Brain Imaging and Behavior

, Volume 11, Issue 6, pp 1862–1872 | Cite as

Reversal learning reveals cognitive deficits and altered prediction error encoding in the ventral striatum in Huntington’s disease

  • Katharina Nickchen
  • Rebecca Boehme
  • Maria del Mar Amador
  • Thomas D. Hälbig
  • Katharina Dehnicke
  • Patricia Panneck
  • Joachim Behr
  • Konstantin Prass
  • Andreas Heinz
  • Lorenz Deserno
  • Florian Schlagenhauf
  • Josef Priller
Original Research

Abstract

Huntington’s disease (HD) is an autosomal dominant neurodegenerative condition characterized by a triad of movement disorder, neuropsychiatric symptoms and cognitive deficits. The striatum is particularly vulnerable to the effects of mutant huntingtin, and cell loss can already be found in presymptomatic stages. Since the striatum is well known for its role in reinforcement learning, we hypothesized to find altered behavioral and neural responses in HD patients in a probabilistic reinforcement learning task performed during functional magnetic resonance imaging. We studied 24 HD patients without central nervous system (CNS)-active medication and 25 healthy controls. Twenty HD patients and 24 healthy controls were able to complete the task. Computational modeling was used to calculate prediction error values and estimate individual parameters. We observed that gray matter density and prediction error signals during the learning task were related to disease stage. HD patients in advanced disease stages appear to use a less complex strategy in the reversal learning task. In contrast, HD patients in early disease stages show intact encoding of learning signals in the degenerating left ventral striatum. This effect appears to be lost with disease progression.

Keywords

Huntington’s disease Reinforcement learning Ventral striatum Gray matter density 

Notes

Acknowledgements

We wish to thank Dirk Lang for help with pilot experiments. This work was supported by grants from the Cluster of Excellence NeuroCure (to J.P.). R.B. received funding by the Deutsche Forschungsgemeinschaft (GRK-1123). The funding sources were not involved in study design; in the collection, analysis and interpretation of data; in the writing of the report; or in the decision to submit the article for publication.

Compliance with ethical standards

Conflict of interest

Katharina Nickchen, Rebecca Boehme, Maria del Mar Amador, Thomas D. Hälbig, Katharina Dehnicke, Patricia Panneck, Joachim Behr, Konstantin Prass, Andreas Heinz, Lorenz Deserno, Florian Schlagenhauf and Josef Priller declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all participants for being included in the study.

References

  1. Andre, V. M., Cepeda, C., & Levine, M. S. (2010). Dopamine and glutamate in Huntington’s disease: a balancing act. CNS Neuroscience and Therapeutics, 16(3), 163–178. doi:10.1111/j.1755-5949.2010.00134.x.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851. doi:10.1016/j.neuroimage.2005.02.018.CrossRefPubMedGoogle Scholar
  3. Aylward, E. H., Nopoulos, P. C., Ross, C. A., Langbehn, D. R., Pierson, R. K., Mills, J. A., … Paulsen, J. S. (2011). Longitudinal change in regional brain volumes in prodromal Huntington disease. Journal of Neurology, Neurosurgery, and Psychiatry, 82(4), 405–410. doi:10.1136/jnnp.2010.208264.
  4. Aylward, E. H., Liu, D., Nopoulos, P. C., Ross, C. A., Pierson, R. K., Mills, J. A., … Paulsen, J. S. (2012). Striatal volume contributes to the prediction of onset of Huntington disease in incident cases. Biological Psychiatry, 71(9), 822–828. doi:10.1016/j.biopsych.2011.07.030.
  5. Barker, R., & Priller, J. (2013). Huntington’s disease. In D. Burn (Ed.), Oxford textbook of movement disorders. Oxford: Oxford University Press.Google Scholar
  6. D’Ardenne, K., McClure, S. M., Nystrom, L. E., & Cohen, J. D. (2008). BOLD responses reflecting dopaminergic signals in the human ventral tegmental area. Science, 319(5867), 1264–1267. doi:10.1126/science.1150605.CrossRefPubMedGoogle Scholar
  7. Enzi, B., Edel, M. A., Lissek, S., Peters, S., Hoffmann, R., Nicolas, V., … Saft, C. (2012). Altered ventral striatal activation during reward and punishment processing in premanifest Huntington’s disease: a functional magnetic resonance study. Experimental Neurology, 235(1), 256–264. doi:10.1016/j.expneurol.2012.02.003.
  8. Glascher, J., Daw, N., Dayan, P., & O’Doherty, J. P. (2010). States versus rewards: dissociable neural prediction error signals underlying model-based and model-free reinforcement learning. Neuron, 66(4), 585–595. doi:10.1016/j.neuron.2010.04.016.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26. doi:10.1038/npp.2009.129.CrossRefPubMedGoogle Scholar
  10. Hauser, T. U., Iannaccone, R., Ball, J., Mathys, C., Brandeis, D., Walitza, S., & Brem, S. (2014). Role of the medial prefrontal cortex in impaired decision making in juvenile attention-deficit/hyperactivity disorder. JAMA Psychiatry, 71(10), 1165–1173. doi:10.1001/jamapsychiatry.2014.1093.CrossRefPubMedGoogle Scholar
  11. Kipps, C. M., Duggins, A. J., Mahant, N., Gomes, L., Ashburner, J., & McCusker, E. A. (2005). Progression of structural neuropathology in preclinical Huntington’s disease: a tensor based morphometry study. Journal of Neurology, Neurosurgery, and Psychiatry, 76(5), 650–655. doi:10.1136/jnnp.2004.047993.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Lawrence, A. D., Sahakian, B. J., Rogers, R. D., Hodge, J. R., & Robbins, T. W. (1999). Discrimination, reversal, and shift learning in Huntington’s disease: mechanisms of impaired response selection. Neuropsychologia, 37(12), 1359–1374.CrossRefPubMedGoogle Scholar
  13. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239.CrossRefPubMedGoogle Scholar
  14. Malejko, K., Weydt, P., Sussmuth, S. D., Gron, G., Landwehrmeyer, B. G., & Abler, B. (2014). Prodromal huntington disease as a model for functional compensation of early neurodegeneration. PLoS One, 9(12), e114569. doi:10.1371/journal.pone.0114569.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Montague, P. R., Dayan, P., & Sejnowski, T. J. (1996). A framework for mesencephalic dopamine systems based on predictive Hebbian learning. The Journal of Neuroscience, 16(5), 1936–1947.PubMedGoogle Scholar
  16. Muhlau, M., Gaser, C., Wohlschlager, A. M., Weindl, A., Stadtler, M., Valet, M., … Peinemann, A. (2007). Striatal gray matter loss in Huntington’s disease is leftward biased. Movement Disorders, 22(8), 1169–1173. doi:10.1002/mds.21137.
  17. O’Doherty, J. P., Dayan, P., Friston, K., Critchley, H., & Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38(2), 329–337.CrossRefPubMedGoogle Scholar
  18. Palminteri, S., Justo, D., Jauffret, C., Pavlicek, B., Dauta, A., Delmaire, C., … Pessiglione, M. (2012). Critical roles for anterior insula and dorsal striatum in punishment-based avoidance learning. Neuron, 76(5), 998–1009. doi:10.1016/j.neuron.2012.10.017.
  19. Quiroz, Y. T., Budson, A. E., Celone, K., Ruiz, A., Newmark, R., Castrillon, G., … Stern, C. E. (2010). Hippocampal hyperactivation in presymptomatic familial Alzheimer’s disease. Annals of Neurology, 68(6), 865–875. doi:10.1002/ana.22105.
  20. Saft, C., Schuttke, A., Beste, C., Andrich, J., Heindel, W., & Pfleiderer, B. (2008). fMRI reveals altered auditory processing in manifest and premanifest Huntington’s disease. Neuropsychologia, 46(5), 1279–1289. doi:10.1016/j.neuropsychologia.2007.12.002.CrossRefPubMedGoogle Scholar
  21. Schlagenhauf, F., Huys, Q. J., Deserno, L., Rapp, M. A., Beck, A., Heinze, H. J., … Heinz, A. (2014). Striatal dysfunction during reversal learning in unmedicated schizophrenia patients. NeuroImage, 89, 171–180. doi:10.1016/j.neuroimage.2013.11.034.
  22. Schultz, W., Dayan, P., & Montague, P. R. (1997). A neural substrate of prediction and reward. Science, 275(5306), 1593–1599. doi:10.1126/science.275.5306.1593.CrossRefPubMedGoogle Scholar
  23. Sutton, R., & Barto, A. (1998). Reinforcement learning: an introduction. Cambridge: MIT Press.Google Scholar
  24. Thieben, M. J., Duggins, A. J., Good, C. D., Gomes, L., Mahant, N., Richards, F., … Frackowiak, R. S. (2002). The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain, 125(Pt 8), 1815–1828.Google Scholar
  25. Weir, D. W., Sturrock, A., & Leavitt, B. R. (2011). Development of biomarkers for Huntington’s disease. Lancet Neurology, 10(6), 573–590. doi:10.1016/s1474-4422(11)70070-9.CrossRefPubMedGoogle Scholar
  26. Wishart, H. A., Saykin, A. J., Rabin, L. A., Santulli, R. B., Flashman, L. A., Guerin, S. J., … McAllister, T. W. (2006). Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. American Journal of Psychiatry, 163(9), 1603–1610. doi:10.1176/appi.ajp.163.9.1603.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Katharina Nickchen
    • 1
    • 2
    • 3
  • Rebecca Boehme
    • 2
    • 4
  • Maria del Mar Amador
    • 1
  • Thomas D. Hälbig
    • 1
  • Katharina Dehnicke
    • 1
    • 5
  • Patricia Panneck
    • 1
    • 2
  • Joachim Behr
    • 2
    • 6
  • Konstantin Prass
    • 5
  • Andreas Heinz
    • 2
  • Lorenz Deserno
    • 2
    • 7
  • Florian Schlagenhauf
    • 2
    • 7
  • Josef Priller
    • 1
    • 2
    • 8
  1. 1.Department of NeuropsychiatryCharité –Universitätsmedizin Berlin (Charité Campus Mitte)BerlinGermany
  2. 2.Department of Psychiatry and PsychotherapyCharité –Universitätsmedizin Berlin (Charité Campus Mitte)BerlinGermany
  3. 3.Fliedner Klinik BerlinBerlinGermany
  4. 4.Center for Social and Affective NeuroscienceLinköping UniversityLinköpingSweden
  5. 5.Department of NeurologyHelios Klinikum Bad SaarowBad SaarowGermany
  6. 6.Department of Psychiatry, Psychotherapy and PsychosomaticsMedical School Brandenburg - Campus NeuruppinNeuruppinGermany
  7. 7.Max-Planck-Fellow-Group Cognitive and Affective Control of Behavioral AdaptationMax-Planck-Institute for Human Cognitive and Brain SciencesLeipzigGermany
  8. 8.Cluster of Excellence NeuroCure, BIH and DZNEBerlinGermany

Personalised recommendations