in autism is linked to increased intra-individual variability across time. Brain Connectivity, 6(5), 403–414.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of a cluster-size threshold. Magnetic Resonance in Medicine, 33(5), 636–647.CrossRefPubMedGoogle Scholar
  21. Friedman, L., Glover, G. H., & The FBIRN Consortium. (2006). Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. NeuroImage, 33(2), 471–481.CrossRefGoogle Scholar
  22. Friedman, L., Stern, H., Brown, G. G., Mathalon, D. H., Turner, J., Glover, G. H., et al. (2008). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping, 29(8), 958–972.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Geschwind, D. H., & State, M. W. (2015). Gene hunting in autism spectrum disorder: on the path to precision medicine. Lancet Neurology, 14, 1109.CrossRefPubMedGoogle Scholar
  24. Gotts, S. J., Saad, Z. S., Jo, H. J., Wallace, G. L., Cox, R. W., & Martin, A. (2013). The perils of global signal regression for group comparisons: a case study of autism Spectrum disorders. Frontiers in Human Neuroscience, 7, 356.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Greicius, M. (2008). Resting-state functional connectivity in neuropsychiatric disorders. Current Opinion in Neurology, 21(4), 424–430.CrossRefPubMedGoogle Scholar
  26. Happe, F. (1999). Autism: cognitive deficit or cognitive style? Trends in Cognitive Sciences, 3(6), 216–222.CrossRefPubMedGoogle Scholar
  27. Horlin, C., Black, M., Falkmer, M., & Falkmer, T. (2016). Proficiency of individuals with autism spectrum disorder at disembedding figures: a systematic review. Developmental Neurorehabilitation, 19(1), 54–63.CrossRefPubMedGoogle Scholar
  28. Itahashi, T., Yamada, T., Watanabe, H., Nakamura, M., Ohta, H., Kanai, C., Iwanami, A., Kato, N., & Hashimoto, R. (2015). Alterations of local spontaneous brain activity and connectivity in adults with high-functioning autism spectrum disorder. Molecular autism, 6, 30.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jao Keehn R. J., Sanchez S. S., Stewart C. R., Zhao W., Grenesko-Stevens E. L., Keehn B., Müller R.-A. (2016). Impaired downregulation of visual cortex during auditory processing is associated with autism symptomatology in children and adolescents with autism spectrum disorder. Autism research: official journal of the International Society for Autism Research.Google Scholar
  30. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.Google Scholar
  31. Jiang, L., Hou, X. H., Yang, N., Yang, Z., & Zuo, X. N. (2015). Examination of local functional homogeneity in autism. BioMed Research International, 2015, 174371.PubMedPubMedCentralGoogle Scholar
  32. Joseph, R. M., Keehn, B., Connolly, C., Wolfe, J. M., & Horowitz, T. S. (2009). Why is visual search superior in autism spectrum disorder? Developmental Science, 12(6), 1083–1096.CrossRefPubMedGoogle Scholar
  33. Just, M. A., Cherkassky, V. L., Keller, T. A., & Minshew, N. J. (2004). Cortical activation and synchronization during sentence comprehension in high-functioning autism: evidence of underconnectivity. Brain, 127(Pt 8), 1811–1821.CrossRefPubMedGoogle Scholar
  34. Kaldy, Z., Giserman, I., Carter, A. S., & Blaser, E. (2013). The mechanisms underlying the ASD advantage in visual search. Journal of Autism and Developmental Disorders, 46, 1513.CrossRefGoogle Scholar
  35. Kana, R. K., Keller, T. A., Cherkassky, V. L., Minshew, N. J., & Just, M. A. (2006). Sentence comprehension in autism: thinking in pictures with decreased functional connectivity. Brain, 129(Pt 9), 2484–2493.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kana, R. K., Keller, T. A., Minshew, N. J., & Just, M. A. (2007). Inhibitory control in high-functioning autism: decreased activation and underconnectivity in inhibition networks. Biological Psychiatry, 62(3), 198–206.CrossRefPubMedGoogle Scholar
  37. Keehn, B., Brenner, L. A., Ramos, A. I., Lincoln, A. J., Marshall, S. P., & Müller, R.-A. (2009). Brief report: eye-movement patterns during an embedded figures test in children with ASD. Journal of Autism and Developmental Disorders, 39(2), 383–387.CrossRefPubMedGoogle Scholar
  38. Keown, C. L., Shih, P., Nair, A., Peterson, N., & Müller, R.-A. (2013). Local functional overconnectivity in posterior brain regions is associated with symptom severity in autism spectrum disorders. Cell Reports, 5(3), 567–572.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Koldewyn, K., Yendiki, A., Weigelt, S., Gweon, H., Julian, J., Richardson, H., Malloy, C., Saxe, R., Fischl, B., & Kanwisher, N. (2014). Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proceedings of the National Academy of Sciences of the United States of America, 111(5), 1981–1986.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(Pt 1), 12–32.CrossRefPubMedGoogle Scholar
  41. Liu, D., Dong, Z., Zuo, X., Wang, J., & Zang, Y. (2013). Eyes-open/eyes-closed dataset sharing for reproducibility evaluation of resting state fMRI data analysis methods. Neuroinformatics, 11(4), 469–476.CrossRefPubMedGoogle Scholar
  42. Lopez-Larson, M. P., Anderson, J. S., Ferguson, M. A., & Yurgelun-Todd, D. (2011). Local brain connectivity and associations with gender and age. Developmental Cognitive Neuroscience, 1(2), 187–197.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: A revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24, 659–685.Google Scholar
  44. Lord, C., Risi, S., Lambrecht, L., Cook, E. H. Jr., Leventhal, B. L., Dilavore, P. C., et al. (2000). The autism diagnostic observation schedule-generic: A standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30, 05–223.Google Scholar
  45. Lu, J. T., Kishida, K. T., De Asis-Cruz, J., Lohrenz, T., Treadwell-Deering, D., Beauchamp, M., & Montague, P. R. (2015). Single-stimulus functional MRI produces a neural individual difference measure for autism spectrum disorder. Clinical Psychological Science, 3(3), 422–432.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Maximo, J. O., Keown, C. L., Nair, A., & Müller, R.-A. (2013). Approaches to local connectivity in autism using resting state functional connectivity MRI. Frontiers in Human Neuroscience, 7, 605.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Maximo, J. O., Cadena, E. J., & Kana, R. K. (2014). The implications of brain connectivity in the neuropsychology of autism. Neuropsychology Review, 24(1), 16–31.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Minshew, N. J., & Williams, D. L. (2007). The new neurobiology of autism: cortex, connectivity, and neuronal organization. Archives of Neurology, 64(7), 945–950.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Monk, C. S., Peltier, S. J., Wiggins, J. L., Weng, S. J., Carrasco, M., Risi, S., & Lord, C. (2009). Abnormalities of intrinsic functional connectivity in autism spectrum disorders. NeuroImage, 47(2), 764–772.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mottron, L., Dawson, M., Soulieres, I., Hubert, B., & Burack, J. (2006). Enhanced perceptual functioning in autism: an update, and eight principles of autistic perception. Journal of Autism and Developmental Disorders, 36(1), 27–43.CrossRefPubMedGoogle Scholar
  51. Müller, R.-A. (2007). The study of autism as a distributed disorder. Mental Retardation and Developmental Disabilities Research Reviews, 13, 85–95.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Müller, R.-A., Shih, P., Keehn, B., Deyoe, J. R., Leyden, K. M., & Shukla, D. K. (2011). Underconnected, but how? A survey of functional connectivity MRI studies in autism spectrum disorders. Cerebral Cortex, 21(10), 2233–2243.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Murphy, K., Birn, R. M., Handwerker, D. A., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893–905.CrossRefPubMedGoogle Scholar
  54. Nair, A., Keown, C. L., Datko, M., Shih, P., Keehn, B., & Müller, R. A. (2014). Impact of methodological variables on functional connectivity findings in autism spectrum disorders. Human Brain Mapping, 35(8), 4035–4048.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Nelson, S. B., & Valakh, V. (2015). Excitatory/inhibitory balance and circuit homeostasis in autism Spectrum disorders. Neuron, 87(4), 684–698.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nomi, J. S., & Uddin, L. Q. (2015). Developmental changes in large-scale network connectivity in autism. NeuroImage Clinical, 7, 732–741.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Paakki, J. J., Rahko, J., Long, X., Moilanen, I., Tervonen, O., Nikkinen, J., Starck, T., Remes, J., Hurtig, T., Haapsamo, H., Jussila, K., Kuusikko-Gauffin, S., Mattila, M. L., Zang, Y., & Kiviniemi, V. (2010). Alterations in regional homogeneity of resting-state brain activity in autism spectrum disorders. Brain Research, 1321, 169.CrossRefPubMedGoogle Scholar
  58. Palmen, S. J., van Engeland, H., Hof, P. R., & Schmitz, C. (2004). Neuropathological findings in autism. Brain, 127(Pt 12), 2572–2583.CrossRefPubMedGoogle Scholar
  59. Patriat, R., Molloy, E. K., Meier, T. B., Kirk, G. R., Nair, V. A., Meyerand, M. E., Prabhakaran, V., & Birn, R. M. (2013). The effect of resting condition on resting-state fMRI reliability and consistency: a comparison between resting with eyes open, closed, and fixated. NeuroImage, 78, 463–473.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341.CrossRefPubMedGoogle Scholar
  61. Rubenstein, J. L., & Merzenich, M. M. (2003). Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes, Brain, and Behavior, 2(5), 255–267.CrossRefPubMedGoogle Scholar
  62. Rudie, J. D., & Dapretto, M. (2013). Convergent evidence of brain overconnectivity in children with autism? Cell Reports, 5(3), 565–566.CrossRefPubMedGoogle Scholar
  63. Sampaio-Baptista, C., Filippini, N., Stagg, C. J., Near, J., Scholz, J., & Johansen-Berg, H. (2015). Changes in functional connectivity and GABA levels with long-term motor learning. NeuroImage, 106, 15–20.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Samson, F., Mottron, L., Soulieres, I., & Zeffiro, T. A. (2012). Enhanced visual functioning in autism: an ALE meta-analysis. Human Brain Mapping, 33(7), 1553–1581.CrossRefPubMedGoogle Scholar
  65. Satterthwaite, T. D., Elliott, M. A., Gerraty, R. T., Ruparel, K., Loughead, J., Calkins, M. E., Eickhoff, S. B., Hakonarson, H., Gur, R. C., Gur, R. E., & Wolf, D. H. (2013). An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage, 64, 240–256.Google Scholar
  66. Schipul, S. E., Keller, T. A., & Just, M. A. (2011). Inter-regional brain communication and its disturbance in autism. Frontiers in Systems Neuroscience, 5, 10.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Schumann, C. M., & Nordahl, C. W. (2011). Bridging the gap between MRI and postmortem research in autism. Brain Research, 1380, 175–186.CrossRefPubMedGoogle Scholar
  68. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Shen, M. D., Shih, P., Ottl, B., Keehn, B., Leyden, K. M., Gaffrey, M. S., & Muller, R. A. (2012). Atypical lexicosemantic function of extrastriate cortex in autism spectrum disorder: evidence from functional and effective connectivity. NeuroImage, 62(3), 1780–1791.CrossRefPubMedGoogle Scholar
  70. Shih, P., Keehn, B., Oram, J. K., Leyden, K. M., Keown, C. L., & Müller, R.-A. (2011). Functional differentiation of posterior superior temporal sulcus in autism: a functional connectivity magnetic resonance imaging study. Biological Psychiatry, 70(3), 270–277.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Shukla, D. K., Keehn, B. M., & Müller, R.-A. (2010). Regional homogeneity of fMRI time series in autism spectrum disorders. Neuroscience Letters, 476, 46–51.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Simmons, D. R., Robertson, A. E., McKay, L. S., Toal, E., McAleer, P., & Pollick, F. E. (2009). Vision in autism spectrum disorders. Vision Research, 49(22), 2705–2739.CrossRefPubMedGoogle Scholar
  73. Simms, M. L., Kemper, T. L., Timbie, C. M., Bauman, M. L., & Blatt, G. J. (2009). The anterior cingulate cortex in autism: heterogeneity of qualitative and quantitative cytoarchitectonic features suggests possible subgroups. Acta Neuropathologica, 118(5), 673–684.CrossRefPubMedGoogle Scholar
  74. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl. 1), S208–S219.Google Scholar
  75. Spoormaker, V. I., Schroter, M. S., Gleiser, P. M., Andrade, K. C., Dresler, M., Wehrle, R., Samann, P. G., & Czisch, M. (2010). Development of a large-scale functional brain network during human non-rapid eye movement sleep. The Journal of Neuroscience, 30(34), 11379–11387.CrossRefPubMedGoogle Scholar
  76. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Stagg, C. J., Bachtiar, V., Amadi, U., Gudberg, C. A., Ilie, A. S., Sampaio-Baptista, C., O'Shea, J., Woolrich, M., Smith, S. M., Filippini, N., Near, J., & Johansen-Berg, H. (2014). Local GABA concentration is related to network-level resting functional connectivity. eLife, 3, e01465.CrossRefPubMedPubMedCentralGoogle Scholar
  78. Supekar, K., Uddin, L. Q., Khouzam, A., Phillips, J., Gaillard, W. D., Kenworthy, L. E., Yerys, B. E., Vaidya, C. J., & Menon, V. (2013). Brain hyperconnectivity in children with autism and its links to social deficits. Cell Reports, 5(3), 738–747.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sutton, B. P., Goh, J., Hebrank, A., Welsh, R. C., Chee, M. W. L., & Park, D. C. (2008). Investigation and validation of intersite fMRI studies using the same imaging hardware. Journal of Magnetic Resonance Imaging, 28(1), 21–28.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Tagliazucchi, E., von Wegner, F., Morzelewski, A., Borisov, S., Jahnke, K., & Laufs, H. (2012). Automatic sleep staging using fMRI functional connectivity data. NeuroImage, 63(1), 63–72.CrossRefPubMedGoogle Scholar
  81. Turner, J. A., Damaraju, E., Van Erp, T. G. M., Mathalon, D. H., Ford, J. M., Voyvodic, J., et al. (2013). A multi-site resting state fMRI study on the amplitude of low frequency fluctuations in schizophrenia. Frontiers in Neuroscience, 7(7 AUG), 137.PubMedPubMedCentralGoogle Scholar
  82. Uddin, L. Q., Supekar, K., Lynch, C. J., Khouzam, A., Phillips, J., Feinstein, C., Ryali, S., & Menon, V. (2013). Salience network-based classification and prediction of symptom severity in children with autism. JAMA Psychiatry, 70(8), 1–11.CrossRefGoogle Scholar
  83. Uppal, N., Wicinski, B., Buxbaum, J. D., Heinsen, H., Schmitz, C., & Hof, P. R. (2014). Neuropathology of the anterior midcingulate cortex in young children with autism. Journal of Neuropathology and Experimental Neurology, 73(9), 891–902.CrossRefPubMedGoogle Scholar
  84. Vissers, M. E., Cohen, M. X., & Geurts, H. M. (2012). Brain connectivity and high functioning autism: a promising path of research that needs refined models, methodological convergence, and stronger behavioral links. Neuroscience and Biobehavioral Reviews, 36(1), 604–625.CrossRefPubMedGoogle Scholar
  85. von dem Hagen, E. A., Stoyanova, R. S., Baron-Cohen, S., & Calder, A. J. (2013). Reduced functional connectivity within and between 'social' resting state networks in autism spectrum conditions. Social Cognitive and Affective Neuroscience, 8(6), 694–701.CrossRefGoogle Scholar
  86. Wang, X. H., Li, L., Xu, T., & Ding, Z. (2015). Investigating the temporal patterns within and between intrinsic connectivity networks under eyes-open and eyes-closed resting states: a dynamical functional connectivity study based on phase synchronization. PloS One, 10(10), e0140300.CrossRefPubMedPubMedCentralGoogle Scholar
  87. Washington, S. D., Gordon, E. M., Brar, J., Warburton, S., Sawyer, A. T., Wolfe, A., Mease-Ference, E. R., Girton, L., Hailu, A., Mbwana, J., Gaillard, W. D., Kalbfleisch, M. L., & Vanmeter, J. W. (2013). Dysmaturation of the default mode network in autism. Human Brain Mapping, 35, 1284.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Wass, S. (2011). Distortions and disconnections: disrupted brain connectivity in autism. Brain and Cognition, 75(1), 18–28.CrossRefPubMedGoogle Scholar
  89. Yang, D. Y., Beam, D., Pelphrey, K. A., Abdullahi, S., & Jou, R. J. (2016). Cortical morphological markers in children with autism: a structural magnetic resonance imaging study of thickness, area, volume, and gyrification. Molecular autism, 7, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400.CrossRefPubMedGoogle Scholar
  91. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.Google Scholar
  92. Zou, Q., Long, X., Zuo, X., Yan, C., Zhu, C., Yang, Y., Liu, D., He, Y., & Zang, Y. (2009). Functional connectivity between the thalamus and visual cortex under eyes closed and eyes open conditions: a resting-state fMRI study. Human Brain Mapping, 30(9), 3066–3078.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Zou, Q., Miao, X., Liu, D., Wang, D. J., Zhuo, Y., & Gao, J. H. (2015). Reliability comparison of spontaneous brain activities between BOLD and CBF contrasts in eyes-open and eyes-closed resting states. NeuroImage, 121, 91–105.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Brain Development Imaging Laboratory, Department of PsychologySan Diego State UniversitySan DiegoUSA
  2. 2.Department of PsychologyUniversity of AlabamaBirminghamUSA
  3. 3.Joint Doctoral Program in Clinical PsychologySan Diego State University and University of California, San DiegoSan DiegoUSA

Personalised recommendations