Brain Imaging and Behavior

, Volume 11, Issue 4, pp 1164–1178 | Cite as

Neural mapping of guilt: a quantitative meta-analysis of functional imaging studies

  • Anthony J. Gifuni
  • Adam Kendal
  • Fabrice Jollant
Original Research


Guilt is a self-conscious emotion associated with the negative appraisal of one’s behavior. In recent years, several neuroimaging studies have investigated the neural correlates of guilt, but no meta-analyses have yet identified the most robust activation patterns. A systematic review of literature found 16 functional magnetic resonance imaging studies with whole-brain analyses meeting the inclusion criteria, for a total of 325 participants and 135 foci of activation. A meta-analysis was then conducted using activation likelihood estimation. Additionally, Meta-Analytic Connectivity Modeling (MACM) analysis was conducted to investigate the functional connectivity of significant clusters. The analysis revealed 12 significant clusters of brain activation (voxel-based FDR-corrected p < 0.05) located in the prefrontal, temporal and parietal regions, mainly in the left hemisphere. Only the left dorsal cingulate cluster survived stringent FWE correction (voxel-based p < 0.05). Secondary analyses (voxel-based FDR-corrected p < 0.05) on the 7 studies contrasting guilt with another emotional condition showed an association with clusters in the left precuneus, the anterior cingulate, the left medial frontal gyrus, the right superior frontal gyrus and the left superior temporal gyrus. MACM demonstrated that regions associated with guilt are highly interconnected. Our analysis identified a distributed neural network of left-lateralized regions associated with guilt. While voxel-based FDR-corrected results should be considered exploratory, the dorsal cingulate was robustly associated with guilt. We speculate that this network integrates cognitive and emotional processes involved in the experience of guilt, including self-representation, theory of mind, conflict monitoring and moral values. Limitations of our meta-analyses comprise the small sample size and the heterogeneity of included studies, and concerns about naturalistic validity.


Guilt fMRI Neuroimaging Meta-analysis Medial prefrontal cortex 



We would like to thank M. Yang Ding for his technical support.

Compliance with ethical standards


Dr. Jollant held a Fond de Recherche du Québec- - Santé” (FRQS) salary grant during this study.

Conflict of interest

Dr. Anthony J. Gifuni declares that he has no conflict of interest. Adam Kendal declares that he has no conflict of interest. Dr. Fabrice Jollant declares that he has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11682_2016_9606_MOESM1_ESM.pdf (253 kb)
Supplementary Figure1 Meta-analytic connectivity modeling (MACM) analysis of regions associated with guilt. Footnotes: Regions from the left hemisphere are in red and from the right in blue. Areas associated with guilt in the initial meta-analysis are represented with darker shades: Left and Right Anterior Cingulate Gyrus (BA32), Left and Right Medial Frontal Gyrus (BA6, BA8, BA9, BA11), Left Superior Frontal Gyrus (BA6, BA9, BA10), Left and Right Inferior Frontal Gyrus (BA44), Left Insula (BA13), Left Parietal Supramarginal Gyrus (BA40), Left Middle Temporal Gyrus (BA21, BA22, BA39), Superior Temporal Gyrus (BA13, BA22, BA38, BA39), Parahippocampal Gyrus (BA30), and Precuneus (BA7). The edges joining two guilt-associated regions are represented with a larger width. In paler shades, co-activated regions identified with the MACM process: Inferior Frontal Gyrus (BA9, BA44, BA45, BA46, BA47), Middle Frontal Gyrus (BA9, BA10), Cingulate Gyrus (BA24, BA31, BA32), Posterior cingulate Gyrus (BA30, BA31), Precentral Gyrus BA4, BA6, BA44, Postcentral (BA3), Superior Parietal Lobule (BA7, BA22), Inferior Parietal Lobule (BA7, BA40), Inferior Occipital Gyrus (BA19), Precuneus (BA7, BA31), Thalamus (including Ventral Lateral Nucleus, Ventral Posterior Lateral Nucleus, Medial Dorsal Nucleus), Lateral Globus Pallidus, Amygdala, Putamen, Substancia nigra, Caudate body, Cerebellum (Culmen). (PDF 252 kb)
11682_2016_9606_MOESM2_ESM.docx (54 kb)
Supplementary Table 1 Volumes of interest used in connectivity modeling with BrainMap results. (DOCX 53 kb)


  1. Adolphs, R. (2001). The neurobiology of social cognition. Current Opinion in Neurobiology, 11(2), 231–239.PubMedCrossRefGoogle Scholar
  2. Aharoni, E., Sinnott-Armstrong, W., & Kiehl, K. A. (2012). Can psychopathic offenders discern moral wrongs? a new look at the moral/conventional distinction. Journal of Abnormal Psychology, 121(2), 484–497. doi: 10.1037/a0024796.PubMedCrossRefGoogle Scholar
  3. Allison, T., Puce, A., & McCarthy, G. (2000). Social perception from visual cues: role of the STS region. Trends in Cognitive Science, 4(7), 267–278.CrossRefGoogle Scholar
  4. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Review Neuroscience, 7(4), 268–277. doi: 10.1038/nrn1884.CrossRefGoogle Scholar
  5. Anderson, N. E., & Stanford, M. S. (2012). Demonstrating emotional processing differences in psychopathy using affective ERP modulation. Psychophysiology, 49(6), 792–806. doi: 10.1111/j.1469-8986.2012.01369.x.PubMedCrossRefGoogle Scholar
  6. Andreasen, N. C., O’Leary, D. S., Cizadlo, T., Arndt, S., Rezai, K., Watkins, G. L., & Hichwa, R. D. (1995). Remembering the past: two facets of episodic memory explored with positron emission tomography. The American Journal of Psychiatry, 152(11), 1576–1585.PubMedCrossRefGoogle Scholar
  7. Araujo, H. F., Kaplan, J., & Damasio, A. (2013). Cortical midline structures and autobiographical-self processes: an activation-likelihood estimation meta-analysis. Frontiers in Human Neuroscience, 7, 548. doi: 10.3389/fnhum.2013.00548.PubMedPubMedCentralCrossRefGoogle Scholar
  8. Astafiev, S. V., Shulman, G. L., & Corbetta, M. (2006). Visuospatial reorienting signals in the human temporo-parietal junction are independent of response selection. European Journal of Neuroscience, 23(2), 591–596. doi: 10.1111/j.1460-9568.2005.04573.x.PubMedCrossRefGoogle Scholar
  9. Barrash, J., Tranel, D., & Anderson, S. W. (2000). Acquired personality disturbances associated with bilateral damage to the ventromedial prefrontal region. Developmental Neuropsychology, 18(3), 355–381.PubMedCrossRefGoogle Scholar
  10. Barrett, K. C. (1995). A functionalist approach to shame and guilt. In J. P. Tangney & K. W. Fischer (Eds.), Self-conscious emotions: The psychology of shame, guilt, embarrassment, and pride. New York, NY: Guilford Press.Google Scholar
  11. Barrett, K. C., Zahn-Waxler, C., & Cole, P. M. (1998). The origins of guilt in early childhood. In J. Bybee (Ed.), Guilt and children (pp. 75–90). San Diego: Academic.CrossRefGoogle Scholar
  12. Bartels, A., & Zeki, S. (2004). The neural correlates of maternal and romantic love. NeuroImage, 21(3), 1155–1166. doi: 10.1016/j.neuroimage.2003.11.003.PubMedCrossRefGoogle Scholar
  13. Basile, B., Mancini, F., Macaluso, E., Caltagirone, C., Frackowiak, R. S., & Bozzali, M. (2011). Deontological and altruistic guilt: evidence for distinct neurobiological substrates. Human Brain Mapping, 32(2), 229–239. doi: 10.1002/hbm.21009.PubMedCrossRefGoogle Scholar
  14. Basile, B., Mancini, F., Macaluso, E., Caltagirone, C., & Bozzali, M. (2014). Abnormal processing of deontological guilt in obsessive-compulsive disorder. Brain Structure and Function, 219(4), 1321–1331. doi: 10.1007/s00429-013-0570-2.PubMedCrossRefGoogle Scholar
  15. Bechara, A., Damasio, H., Tranel, D., & Damasio, A. R. (2005). The Iowa gambling task and the somatic marker hypothesis: some questions and answers. Trends in Cognitive Science, 9(4), 159–162. doi: 10.1016/j.tics.2005.02.002. discussion 162-154.CrossRefGoogle Scholar
  16. Belden, A. C., Barch, D. M., Oakberg, T. J., April, L. M., Harms, M. P., Botteron, K. N., & Luby, J. L. (2015). Anterior insula volume and guilt: neurobehavioral markers of recurrence after early childhood major depressive disorder. JAMA Psychiatry, 72(1), 40–48. doi: 10.1001/jamapsychiatry.2014.1604.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Belyk, M., & Brown, S. (2014). Perception of affective and linguistic prosody: an ALE meta-analysis of neuroimaging studies. Social Cognitive and Affective Neuroscience, 9(9), 1395–1403. doi: 10.1093/scan/nst124.PubMedCrossRefGoogle Scholar
  18. Berrios, G. E., Bulbena, A., Bakshi, N., Dening, T. R., Jenaway, A., Markar, H., & Mitchell, S. L. (1992). Feelings of guilt in major depression. conceptual and psychometric aspects. British Journal of Psychiatry, 160, 781–787.PubMedCrossRefGoogle Scholar
  19. Botvinick, M. M., Cohen, J. D., & Carter, C. S. (2004). Conflict monitoring and anterior cingulate cortex: an update. Trends in Cognitive Science, 8(12), 539–546. doi: 10.1016/j.tics.2004.10.003.CrossRefGoogle Scholar
  20. Brower, M. C., & Price, B. H. (2001). Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. Journal of Neurology, Neurosurgery & Psychiatry, 71(6), 720–726.CrossRefGoogle Scholar
  21. Burnett, S., Bird, G., Moll, J., Frith, C., & Blakemore, S. J. (2008). Development during adolescence of the neural processing of social emotion. Journal of Cognitive Neuroscience, 1736–1750.Google Scholar
  22. Button, K. S., Ioannidis, J. P., Mokrysz, C., Nosek, B. A., Flint, J., Robinson, E. S., & Munafo, M. R. (2013). Power failure: why small sample size undermines the reliability of neuroscience. Nature Review Neuroscience, 14(5), 365–376. doi: 10.1038/nrn3475.CrossRefGoogle Scholar
  23. Calder, A. J., Lawrence, A. D., Keane, J., Scott, S. K., Owen, A. M., Christoffels, I., & Young, A. W. (2002). Reading the mind from eye gaze. Neuropsychologia, 40(8), 1129–1138.PubMedCrossRefGoogle Scholar
  24. Carrington, S. J., & Bailey, A. J. (2009). Are there theory of mind regions in the brain? a review of the neuroimaging literature. Human Brain Mapping, 30(8), 2313–2335. doi: 10.1002/hbm.20671.PubMedCrossRefGoogle Scholar
  25. Castelli, F., Happe, F., Frith, U., & Frith, C. (2000). Movement and mind: a functional imaging study of perception and interpretation of complex intentional movement patterns. NeuroImage, 12(3), 314–325. doi: 10.1006/nimg.2000.0612.PubMedCrossRefGoogle Scholar
  26. Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(Pt 3), 564–583. doi: 10.1093/brain/awl004.PubMedCrossRefGoogle Scholar
  27. Chang, L. J., Smith, A., Dufwenberg, M., & Sanfey, A. G. (2011). Triangulating the neural, psychological, and economic bases of guilt aversion. Neuron, 70(3), 560–572. doi: 10.1016/j.neuron.2011.02.056.PubMedPubMedCentralCrossRefGoogle Scholar
  28. Chapman, H. A., & Anderson, A. K. (2013). Things rank and gross in nature: a review and synthesis of moral disgust. Psychological Bulletin, 139(2), 300–327. doi: 10.1037/a0030964.PubMedCrossRefGoogle Scholar
  29. Chumbley, J. R., & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage, 44(1), 62–70. doi: 10.1016/j.neuroimage.2008.05.021.PubMedCrossRefGoogle Scholar
  30. Cleckley, H. (1982). The mask of sanity: Mosby.Google Scholar
  31. Compton, R. J. (2003). The interface between emotion and attention: a review of evidence from psychology and neuroscience. Behavioral and Cognitive Neuroscience Reviews, 2(2), 115–129. doi: 10.1177/1534582303255278.PubMedCrossRefGoogle Scholar
  32. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Review Neuroscience, 3(3), 201–215. doi: 10.1038/nrn755.CrossRefGoogle Scholar
  33. Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Comparative Neurology, 493(1), 154–166. doi: 10.1002/cne.20749.PubMedCrossRefGoogle Scholar
  34. Curtis, V., Aunger, R., & Rabie, T. (2004). Evidence that disgust evolved to protect from risk of disease. Proceedings of the Biological Sciences, 271(Suppl 4), S131–133. doi: 10.1098/rsbl.2003.0144.CrossRefGoogle Scholar
  35. Darwin, C. (1872). The expression of the emotions in man and animals: John Murray.Google Scholar
  36. Devinsky, O., Morrell, M. J., & Vogt, B. A. (1995). Contributions of anterior cingulate cortex to behaviour. Brain, 118(Pt 1), 279–306.PubMedCrossRefGoogle Scholar
  37. Downar, J., & Daskalakis, Z. J. (2013). New targets for rTMS in depression: a review of convergent evidence. Brain Stimulation, 6(3), 231–240. doi: 10.1016/j.brs.2012.08.006.PubMedCrossRefGoogle Scholar
  38. Downar, J., Sankar, A., Giacobbe, P., Woodside, B., & Colton, P. (2012). Unanticipated rapid remission of refractory bulimia nervosa, during high-dose repetitive transcranial magnetic stimulation of the dorsomedial prefrontal cortex: a case report. Front Psychiatry, 3, 30. doi: 10.3389/fpsyt.2012.00030.PubMedPubMedCentralCrossRefGoogle Scholar
  39. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926. doi: 10.1002/hbm.20718.PubMedPubMedCentralCrossRefGoogle Scholar
  40. Eickhoff, S. B., Bzdok, D., Laird, A. R., Roski, C., Caspers, S., Zilles, K., & Fox, P. T. (2011). Co-activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage, 57(3), 938–949. doi: 10.1016/j.neuroimage.2011.05.021.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361. doi: 10.1016/j.neuroimage.2011.09.017.PubMedCrossRefGoogle Scholar
  42. Eisenberg, N. (2000). Emotion, regulation, and moral development. Annual Review of Psychology, 51, 665–697. doi: 10.1146/annurev.psych.51.1.665.PubMedCrossRefGoogle Scholar
  43. Eisenberger, N. I., Lieberman, M. D., & Williams, K. D. (2003). Does rejection hurt? an FMRI study of social exclusion. Science, 302(5643), 290–292. doi: 10.1126/science.1089134.PubMedCrossRefGoogle Scholar
  44. Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6, 169–200.CrossRefGoogle Scholar
  45. Emery, N. J., & Amaral, D. G. (2000). The role of the amygdala in primate social cognition. In R. D. Lane & L. Nadel (Eds.), Cognitive neuroscience of emotion. New York: Oxford University Press.Google Scholar
  46. Farrer, C., Franck, N., Georgieff, N., Frith, C. D., Decety, J., & Jeannerod, M. (2003). Modulating the experience of agency: a positron emission tomography study. NeuroImage, 18(2), 324–333.PubMedCrossRefGoogle Scholar
  47. Farrow, T. F., Zheng, Y., Wilkinson, I. D., Spence, S. A., Deakin, J. F., Tarrier, N., & Woodruff, P. W. (2001). Investigating the functional anatomy of empathy and forgiveness. Neuroreport, 12(11), 2433–2438.PubMedCrossRefGoogle Scholar
  48. Feldmanhall, O., Mobbs, D., & Dalgleish, T. (2014). Deconstructing the brain’s moral network: dissociable functionality between the temporoparietal junction and ventro-medial prefrontal cortex. Social Cognitive and Affective Neuroscience, 9(3), 297–306. doi: 10.1093/scan/nss139.PubMedCrossRefGoogle Scholar
  49. Ferguson, T. J., Brugman, D., White, J., & Eyre, H. L. (2007). Shame and guilt as morally warranted experiences. In J. L. Tracy, R. W. Robins, & J. P. Tangney (Eds.), The self-conscious emotions: Theory and research. New York: The Guilford Press.Google Scholar
  50. Finger, E. C., Marsh, A. A., Kamel, N., Mitchell, D. G., & Blair, J. R. (2006). Caught in the act: the impact of audience on the neural response to morally and socially inappropriate behavior. NeuroImage, 33(1), 414–421. doi: 10.1016/j.neuroimage.2006.06.011.PubMedCrossRefGoogle Scholar
  51. Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition, 57(2), 109–128.PubMedCrossRefGoogle Scholar
  52. Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M. L., Craik, F., & Mayberg, H. (2003). In search of the emotional self: an fMRI study using positive and negative emotional words. The American Journal of Psychiatry, 160(11), 1938–1945.PubMedCrossRefGoogle Scholar
  53. Fourie, M. M., Thomas, K. G., Amodio, D. M., Warton, C. M., & Meintjes, E. M. (2014). Neural correlates of experienced moral emotion: an fMRI investigation of emotion in response to prejudice feedback. Social Neuroscience, 9(2), 203–218. doi: 10.1080/17470919.2013.878750.PubMedCrossRefGoogle Scholar
  54. Fuchs, P. N., Peng, Y. B., Boyette-Davis, J. A., & Uhelski, M. L. (2014). The anterior cingulate cortex and pain processing. Frontiers in Integrative Neuroscience, 8, 35. doi: 10.3389/fnint.2014.00035.PubMedPubMedCentralCrossRefGoogle Scholar
  55. Gallagher, H. L., Happe, F., Brunswick, N., Fletcher, P. C., Frith, U., & Frith, C. D. (2000). Reading the mind in cartoons and stories: an fMRI study of ‘theory of mind’ in verbal and nonverbal tasks. Neuropsychologia, 38(1), 11–21.PubMedCrossRefGoogle Scholar
  56. Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15(4), 870–878. doi: 10.1006/nimg.2001.1037.PubMedCrossRefGoogle Scholar
  57. Gilboa, A., Winocur, G., Grady, C. L., Hevenor, S. J., & Moscovitch, M. (2004). Remembering our past: functional neuroanatomy of recollection of recent and very remote personal events. Cerebral Cortex, 14(11), 1214–1225. doi: 10.1093/cercor/bhh082.PubMedCrossRefGoogle Scholar
  58. Gillihan, S. J., & Farah, M. J. (2005). Is self special? a critical review of evidence from experimental psychology and cognitive neuroscience. Psychological Bulletin, 131(1), 76–97. doi: 10.1037/0033-2909.131.1.76.PubMedCrossRefGoogle Scholar
  59. Goel, V., Grafman, J., Sadato, N., & Hallett, M. (1995). Modeling other minds. Neuroreport, 6(13), 1741–1746.PubMedCrossRefGoogle Scholar
  60. Green, S., Lambon Ralph, M. A., Moll, J., Deakin, J. F., & Zahn, R. (2012). Guilt-selective functional disconnection of anterior temporal and subgenual cortices in major depressive disorder. Archives of General Psychiatry, 69(10), 1014–1021. doi: 10.1001/archgenpsychiatry.2012.135.PubMedCrossRefGoogle Scholar
  61. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108. doi: 10.1126/science.1062872.PubMedCrossRefGoogle Scholar
  62. Haidt, J. (2003). The moral emotions. In R. J. Davidson, K. R. Sherer, & H. H. Goldsmith (Eds.), Handbook of affective sciences (pp. 852–870). Oxford: Oxford University Press.Google Scholar
  63. Haidt, J., Rozin, P., McCauley, C. R., & Imada, S. (1997). Body, psyche, and culture: the relationship between disgust and morality. Psychology and Developing Societies, 9, 107–131.CrossRefGoogle Scholar
  64. Hare, R. (1991). The Hare psychopathy checklist -revised: Multi-Health System.Google Scholar
  65. Harenski, C. L., & Kiehl, K. A. (2010). Reactive aggression in psychopathy and the role of frustration: susceptibility, experience, and control. British Journal of Psychology, 101(Pt 3), 401–406. doi: 10.1348/000712609X471067.PubMedCrossRefGoogle Scholar
  66. Heekeren, H. R., Wartenburger, I., Schmidt, H., Schwintowski, H. P., & Villringer, A. (2003). An fMRI study of simple ethical decision-making. Neuroreport, 14(9), 1215–1219. doi: 10.1097/01.wnr.0000081878.45938.a7.PubMedCrossRefGoogle Scholar
  67. Henning, K. R., & Frueh, B. C. (1997). Combat guilt and its relationship to PTSD symptoms. Journal of Clinical Psychology, 53(8), 801–808.PubMedCrossRefGoogle Scholar
  68. Hetu, S., Gregoire, M., Saimpont, A., Coll, M. P., Eugene, F., Michon, P. E., & Jackson, P. L. (2013). The neural network of motor imagery: an ALE meta-analysis. Neuroscience & Biobehavioral Reviews, 37(5), 930–949. doi: 10.1016/j.neubiorev.2013.03.017.CrossRefGoogle Scholar
  69. Himmelbach, M., Erb, M., & Karnath, H. O. (2006). Exploring the visual world: the neural substrate of spatial orienting. NeuroImage, 32(4), 1747–1759. doi: 10.1016/j.neuroimage.2006.04.221.PubMedCrossRefGoogle Scholar
  70. Jabbi, M., Swart, M., & Keysers, C. (2007). Empathy for positive and negative emotions in the gustatory cortex. NeuroImage, 34(4), 1744–1753. doi: 10.1016/j.neuroimage.2006.10.032.PubMedCrossRefGoogle Scholar
  71. Johnstone, T., van Reekum, C. M., Oakes, T. R., & Davidson, R. J. (2006). The voice of emotion: an FMRI study of neural responses to angry and happy vocal expressions. Social Cognitive and Affective Neuroscience, 1(3), 242–249. doi: 10.1093/scan/nsl027.PubMedPubMedCentralCrossRefGoogle Scholar
  72. Kapur, S., Phillips, A. G., & Insel, T. R. (2012). Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it? Molecular Psychiatry, 17(12), 1174–1179. doi: 10.1038/mp.2012.105.PubMedCrossRefGoogle Scholar
  73. Kedia, G., Berthoz, S., Wessa, M., Hilton, D., & Martinot, J. L. (2008). An agent harms a victim: a functional magnetic resonance imaging study on specific moral emotions. Journal Cognitive Neuroscience, 20(10), 1788–1798. doi: 10.1162/jocn.2008.20070.CrossRefGoogle Scholar
  74. Kelley, W. M., Macrae, C. N., Wyland, C. L., Caglar, S., Inati, S., & Heatherton, T. F. (2002). Finding the self? an event-related fMRI study. Journal Cognitive Neuroscience, 14(5), 785–794. doi: 10.1162/08989290260138672.CrossRefGoogle Scholar
  75. Kirby, L. A., & Robinson, J. L. (2015). Affective mapping: an activation likelihood estimation (ALE) meta-analysis. Brain and Cognition. doi: 10.1016/j.bandc.2015.04.006.PubMedGoogle Scholar
  76. Kohn, N., Eickhoff, S. B., Scheller, M., Laird, A. R., Fox, P. T., & Habel, U. (2014). Neural network of cognitive emotion regulation--an ALE meta-analysis and MACM analysis. NeuroImage, 87, 345–355. doi: 10.1016/j.neuroimage.2013.11.001.PubMedCrossRefGoogle Scholar
  77. Laird, A. R., McMillan, K. M., Lancaster, J. L., Kochunov, P., Turkeltaub, P. E., Pardo, J. V., & Fox, P. T. (2005). A comparison of label-based review and ALE meta-analysis in the Stroop task. Human Brain Mapping, 25(1), 6–21. doi: 10.1002/hbm.20129.PubMedCrossRefGoogle Scholar
  78. Laird, A. R., Eickhoff, S. B., Kurth, F., Fox, P. M., Uecker, A. M., Turner, J. A., & Fox, P. T. (2009). ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinformation, 3, 23. doi: 10.3389/neuro.11.023.2009.Google Scholar
  79. Laird, A. R., Eickhoff, S. B., Fox, P. M., Uecker, A. M., Ray, K. L., Saenz, J. J., Jr., & Fox, P. T. (2011). The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Research Notes, 4, 349. doi: 10.1186/1756-0500-4-349.PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lancaster, J. L., Tordesillas-Gutierrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., & Fox, P. T. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28(11), 1194–1205. doi: 10.1002/hbm.20345.PubMedCrossRefGoogle Scholar
  81. Lang, P. J., Bradley, M. M., Fitzsimmons, J. R., Cuthbert, B. N., Scott, J. D., Moulder, B., & Nangia, V. (1998). Emotional arousal and activation of the visual cortex: an fMRI analysis. Psychophysiology, 35(2), 199–210.PubMedCrossRefGoogle Scholar
  82. Lavin, C., Melis, C., Mikulan, E., Gelormini, C., Huepe, D., & Ibanez, A. (2013). The anterior cingulate cortex: an integrative hub for human socially-driven interactions. Frontiers in Neuroscience, 7, 64. doi: 10.3389/fnins.2013.00064.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lazarus, R. S. (1991). Emotion and adaptation. New York, NY: Oxford University Press.Google Scholar
  84. Leary, M. R. (2007). How the self became involved in affective experience. In J. L. Tracy, R. W. Robins, & J. P. Tangney (Eds.), The self-conscious emotions: Theory and research. New York, NY: Guilford Press.Google Scholar
  85. Lewis, M. (2010). Self-conscious emotions: Embarassment, pride, shame, and guilt. In M. Lewis, J. M. H.-J, & L. F. Barrett (Eds.), Handbook of emotions (pp. 742–756). New York: Guilford Press.Google Scholar
  86. Lewis, M., & Ramsay, D. (1997). The development of self-conscious emotions. In A. J. Elliott & C. S. Dweck (Eds.), Handbook of competence and motivation (pp. 185–201). New York: Guilford Press.Google Scholar
  87. Lythe, K. E., Moll, J., Gethin, J. A., Workman, C. I., Green, S., Lambon Ralph, M. A., & Zahn, R. (2015). Self-blame-selective hyperconnectivity between anterior temporal and subgenual cortices and prediction of recurrent depressive episodes. JAMA Psychiatry, 72(11), 1119–1126. doi: 10.1001/jamapsychiatry.2015.1813.PubMedCrossRefGoogle Scholar
  88. McGirr, A., Renaud, J., Seguin, M., Alda, M., Benkelfat, C., Lesage, A., & Turecki, G. (2007). An examination of DSM-IV depressive symptoms and risk for suicide completion in major depressive disorder: a psychological autopsy study. Journal of Affective Disorders, 97(1-3), 203–209. doi: 10.1016/j.jad.2006.06.016.PubMedCrossRefGoogle Scholar
  89. McMonagle, P., Deering, F., Berliner, Y., & Kertesz, A. (2006). The cognitive profile of posterior cortical atrophy. Neurology, 66(3), 331–338.PubMedCrossRefGoogle Scholar
  90. Michl, P., Meindl, T., Meister, F., Born, C., Engel, R. R., Reiser, M., & Hennig-Fast, K. (2014). Neurobiological underpinnings of shame and guilt: a pilot fMRI study. Social Cognitive and Affective Neuroscience, 9(2), 150–157. doi: 10.1093/scan/nss114.PubMedCrossRefGoogle Scholar
  91. Moll, J., de Oliveira-Souza, R., & Eslinger, P. J. (2003). Morals and the human brain: a working model. Neuroreport, 14(3), 299–305. doi: 10.1097/01.wnr.0000057866.05120.28.PubMedCrossRefGoogle Scholar
  92. Moll, J., Zahn, R., de Oliveira-Souza, R., Krueger, F., & Grafman, J. (2005). Opinion: the neural basis of human moral cognition. Nature Review Neuroscience, 6(10), 799–809. doi: 10.1038/nrn1768.CrossRefGoogle Scholar
  93. Moll, J., de Oliveira-Souza, R., Garrido, G. J., Bramati, I. E., Caparelli-Daquer, E. M., Paiva, M. L., & Grafman, J. (2007). The self as a moral agent: linking the neural bases of social agency and moral sensitivity. Social Neuroscience, 2(3-4), 336–352. doi: 10.1080/17470910701392024.PubMedCrossRefGoogle Scholar
  94. Moll, J., de Oliveira-Souza, R., & Zahn, R. (2008). Chapter: The neural basis of moral cognition: Sentiments, concepts, and values The year in cognitive neuroscience 2008 (pp. 161-180). Malden: Blackwell Publishing.Google Scholar
  95. Moll, J., De Oliveira-Souza, R., & Zahn, R. (2008b). The neural basis of moral cognition: sentiments, concepts, and values. Annals of the New York Academy of Sciences, 1124, 161–180. doi: 10.1196/annals.1440.005.PubMedCrossRefGoogle Scholar
  96. Morey, R. A., McCarthy, G., Selgrade, E. S., Seth, S., Nasser, J. D., & LaBar, K. S. (2012). Neural systems for guilt from actions affecting self versus others. NeuroImage, 60(1), 683–692. doi: 10.1016/j.neuroimage.2011.12.069.PubMedPubMedCentralCrossRefGoogle Scholar
  97. Moscovitch, M., Rosenbaum, R. S., Gilboa, A., Addis, D. R., Westmacott, R., Grady, C., & Nadel, L. (2005). Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. Journal of Anatomy, 207(1), 35–66. doi: 10.1111/j.1469-7580.2005.00421.x.PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Science, 9(5), 242–249. doi: 10.1016/j.tics.2005.03.010.CrossRefGoogle Scholar
  99. Ochsner, K. N., Knierim, K., Ludlow, D. H., Hanelin, J., Ramachandran, T., Glover, G., & Mackey, S. C. (2004). Reflecting upon feelings: an fMRI study of neural systems supporting the attribution of emotion to self and other. Journal Cognitive Neuroscience, 16(10), 1746–1772. doi: 10.1162/0898929042947829.CrossRefGoogle Scholar
  100. Ortigue, S., Grafton, S. T., & Bianchi-Demicheli, F. (2007). Correlation between insula activation and self-reported quality of orgasm in women. NeuroImage, 37(2), 551–560. doi: 10.1016/j.neuroimage.2007.05.026.PubMedCrossRefGoogle Scholar
  101. Phan, K. L., Wager, T., Taylor, S. F., & Liberzon, I. (2002). Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. NeuroImage, 16(2), 331–348. doi: 10.1006/nimg.2002.1087.PubMedCrossRefGoogle Scholar
  102. Posner, M. I., & Di Girolamo, G. J. (1998). Executive attention: conflict, target detection and cognitive control. In R. Parasuraman (Ed.), The attentive brain (pp. 401–423). Cambridge: MIT Press.Google Scholar
  103. Pulcu, E., Lythe, K., Elliott, R., Green, S., Moll, J., Deakin, J. F., & Zahn, R. (2014). Increased amygdala response to shame in remitted major depressive disorder. PLoS One, 9(1), e86900. doi: 10.1371/journal.pone.0086900.PubMedPubMedCentralCrossRefGoogle Scholar
  104. Rainville, P., Duncan, G. H., Price, D. D., Carrier, B., & Bushnell, M. C. (1997). Pain affect encoded in human anterior cingulate but not somatosensory cortex. Science, 277(5328), 968–971.PubMedCrossRefGoogle Scholar
  105. Richter, M. A., de Jesus, D. R., Hoppenbrouwers, S., Daigle, M., Deluce, J., Ravindran, L. N., & Daskalakis, Z. J. (2012). Evidence for cortical inhibitory and excitatory dysfunction in obsessive compulsive disorder. Neuropsychopharmacology, 37(5), 1144–1151. doi: 10.1038/npp.2011.300.PubMedCrossRefGoogle Scholar
  106. Rilling, J. K., Sanfey, A. G., Aronson, J. A., Nystrom, L. E., & Cohen, J. D. (2004). The neural correlates of theory of mind within interpersonal interactions. NeuroImage, 22(4), 1694–1703. doi: 10.1016/j.neuroimage.2004.04.015.PubMedCrossRefGoogle Scholar
  107. Ross, L. A., & Olson, I. R. (2010). Social cognition and the anterior temporal lobes. NeuroImage, 49(4), 3452–3462. doi: 10.1016/j.neuroimage.2009.11.012.PubMedCrossRefGoogle Scholar
  108. Roth, L., Kaffenberger, T., Herwig, U., & Bruhl, A. B. (2014). Brain activation associated with pride and shame. Neuropsychobiology, 69(2), 95–106. doi: 10.1159/000358090.PubMedCrossRefGoogle Scholar
  109. Rozin, P., Haidt, J., & McCaule, C. (2008a). Disgust. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions (3rd ed., pp. 757–776). New York: The Guilford Press.Google Scholar
  110. Rozin, P., Haidt, J., & McCauley, C. R. (2008b). Disgust. In M. Lewis, J. M. Haviland-Jones, & L. F. Barrett (Eds.), Handbook of emotions. New York: Guilford Press.Google Scholar
  111. Ruby, P., & Decety, J. (2001). Effect of subjective perspective taking during simulation of action: a PET investigation of agency. Nature Neuroscience, 4(5), 546–550. doi: 10.1038/87510.PubMedGoogle Scholar
  112. Rushworth, M. F., Noonan, M. P., Boorman, E. D., Walton, M. E., & Behrens, T. E. (2011). Frontal cortex and reward-guided learning and decision-making. Neuron, 70(6), 1054–1069. doi: 10.1016/j.neuron.2011.05.014.PubMedCrossRefGoogle Scholar
  113. Sackeim, H. A., Greenberg, M. S., Weiman, A. L., Gur, R. C., Hungerbuhler, J. P., & Geschwind, N. (1982). Hemispheric asymmetry in the expression of positive and negative emotions. neurologic evidence. Archives of Neurology, 39(4), 210–218.PubMedCrossRefGoogle Scholar
  114. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people. the role of the temporo-parietal junction in “theory of mind”. NeuroImage, 19(4), 1835–1842.PubMedCrossRefGoogle Scholar
  115. Saxe, R., Moran, J. M., Scholz, J., & Gabrieli, J. (2006). Overlapping and non-overlapping brain regions for theory of mind and self reflection in individual subjects. Social Cognitive and Affective Neuroscience, 1(3), 229–234. doi: 10.1093/scan/nsl034.PubMedPubMedCentralCrossRefGoogle Scholar
  116. Schupp, H. T., Ohman, A., Junghofer, M., Weike, A. I., Stockburger, J., & Hamm, A. O. (2004). The facilitated processing of threatening faces: an ERP analysis. Emotion, 4(2), 189–200. doi: 10.1037/1528-3542.4.2.189.PubMedCrossRefGoogle Scholar
  117. Shallice, T., Fletcher, P., Frith, C. D., Grasby, P., Frackowiak, R. S., & Dolan, R. J. (1994). Brain regions associated with acquisition and retrieval of verbal episodic memory. Nature, 368(6472), 633–635. doi: 10.1038/368633a0.PubMedCrossRefGoogle Scholar
  118. Shapiro, L. J., & Stewart, E. S. (2011). Pathological guilt: a persistent yet overlooked treatment factor in obsessive-compulsive disorder. Annals of Clinical Psychiatry, 23(1), 63–70.PubMedGoogle Scholar
  119. Shin, L. M., Dougherty, D. D., Orr, S. P., Pitman, R. K., Lasko, M., Macklin, M. L., & Rauch, S. L. (2000). Activation of anterior paralimbic structures during guilt-related script-driven imagery. Biological Psychiatry, 48(1), 43–50.PubMedCrossRefGoogle Scholar
  120. Shweder, R. A., Much, N. C., Mahapatra, M., & Park, L. (1997). The “big three” of morality (autonomy, community, divinity), and the “big three” explanations of suffering. In A. Brandt & P. Rozin (Eds.), Morality and health. New York: Routledge.Google Scholar
  121. Skipper, L. M., Ross, L. A., & Olson, I. R. (2011). Sensory and semantic category subdivisions within the anterior temporal lobes. Neuropsychologia, 49(12), 3419–3429. doi: 10.1016/j.neuropsychologia.2011.07.033.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Takahashi, H., Yahata, N., Koeda, M., Matsuda, T., Asai, K., & Okubo, Y. (2004). Brain activation associated with evaluative processes of guilt and embarrassment: an fMRI study. NeuroImage, 23(3), 967–974. doi: 10.1016/j.neuroimage.2004.07.054.PubMedCrossRefGoogle Scholar
  123. Tangney, J. P. (1990). Assessing individual differences in proneness to shame and guilt: development of the self-conscous affect and attribution inventory. Journal of Personality and Social Psychology, 59, 102–111. doi: 10.1037/0022-3514.59.1.102.PubMedCrossRefGoogle Scholar
  124. Tangney, J. P. (1996). Conceptual and methodological issues in the assessment of shame and guilt. Behaviour Research and Therapy, 34(9), 741–754.PubMedCrossRefGoogle Scholar
  125. Tangney, J. P. (1999). The self-conscious emotions: Shame, guilt, embarrassment, and pride. In T. Dalgliesh & M. J. Power (Eds.), Handbook of cognition and emotion. Chichester: Wiley.Google Scholar
  126. Tangney, J. P., & Dearing, R. L. (2002). Shame and guilt. New York: Guilford Press.CrossRefGoogle Scholar
  127. Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13. doi: 10.1002/hbm.21186.PubMedCrossRefGoogle Scholar
  128. Vogt, B. A. (2005). Pain and emotion interactions in subregions of the cingulate gyrus. Nature Review Neuroscience, 6(7), 533–544. doi: 10.1038/nrn1704.CrossRefGoogle Scholar
  129. Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron, 30(3), 829–841.PubMedCrossRefGoogle Scholar
  130. Wager, T. D., Phan, K. L., Liberzon, I., & Taylor, S. F. (2003). Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging. NeuroImage, 19(3), 513–531.PubMedCrossRefGoogle Scholar
  131. Wagner, U., N’Diaye, K., Ethofer, T., & Vuilleumier, P. (2011). Guilt-specific processing in the prefrontal cortex. Cerebral Cortex, 21(11), 2461–2470. doi: 10.1093/cercor/bhr016.PubMedCrossRefGoogle Scholar
  132. Whalen, P. J., Bush, G., McNally, R. J., Wilhelm, S., McInerney, S. C., Jenike, M. A., & Rauch, S. L. (1998). The emotional counting Stroop paradigm: a functional magnetic resonance imaging probe of the anterior cingulate affective division. Biological Psychiatry, 44(12), 1219–1228.PubMedCrossRefGoogle Scholar
  133. Winston, J. S., Strange, B. A., O’Doherty, J., & Dolan, R. J. (2002). Automatic and intentional brain responses during evaluation of trustworthiness of faces. Nature Neuroscience, 5(3), 277–283. doi: 10.1038/nn816.PubMedCrossRefGoogle Scholar
  134. Young, L., & Saxe, R. (2008). The neural basis of belief encoding and integration in moral judgment. NeuroImage, 40(4), 1912–1920. doi: 10.1016/j.neuroimage.2008.01.057.PubMedCrossRefGoogle Scholar
  135. Yu, H., Hu, J., Hu, L., & Zhou, X. (2014). The voice of conscience: neural bases of interpersonal guilt and compensation. Social Cognitive and Affective Neuroscience, 9(8), 1150–1158. doi: 10.1093/scan/nst090.PubMedCrossRefGoogle Scholar
  136. Zahn, R., Moll, J., Krueger, F., Huey, E. D., Garrido, G., & Grafman, J. (2007). Social concepts are represented in the superior anterior temporal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(15), 6430–6435. doi: 10.1073/pnas.0607061104.PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zahn, R., Moll, J., Iyengar, V., Huey, E. D., Tierney, M., Krueger, F., & Grafman, J. (2009a). Social conceptual impairments in frontotemporal lobar degeneration with right anterior temporal hypometabolism. Brain, 132(Pt 3), 604–616. doi: 10.1093/brain/awn343.PubMedPubMedCentralCrossRefGoogle Scholar
  138. Zahn, R., Moll, J., Paiva, M., Garrido, G., Krueger, F., Huey, E. D., & Grafman, J. (2009b). The neural basis of human social values: evidence from functional MRI. Cerebral Cortex, 19(2), 276–283. doi: 10.1093/cercor/bhn080.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anthony J. Gifuni
    • 1
  • Adam Kendal
    • 1
  • Fabrice Jollant
    • 1
    • 2
  1. 1.Department of Psychiatry & Douglas Mental Health University Institute, McGill Group for Suicide StudiesMcGill UniversityMontréalCanada
  2. 2.Department of PsychiatryAcademic Hospital (CHU) of NîmesNîmesFrance

Personalised recommendations