Cognitive fatigue is associated with reduced anterior internal capsule integrity in veterans with history of mild to moderate traumatic brain injury

  • Alexandra L. Clark
  • Lisa Delano-Wood
  • Scott F. Sorg
  • Madeleine L. Werhane
  • Karen L. Hanson
  • Dawn M. Schiehser
Brief Communication

Abstract

No known studies have directly examined white matter microstructural correlates of cognitive fatigue post-TBI in a Veteran sample. We therefore investigated the relationship between cognitive fatigue and white matter integrity in Veterans with history of mild to moderate TBI (mmTBI). 59 Veterans (TBI = 34, Veteran Controls [VCs] = 25]) with and without history of mmTBI underwent structural 3T DTI scans and completed questionnaires related to cognitive fatigue and psychiatric symptoms. Tractography was employed on six regions of interest, including the anterior and posterior limbs of the internal capsule; genu; body and splenium of the corpus callosum; and cingulum bundle. Group analyses revealed that those with history of mmTBI displayed significantly greater levels of cognitive fatigue relative to those with no history of head injury (p = .02). Within the mmTBI group, independent of psychiatric symptoms, decreased white matter microstructural integrity of the left anterior internal capsule was associated with greater levels of cognitive fatigue (p = .01). Results show that the subjective experience of cognitive fatigue following neurotrauma may be linked to the disruption of striato-thalamo-cortical tracts that are important in mediating arousal and higher-order cognitive processes. These findings build upon those from existing functional neuroimaging studies in those with history of TBI, providing further evidence for the neural basis of cognitive fatigue in head injured adults.

Keywords

Fatigue Cognitive fatigue White matter microstructure TBI 

References

  1. American Psychiatric Association. (2000). Diagnostic and statistical manual of mental disorders (4th ed., text rev.). Washington, DC.Google Scholar
  2. Bay, E., & de-Leon, M. B. (2011). Chronic stress and fatigue-related quality of life after mild to moderate traumatic brain injury. J Head Trauma Rehabil, 26(5), 355–363.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Beck, A. T., Steer, R. A., & Brown, G. K. (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX: Psychology Corporation.Google Scholar
  4. Bester, M., Lazar, M., Petracca, M., Babb, J. S., Herbert, J., Grossman, R. I., & Inglese, M. (2013). Tract-specific white matter correlates of fatigue and cognitive impairment in benign multiple sclerosis. J Neurol Sci, 330(1–2), 61–66. doi:10.1016/j.jns.2013.04.005.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Boksem, M. A., & Tops, M. (2008). Mental fatigue: costs and benefits. Brain Res Rev, 59(1), 125–139. doi:10.1016/j.brainresrev.2008.07.001.CrossRefPubMedGoogle Scholar
  6. Bonelli, R. M., & Cummings, J. L. (2007). Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci, 9(2), 141–151.PubMedPubMedCentralGoogle Scholar
  7. Bushnik, T., Englander, J., & Wright, J. (2008). Patterns of fatigue and its correlates over the first 2 years after traumatic brain injury. J Head Trauma Rehabil, 23(1), 25–32. doi:10.1097/01.HTR.0000308718.88214.bb.CrossRefPubMedGoogle Scholar
  8. Cantor, J. B., Ashman, T., Gordon, W., Ginsberg, A., Engmann, C., Egan, M., et al. (2008). Fatigue after traumatic brain injury and its impact on participation and quality of life. J Head Trauma Rehabil, 23(1), 41–51.CrossRefPubMedGoogle Scholar
  9. Cantor, J. B., Gordon, W., & Gumber, S. (2013). What is post TBI fatigue? NeuroRehabilitation, 32(4), 875–883. doi:10.3233/NRE-130912.PubMedGoogle Scholar
  10. Chatelin, S., Deck, C., Renard, F., Kremer, S., Heinrich, C., Armspach, J. P., & Willinger, R. (2011). Computation of axonal elongation in head trauma finite element simulation. J Mech Behav Biomed Mater, 4(8), 1905–1919. doi:10.1016/j.jmbbm.2011.06.007.CrossRefPubMedGoogle Scholar
  11. Chaudhuri, A., & Behan, P. O. (2000). Fatigue and basal ganglia. J Neurol Sci, 179(S 1–2), 34–42.CrossRefPubMedGoogle Scholar
  12. DeLuca, J. (2005). Fatigue as a window to the brain (J (DeLuca ed.). Cambridge, MA: MIT Press.Google Scholar
  13. Department of Veterans Affairs and Department of Defense. (2009). VA/DOD clinical practice guideline for the management of concussion/mild traumatic brain injury. Retrieved from http://www.healthquality.va.gov/guidelines/Rehab/mtbi/concussion_mtbi_full_1_0.pdf.
  14. Dobryakova, E., DeLuca, J., Genova, H. M., & Wylie, G. R. (2013). Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort-reward imbalance. J Int Neuropsychol Soc, 19(8), 849–853. doi:10.1017/S1355617713000684.CrossRefPubMedGoogle Scholar
  15. Edlow, B. L., & Wu, O. (2012). Advanced neuroimaging in traumatic brain injury. Semin Neurol, 32(4), 374–400. doi:10.1055/s-0032-1331810.PubMedGoogle Scholar
  16. Genova, H. M., Rajagopalan, V., Deluca, J., Das, A., Binder, A., Arjunan, A., et al. (2013). Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging. PLoS One, 8(11), e78811.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Haber, S. N., & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–26. doi:10.1038/npp.2009.129.CrossRefPubMedGoogle Scholar
  18. Hanken, K., Eling, P., Kastrup, A., Klein, J., & Hildebrandt, H. (2015). Integrity of hypothalamic fibers and cognitive fatigue in multiple sclerosis. Mult Scler Relat Disord, 4(1), 39–46. doi:10.1016/j.msard.2014.11.006.CrossRefPubMedGoogle Scholar
  19. Jones, D. K., Horsfield, M. A., & Simmons, A. (1999). Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging. Magnetic Resonance in Medicine, 42(3), 515–525.CrossRefPubMedGoogle Scholar
  20. Kasai, K., Yamasue, H., Gilbertson, M. W., Shenton, M. E., Rauch, S. L., & Pitman, R. K. (2008). Evidence for acquired pregenual anterior cingulate gray matter loss from a twin study of combat-related posttraumatic stress disorder. Biol Psychiatry, 63(6), 550–556. doi:10.1016/j.biopsych.2007.06.022.CrossRefPubMedGoogle Scholar
  21. Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & Deluca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. Brain Inj, 23(5), 420–432. doi:10.1080/02699050902788519.CrossRefPubMedGoogle Scholar
  22. Liu, X., Zhu, T., Gu, T., & Zhong, J. (2010). Optimization of in vivo high-resolution DTI of non-human primates on a 3 T human scanner. Methods, 50(3), 205–213.CrossRefPubMedGoogle Scholar
  23. Mori, S., & van Zijl, P. C. M. (2002). Fiber tracking: principles and strategies - a technical review. NMR in Biomedicine, 15(7–8), 468–480.CrossRefPubMedGoogle Scholar
  24. Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.CrossRefPubMedGoogle Scholar
  25. Oouchi, H., Yamada, K., Sakai, K., Kizu, O., Kubota, T., Ito, H., & Nishimura, T. (2007). Diffusion anisotropy measurement of brain white matter is affected by voxel size: underestimation occurs in areas with crossing fibers. American Journal of Neuroradiology, 28(6), 1102–1106.CrossRefPubMedGoogle Scholar
  26. Ouellet, M. C., & Morin, C. M. (2006). Fatigue following traumatic brain injury: Frequency, characteristics, and associated factors. Rehabilitation Psychology, 51(2), 140.CrossRefGoogle Scholar
  27. Ponsford, J., Cameron, P., Fitzgerald, M., Grant, M., & Mikocka-Walus, A. (2011). Long-term outcomes after uncomplicated mild traumatic brain injury: a comparison with trauma controls. J Neurotrauma, 28(6), 937–946. doi:10.1089/neu.2010.1516.CrossRefPubMedGoogle Scholar
  28. Ponsford, J. L., Ziino, C., Parcell, D. L., Shekleton, J. A., Roper, M., Redman, J. R., et al. (2012). Fatigue and sleep disturbance following traumatic brain injury--their nature, causes, and potential treatments. J Head Trauma Rehabil, 27(3), 224–233.CrossRefPubMedGoogle Scholar
  29. Ponsford, J., Schonberger, M., & Rajaratnam, S. M. (2015). A Model of Fatigue Following Traumatic Brain Injury. J Head Trauma Rehabil, 30(4), 277–282.CrossRefPubMedGoogle Scholar
  30. Povlishock, J. T., & Katz, D. I. (2005). Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil, 20(1), 76–94.CrossRefPubMedGoogle Scholar
  31. Reese, T. G., Heid, O., Weisskoff, R. M., & Wedeen, V. J. (2003). Reduction of eddy-current-induced distortion in diffusion MRI using a twice-refocused spin echo. Magnetic Resonance in Medicine, 49(1), 177–182. doi:10.1002/mrm.10308.CrossRefPubMedGoogle Scholar
  32. Schiehser, D. M., Twamley, E. W., Liu, L., Matevosyan, A., Filoteo, J. V., Jak, A. J., et al. (2015a). The relationship between postconcussive symptoms and quality of life in veterans with mild to moderate traumatic brain injury. The Journal of head trauma rehabilitation, 30(4), E21–E28.CrossRefPubMedGoogle Scholar
  33. Schiehser, D. M., Delano-Wood, L., Jak, A. J., Matthews, S. C., Simmons, A. N., Jacobson, M. W., et al. (2015b). Validation of the Modified Fatigue Impact Scale in mild to moderate traumatic brain injury. J Head Trauma Rehabil, 30(2), 116–121.CrossRefPubMedGoogle Scholar
  34. Schiehser, D. M., Delano-Wood, L., Jak, A., Hanson, K., Sorg, S., Orff, H., & Clark, A.L. (2016). Predictors of cognitive and physical fatigue in post-acute mild-moderate traumatic brain injury. Neuropsychological Rehabilitation. doi:10.1080/09602011.2016.1215999.
  35. Siegert, R. J., Walkey, F. H., & Turner-Stokes, L. (2009). An examination of the factor structure of the Beck Depression Inventory-II in a neurorehabilitation inpatient sample. J Int Neuropsychol Soc, 15(1), 142–147. doi:10.1017/S1355617708090048.CrossRefPubMedGoogle Scholar
  36. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208–S219.CrossRefPubMedGoogle Scholar
  37. Vos, S. B., Viergever, M. A., & Leemans, A. (2011). The anisotropic bias of fractional anisotropy in anisotropically acquired DTI data. Proc Int Soc Mag Reson Med, 19, 145.Google Scholar
  38. Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C. M., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 77–87.CrossRefPubMedGoogle Scholar
  39. Wang, R., Benner, T., Soensen, A. G., & Wedeen, V. J. (2007). Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc Intl Soc Mag Reson Med, 15, 3720.Google Scholar
  40. Weathers, F. W., Litz, B. T., Herman, D. S., Huska, J. A., & Keane, T. M. (1993). The PTSD checklist (PCL): reliability, validity, and diagnostic utility. Paper presented at the The annual meeting of the International Society for Traumatic Stress Studies. TX, USA: San Antonio.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandra L. Clark
    • 1
    • 2
  • Lisa Delano-Wood
    • 2
    • 3
    • 4
  • Scott F. Sorg
    • 2
    • 4
  • Madeleine L. Werhane
    • 1
    • 2
  • Karen L. Hanson
    • 2
    • 4
  • Dawn M. Schiehser
    • 2
    • 3
    • 4
  1. 1.Joint Doctoral Program in Clinical PsychologySan Diego State University/University of California, San Diego (SDSU/UCSD)San DiegoUSA
  2. 2.VA San Diego Healthcare System (VASDHS)San DiegoUSA
  3. 3.Center of Excellence for Stress and Mental HealthVASDHSSan DiegoUSA
  4. 4.School of Medicine, Department of PsychiatryUniversity of California San DiegoLa JollaUSA

Personalised recommendations