Brain Imaging and Behavior

, Volume 11, Issue 6, pp 1664–1677 | Cite as

Brain injury in women experiencing intimate partner-violence: neural mechanistic evidence of an “invisible” trauma

  • Eve ValeraEmail author
  • Aaron Kucyi
Original Research


Traumatic brain injury (TBI) in women experiencing intimate-partner violence (IPV) is common, and IPV afflicts 30 % of women worldwide. However, the neurobiology and related sequelae of these TBIs have never been systematically examined. Consequently, TBI treatments are typically absent and IPV interventions are inadequate. There has been a call for a comprehensive assessment of IPV-related TBIs and their relationship to aspects of women’s cognitive and neural functioning. In response, we examined brain-network organization associated with TBI and its cognitive effects using clinical interviews and neuropsychological measures as well as structural and functional Magnetic Resonance Imaging (fMRI) in women experiencing IPV-related TBI. We hypothesized that TBI severity would be related to poorer cognitive performance and be associated with structural and functional connectivity between cognitive networks previously implicated in other TBI populations. As predicted, severity of TBI was negatively associated with inter-network intrinsic functional connectivity indicative of TBI, between the right anterior insula and posterior cingulate cortex/precuneus (FLAME1 + 2; family-wise error-corrected Z > 2.3, cluster- based p < 0.05). This association remained significant when controlling for partner-abuse severity, age, head motion, childhood trauma and psychopathology. Additionally, intrinsic functional connectivity between the same regions correlated positively with cognitive performance on indices of memory and learning. These data provide the first mechanistic evidence of TBI and its association with cognitive functioning in women sustaining IPV-related TBI. These data underscore the need to address and consider the role TBI may be playing in the efficacy of IPV interventions ranging from emergency first responder interactions to specific treatment plans.


Intimate-partner violence Traumatic brain injury Functional connectivity Default mode network Salience network Domestic violence 



EMV and AK had full access to all of the data in the study and take responsibility for the integrity of the data and accuracy of the data analysis. We thank all of the women who participated in this study. We thank Brittany LeBlanc for data management assistance, Drs. Michael Alexander, Margaret O’Connor and Gregory Sorensen for helpful advice in developing this project, Dr. Steven Stufflebeam for performing the clinical reads of the imaging scans, Drs. Randy Buckner, Kevin Spencer, Martha Shenton and Michael Hove for helpful feedback in preparing the manuscript. This work was supported by a Harvard Medical School Center of Excellence grant from the HMS Fund for Women’s Health (EMV), the Canadian Institutes of Health Research (AK), and grants provided to the Athinoula A. Martinos Center for Biomedical Imaging, NCRR P41RR14075 and P41 EB015896. This work also involved the use of instrumentation supported by the NIH Shared Instrumentation Grant Program and/or High-End Instrumentation Grant Program; specifically, grant numbers 1S10RR023043 and 1S10RR023401.

Compliance with ethical standards

Disclosure of potential conflicts of interest

The authors report no conflicts of interest.

Research involving human participants and informed consent

Participants provided written informed consent and the local ethics committee (Partners IRB) approved the study.

Supplementary material

11682_2016_9643_MOESM1_ESM.doc (325 kb)
ESM 1 (DOC 325 kb)


  1. American Psychiatric Association. 2000. Diagnostic and statistical manual of mental disorders (4th ed., text rev.) Washington, DC: American Psychiatric Association.Google Scholar
  2. Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X. J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16, 584–592.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Banks, M. E. (2007). Overlooked but critical: traumatic brain injury as a consequence of interpersonal violence. Trauma, Violence & Abuse, 8, 290–298.CrossRefGoogle Scholar
  4. Banks, M. E. (2013). Optimal rehabilitation for women who receive traumatic brain injury following intimate partner violence. In H. Muenchberger, E. Kendall, & J. Wright (Eds.), Health and healing after traumatic brain injury: Understanding the power of family, friends, community, and other support systems (pp. 153–167). Santa Barbara, CA: Praeger.Google Scholar
  5. Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based noise correction method (CompCor) for BOLD and perfusion based fMRI. NeuroImage, 37, 90–101.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Benson, R. R., Gattu, R., Sewick, B., Kou, Z., Zakariah, N., Cavanaugh, J. M., & Haacke, E. M. (2012). Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation, 31, 261–279.PubMedGoogle Scholar
  7. Bonnelle, V., Leech, R., Kinnunen, K. M., Ham, T. E., Beckmann, C. F., De Boissezon, X., Greenwood, R. J., & Sharp, D. J. (2011). Default mode network connectivity predicts sustained attention deficits after traumatic brain injury. The Journal of Neuroscience, 31, 13442–13451.CrossRefPubMedGoogle Scholar
  8. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., & Sharp, D. J. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109, 4690–4695.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefPubMedGoogle Scholar
  10. Cai W, Chen T, Ryali S, Kochalka J, Li CS, Menon V. 2015. Causal interactions within a frontal-cingulate-parietal network during cognitive control: Convergent evidence from a multisite-multitask investigation. Cereb Cortex.Google Scholar
  11. Carroll, L. J., Cassidy, J. D., Holm, L., Kraus, J., Coronado, V. G., & Injury WHOCCTFoMTB (2004). Methodological issues and research recommendations for mild traumatic brain injury: the WHO collaborating Centre task force on mild traumatic brain injury. Journal of Rehabilitation Medicine, 113–125.Google Scholar
  12. Chai, X. J., Castanon, A. N., Ongur, D., & Whitfield-Gabrieli, S. (2012). Anticorrelations in resting state networks without global signal regression. NeuroImage, 59, 1420–1428.CrossRefPubMedGoogle Scholar
  13. Committee on Mild Traumatic Brain Injury, American Congress of Rehabilitation Medicine (1993). Definition of mild traumatic brain injury. The Journal of Head Trauma Rehabilitation, 8, 48–59.Google Scholar
  14. Demirtas-Tatlidede, A., Vahabzadeh-Hagh, A. M., Bernabeu, M., Tormos, J. M., & Pascual-Leone, A. (2012). Noninvasive brain stimulation in traumatic brain injury. The Journal of Head Trauma Rehabilitation, 27, 274–292.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Devries, K. M., Mak, J. Y., Garcia-Moreno, C., Petzold, M., Child, J. C., Falder, G., Lim, S., Bacchus, L. J., Engell, R. E., Rosenfeld, L., Pallitto, C., Vos, T., Abrahams, N., & Watts, C. H. (2013). Global health. The global prevalence of intimate partner violence against women. Science., 340, 1527–1528.PubMedGoogle Scholar
  16. Eisenstat, S. A., & Bancroft, L. (1999). Domestic violence. The New England Journal of Medicine, 341, 886–892.CrossRefPubMedGoogle Scholar
  17. Eklund, A., Nichols, T. E., & Knutsson, H. (2016). Cluster failure: why fMRI inferences for spatial extent have inflated false-positive rates. Proceedings of the National Academy of Sciences of the United States of America, 113, 7900–7905.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8, 700–711.CrossRefPubMedGoogle Scholar
  19. Goulden, N., Khusnulina, A., Davis, N. J., Bracewell, R. M., Bokde, A. L., McNulty, J. P., & Mullins, P. G. (2014). The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. NeuroImage, 99, 180–190.CrossRefPubMedGoogle Scholar
  20. Hammoud, D. A., & Wasserman, B. A. (2002). Diffuse axonal injuries: pathophysiology and imaging. Neuroimaging Clinics of North America, 12, 205–216.CrossRefPubMedGoogle Scholar
  21. Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., & Smith, S. M. (2012). FSL. NeuroImage, 62, 782–790.CrossRefPubMedGoogle Scholar
  22. Jilka, S. R., Scott, G., Ham, T., Pickering, A., Bonnelle, V., Braga, R. M., Leech, R., & Sharp, D. J. (2014). Damage to the salience network and interactions with the default mode network. The Journal of Neuroscience, 34, 10798–10807.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Tavares, J. V., Carpenter, T. A., Pickard, J. D., Sahakian, B. J., & Stamatakis, E. A. (2011). Traumatic brain injury alters the functional brain network mediating working memory. Brain Injury, 25, 1170–1187.CrossRefPubMedGoogle Scholar
  24. Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39, 527–537.CrossRefPubMedGoogle Scholar
  25. Kim, Y. H., Yoo, W. K., Ko, M. H., Park, C. H., Kim, S. T., & Na, D. L. (2009). Plasticity of the attentional network after brain injury and cognitive rehabilitation. Neurorehabilitation and Neural Repair, 23, 468–477.CrossRefPubMedGoogle Scholar
  26. King, N. S., Crawford, S., Wenden, F. J., Moss, N. E., & Wade, D. T. (1995). The Rivermead post concussion symptoms questionnaire: a measure of symptoms commonly experienced after head injury and its reliability. Journal of Neurology, 242, 587–592.CrossRefPubMedGoogle Scholar
  27. Kinnunen, K. M., Greenwood, R., Powell, J. H., Leech, R., Hawkins, P. C., Bonnelle, V., Patel, M. C., Counsell, S. J., & Sharp, D. J. (2011). White matter damage and cognitive impairment after traumatic brain injury. Brain, 134, 449–463.CrossRefPubMedGoogle Scholar
  28. Klevens, J., Sadowski, L. S., Kee, R., Garcia, D., & Lokey, C. (2015). Effect of screening for partner violence on use of health services at 3-year follow-up of a randomized clinical trial. Journal of the American Medical Association, 314, 515–516.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kondo, A., Shahpasand, K., Mannix, R., Qiu, J., Moncaster, J., Chen, C. H., Yao, Y., Lin, Y. M., Driver, J. A., Sun, Y., Wei, S., Luo, M. L., Albayram, O., Huang, P., Rotenberg, A., Ryo, A., Goldstein, L. E., Pascual-Leone, A., McKee, A. C., Meehan, W., Zhou, X. Z., & Lu, K. P. (2015). Antibody against early driver of neurodegeneration cis P-tau blocks brain injury and tauopathy. Nature, 523(7561), 431–436.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kucyi, A., Hodaie, M., & Davis, K. D. (2012). Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks. Journal of Neurophysiology, 108, 3382–3392.CrossRefPubMedGoogle Scholar
  31. Kucyi, A., Salomons, T. V., & Davis, K. D. (2013). Mind wandering away from pain dynamically engages antinociceptive and default mode brain networks. Proceedings of the National Academy of Sciences of the United States of America, 110, 18692–18697.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kucyi, A., Hove, M. J., Biederman, J., Van Dijk, K. R., & Valera, E. M. (2015). Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder. Human Brain Mapping, 36(9), 3373–3386.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kwako, L. E., Glass, N., Campbell, J., Melvin, K. C., Barr, T., & Gill, J. M. (2011). Traumatic brain injury in intimate partner violence: a critical review of outcomes and mechanisms. Trauma, Violence & Abuse, 12, 115–126.CrossRefGoogle Scholar
  34. Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12–32.CrossRefPubMedGoogle Scholar
  35. Levin, H. S., & Diaz-Arrastia, R. R. (2015). Diagnosis, prognosis, and clinical management of mild traumatic brain injury. Lancet Neurology, 14, 506–517.CrossRefPubMedGoogle Scholar
  36. Liebschutz, J. M., & Rothman, E. F. (2012). Intimate-partner violence--what physicians can do. The New England Journal of Medicine, 367, 2071–2073.CrossRefPubMedGoogle Scholar
  37. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. Human Brain Mapping, 32, 1825–1835.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure & Function., 214, 655–667.CrossRefGoogle Scholar
  39. Murray, C.E., Lundgren, K., Olson, L.N., & Hunnicutt, G. (2016) Practice update: what professionals who are not brain injury specialists need to know about intimate partner violence-related traumatic brain injury. Trauma Violence Abuse, 17, 298–305. doi: 10.1177/1524838015584364.
  40. Nathan, D. E., Oakes, T. R., Yeh, P. H., French, L. M., Harper, J. F., Liu, W., Wolfowitz, R. D., Wang, B. Q., Graner, J. L., & Riedy, G. (2015). Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connectivity, 5, 102–114.CrossRefPubMedGoogle Scholar
  41. Palacios, E. M., Sala-Llonch, R., Junque, C., Roig, T., Tormos, J. M., Bargallo, N., & Vendrell, P. (2013). Resting-state functional magnetic resonance imaging activity and connectivity and cognitive outcome in traumatic brain injury. JAMA Neurology, 70, 845–851.CrossRefPubMedGoogle Scholar
  42. Potter, S., Leigh, E., Wade, D., & Fleminger, S. (2006). The Rivermead post concussion symptoms questionnaire: a confirmatory factor analysis. Journal of Neurology, 253, 1603–1614.CrossRefPubMedGoogle Scholar
  43. Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013). Evidence for hubs in human functional brain networks. Neuron, 79, 798–813.CrossRefPubMedGoogle Scholar
  44. Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage, 105C, 536–551.CrossRefGoogle Scholar
  45. Rhodes, K. V., Rodgers, M., Sommers, M., Hanlon, A., Chittams, J., Doyle, A., Datner, E., & Crits-Christoph, P. (2015). Brief motivational intervention for intimate partner violence and heavy drinking in the emergency department: a randomized clinical trial. Journal of the American Medical Association, 314, 466–477.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ruff, R. M., Iverson, G. L., Barth, J. T., Bush, S. S., Broshek, D. K., Policy, N. A. N., & Planning, C. (2009). Recommendations for diagnosing a mild traumatic brain injury: a National Academy of neuropsychology education paper. Archives of Clinical Neuropsychology, 24, 3–10.CrossRefPubMedGoogle Scholar
  47. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., Reiss, A. L., & Greicius, M. D. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. Journal of Neuroscience, 27, 2349–2356.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Sharp, D. J., Beckmann, C. F., Greenwood, R., Kinnunen, K. M., Bonnelle, V., De Boissezon, X., Powell, J. H., Counsell, S. J., Patel, M. C., & Leech, R. (2011). Default mode network functional and structural connectivity after traumatic brain injury. Brain, 134, 2233–2247.CrossRefPubMedGoogle Scholar
  49. Sharp, D. J., Scott, G., & Leech, R. (2014). Network dysfunction after traumatic brain injury. Nature Reviews. Neurology, 10, 156–166.CrossRefPubMedGoogle Scholar
  50. Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., Vu, M. A., Purohit, M. P., Helmer, K., Koerte, I., Lin, A. P., Westin, C. F., Kikinis, R., Kubicki, M., Stern, R. A., & Zafonte, R. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging and Behavior, 6, 137–192.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Shumskaya, E., Andriessen, T. M., Norris, D. G., & Vos, P. E. (2012). Abnormal whole-brain functional networks in homogeneous acute mild traumatic brain injury. Neurology, 79, 175–182.CrossRefPubMedGoogle Scholar
  52. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31, 1487–1505.CrossRefPubMedGoogle Scholar
  53. Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105, 12569–12574.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. Brain Imaging and Behavior, 6, 293–318.CrossRefPubMedGoogle Scholar
  55. Turner, G. R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71, 812–818.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews. Neuroscience, 16, 55–61.CrossRefPubMedGoogle Scholar
  57. Uddin, L. Q., Supekar, K. S., Ryali, S., & Menon, V. (2011). Dynamic reconfiguration of structural and functional connectivity across core neurocognitive brain networks with development. The Journal of Neuroscience, 31, 18578–18589.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Valera, E. M., & Berenbaum, H. (2003). Brain injury in battered women. Journal of Consulting and Clinical Psychology, 71, 797–804.CrossRefPubMedGoogle Scholar
  59. Venkatesan, U. M., Dennis, N. A., & Hillary, F. G. (2015). Chronology and chronicity of altered resting-state functional connectivity after traumatic brain injury. Journal of Neurotrauma, 32, 252–264.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. Annual Review of Clinical Psychology, 8, 49–76.CrossRefPubMedGoogle Scholar
  61. World Health Organization. 1992. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.Google Scholar
  62. Worsley, K. J., Liao, C. H., Aston, J., Petre, V., Duncan, G. H., Morales, F., & Evans, A. C. (2002). A general statistical analysis for fMRI data. NeuroImage, 15, 1–15.CrossRefPubMedGoogle Scholar
  63. Yarkoni, T. (2009). Big correlations in little studies: inflated fMRI correlations reflect low statistical power-commentary on Vul et al. (2009). Perspectives on Psychological Science, 4, 294–298.CrossRefPubMedGoogle Scholar
  64. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of PsychiatryMassachusetts General HospitalCharlestownUSA
  2. 2.Department of Psychiatry, Harvard Medical SchoolBostonUSA

Personalised recommendations