Mapping temporo-parietal and temporo-occipital cortico-cortical connections of the human middle longitudinal fascicle in subject-specific, probabilistic, and stereotaxic Talairach spaces

  • Nikos Makris
  • A. Zhu
  • G. M. Papadimitriou
  • P. Mouradian
  • I. Ng
  • E. Scaccianoce
  • G. Baselli
  • F. Baglio
  • M. E. Shenton
  • Y. Rathi
  • B. Dickerson
  • E. Yeterian
  • M. Kubicki
Original Research


Originally, the middle longitudinal fascicle (MdLF) was defined as a long association fiber tract connecting the superior temporal gyrus and temporal pole with the angular gyrus. More recently its description has been expanded to include all long postrolandic cortico-cortical association connections of the superior temporal gyrus and dorsal temporal pole with the parietal and occipital lobes. Despite its location and size, which makes MdLF one of the most prominent cerebral association fiber tracts, its discovery in humans is recent. Given the absence of a gold standard in humans for this fiber tract, its precise and complete connectivity remains to be determined with certainty. In this study using high angular resolution diffusion MRI (HARDI), we delineated for the first time, six major fiber connections of the human MdLF, four of which are temporo-parietal and two temporo-occipital, by examining morphology, topography, cortical connections, biophysical measures, volume and length in seventy brains. Considering the cortical affiliations of the different connections of MdLF we suggested that this fiber tract may be related to language, attention and integrative higher level visual and auditory processing associated functions. Furthermore, given the extensive connectivity provided to superior temporal gyrus and temporal pole with the parietal and occipital lobes, MdLF may be involved in several neurological and psychiatric conditions such as primary progressive aphasia and other aphasic syndromes, some forms of behavioral variant of frontotemporal dementia, atypical forms of Alzheimer’s disease, corticobasal degeneration, schizophrenia as well as attention-deficit/hyperactivity Disorder and neglect disorders.


DTI/HARDI Middle longitudinal fascicle/middle longitudinal fasciculus Inferior longitudinal fascicle/inferior longitudinal fasciculus Parietal lobe Occipital lobe Primary progressive aphasia Neurodegenerative disorders 


  1. Aja-Fernandez, S., Niethammer, M., Kubicki, M., Shenton, M. E., & Westin, C. F. (2008). Restoration of DWI data using a Rician LMMSE estimator. IEEE Trans Med Imaging, 27(10), 1389–1403. doi:10.1109/TMI.2008.920609.PubMedPubMedCentralCrossRefGoogle Scholar
  2. Alexander, A. L., Tsuruda, J. S., & Parker, D. L. (1997). Elimination of eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med, 38(6), 1016–1021.PubMedCrossRefGoogle Scholar
  3. Armstrong, M. J., Litvan, I., Lang, A. E., Bak, T. H., Bhatia, K. P., Borroni, B., et al. (2013). Criteria for the diagnosis of corticobasal degeneration. Neurology, 80(5), 496–503. doi:10.1212/WNL.0b013e31827f0fd1.PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asami, T., Saito, Y., Whitford, T. J., Makris, N., Niznikiewicz, M., McCarley, R. W., et al. (2013). Abnormalities of middle longitudinal fascicle and disorganization in patients with schizophrenia. Schizophr Res, 143(2–3), 253–259.PubMedPubMedCentralCrossRefGoogle Scholar
  5. Avants, B. B., Epstein, C. L., Grossman, M., & Gee, J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med Image Anal, 12(1), 26–41.PubMedCrossRefGoogle Scholar
  6. Barnes, J., Dickerson, B. C., Frost, C., Jiskoot, L. C., Wolk, D., & van der Flier, W. M. (2015). Alzheimer’s disease first symptoms are age dependent: Evidence from the NACC dataset. Alzheimers Dement, 11(11), 1349–1357. doi:10.1016/j.jalz.2014.12.007.PubMedCrossRefGoogle Scholar
  7. Barta, P. E., Pearlson, G. D., Powers, R. E., Richards, S. S., & Tune, L. E. (1990). Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. Am J Psychiatry, 147(11), 1457–1462.PubMedCrossRefGoogle Scholar
  8. Basser, P. J. (2004). Scaling laws for myelinated axons derived from an electrotonic core-conductor model. J Integr Neurosci, 3(2), 227–244.PubMedCrossRefGoogle Scholar
  9. Basser, P. J., Mattiello, J., & LeBihan, D. (1994). MR diffusion tensor spectroscopy and imaging. Biophys J, 66(1), 259–267, doi:10.1016/S0006-3495(94)80775-1.
  10. Baumgartner, C., Michailovich, O., Levitt, J., Pasternak, O., Bouix, S., Westin, C.-F., et al. (2012). A unified tractography framework for comparing diffusion models on clinical scans. Paper presented at the CDMRI-workshop (MICCAI’12), London.Google Scholar
  11. Benson, D. F., Davis, R. J., & Snyder, B. D. (1988). Posterior cortical atrophy. Arch Neurol, 45(7), 789–793.PubMedCrossRefGoogle Scholar
  12. Broca, P. (1865). Sur la siege de la faculte du langage articule. Bulletin d’ Anthropologie, 6, 377–393.CrossRefGoogle Scholar
  13. Brodmann, K. (1905). Beitrage zur histologischen Lokalisation der Grosshirnrinde. III. Mitteilung. Die Rindenfelder der niederen Affen. J Psychol Neurol, 4, 177–226.Google Scholar
  14. Bruce, C., Desimone, R., & Gross, C. G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. J Neurophysiol, 46(2), 369–384.PubMedGoogle Scholar
  15. Burdach, C. F. (1822). Baue und Leben des Gehirns. Leipzig: in der Dyk’schen Buchhandlung.Google Scholar
  16. Cabeza, R., & Nyberg, L. (2000). Neural bases of learning and memory: functional neuroimaging evidence. Curr Opin Neurol, 13(4), 415–421.PubMedCrossRefGoogle Scholar
  17. Caviness, V. S. J., Makris, N., Meyer, J., & Kennedy, D. (1996). MRI-based parcellation of human neocortex: an anatomically specified method with estimate of reliability. J Cog Neurosci, 8(6), 566–588.CrossRefGoogle Scholar
  18. Chan, D., Anderson, V., Pijnenburg, Y., Whitwell, J., Barnes, J., Scahill, R., et al. (2009). The clinical profile of right temporal lobe atrophy. Brain, 132(Pt 5), 1287–1298. doi:10.1093/brain/awp037.PubMedCrossRefGoogle Scholar
  19. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci, 3(3), 201–215.PubMedCrossRefGoogle Scholar
  20. Cowan, W. M., Gottlieb, D. I., Hendrickson, A. E., Price, J. L., & Woolsey, T. A. (1972). The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res, 37(1), 21–51.PubMedCrossRefGoogle Scholar
  21. Critchley, M. (1966). Is developmental dyslexia the expression of minor cerebral damage? Clin Proc Child Hosp Dist Columbia, 22(8), 213–222.PubMedGoogle Scholar
  22. Crutch, S. J., Schott, J. M., Rabinovici, G. D., Boeve, B. F., Cappa, S. F., Dickerson, B. C., et al. (2013). Shining a light on posterior cortical atrophy. Alzheimers Dement, 9(4), 463–465. doi:10.1016/j.jalz.2012.11.004.PubMedCrossRefGoogle Scholar
  23. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.PubMedGoogle Scholar
  24. Dale, A. M., Liu, A. K., Fischl, B. R., Buckner, R. L., Belliveau, J. W., Lewine, J. D., et al. (2000). Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron, 26(1), 55–67.PubMedCrossRefGoogle Scholar
  25. De Witt Hamer, P. C., Moritz-Gasser, S., Gatignol, P., & Duffau, H. (2011). Is the human left middle longitudinal fascicle essential for language? A brain electrostimulation study. Hum Brain Mapp, 32(6), 962–973.PubMedCrossRefGoogle Scholar
  26. Dejerine, J. (1895). Anatomie des Centres Nerveux (1980 (Masson ed.). Paris, France: Rueff et Cie.Google Scholar
  27. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.PubMedCrossRefGoogle Scholar
  28. Ding, S. L., Van Hoesen, G. W., Cassell, M. D., & Poremba, A. (2009). Parcellation of human temporal polar cortex: a combined analysis of multiple cytoarchitectonic, chemoarchitectonic, and pathological markers. J Comp Neurol, 514(6), 595–623.PubMedPubMedCentralCrossRefGoogle Scholar
  29. Duffy, F. H., & Burchfiel, J. L. (1971). Somatosensory system: organizational hierarchy from single units in monkey area 5. Science, 172(3980), 273–275.PubMedCrossRefGoogle Scholar
  30. Duncan, J., & Owen, A. M. (2000). Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci, 23(10), 475–483.PubMedCrossRefGoogle Scholar
  31. Economo, C. (1929). The cytoarchitectonics of the human cerebral cortex. London: Oxford University Press.Google Scholar
  32. Evans, A. C., Collins, D. L., Mills, S. R., Brown, E. D., Kelly, R. L., & Peters, T. M. (1993). 3D statistical neuroanatomical model from 305 MRI volumes. Nuclear Science Symposium and Medical Imaging Conference, 1993 I.E. Conference Record, 3, 1813–1817.Google Scholar
  33. First, M. B., Spitzer, R. L., Gibbon, M., & Williams, J. B. W. (1996). DSM-IV. Structured Clinical Interview for DSM-IV Axis I Disorders, Clinician Version (SCID-CV). Washington, D.C.: American Psychiatric Press, Inc..Google Scholar
  34. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci U S A, 97(20), 11050–11055. doi:10.1073/pnas.200033797.PubMedPubMedCentralCrossRefGoogle Scholar
  35. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207. doi:10.1006/nimg.1998.0396.PubMedCrossRefGoogle Scholar
  36. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.PubMedCrossRefGoogle Scholar
  37. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cereb Cortex, 14(1), 11–22.PubMedCrossRefGoogle Scholar
  38. Flechsig, P. (1901). Developmental (myelogenetic) localisation of the cerebral cortex in the human subject. Lancet, 2, 1027–1029.CrossRefGoogle Scholar
  39. Galaburda, A. M., Corsiglia, J., Rosen, G. D., & Sherman, G. F. (1987). Planum temporale asymmetry: Reappraisal since Geschwind and Levitsky. Neuropsychologia, 25(6), 853–868.CrossRefGoogle Scholar
  40. Geschwind, N. (1965). Disconnexion syndromes in animals and man. I. Brain, 88(2), 237–294.PubMedCrossRefGoogle Scholar
  41. Geschwind, N., & Galaburda, A. M. (1987). Cerebral lateralization: biological mechanisms, associations and pathology. Cambridge, MA: MIT Press.Google Scholar
  42. Goldman-Rakic, P. S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annu Rev Neurosci, 11, 137–156.PubMedCrossRefGoogle Scholar
  43. Gorno-Tempini, M. L., Hillis, A. E., Weintraub, S., Kertesz, A., Mendez, M., Cappa, S. F., et al. (2011). Classification of primary progressive aphasia and its variants. Neurology, 76(11), 1006–1014. doi:10.1212/WNL.0b013e31821103e6.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Gow Jr., D. W., Segawa, J. A., Ahlfors, S. P., & Lin, F. H. (2008). Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates. Neuroimage, 43(3), 614–623.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Gow Jr., D. W., Keller, C. J., Eskandar, E., Meng, N., & Cash, S. S. (2009). Parallel versus serial processing dependencies in the perisylvian speech network: a Granger analysis of intracranial EEG data. Brain Lang, 110(1), 43–48.PubMedPubMedCentralCrossRefGoogle Scholar
  46. Heid, O. (2000). Eddy current-nulled diffusion weighting. Proc Intl Soc Mag Reson Med, 8, 799.Google Scholar
  47. Heilman, K. M., & Valenstein, E. (1985). Clinical neuropsychology. New York: Oxford University Press.Google Scholar
  48. Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.PubMedCrossRefGoogle Scholar
  49. Heilman, K. M., Pandya, D. N., & Geschwind, N. (1970). Trimodal inattention following parietal lobe ablations. Trans Am Neurol Assoc, 95, 259–261.PubMedGoogle Scholar
  50. Heilman, K. M., Watson, R. T., Bower, D., & Valenstein, E. (1983). Right hemisphere dominance for attention. Rev Neurol (Paris), 139(1), 15–17.Google Scholar
  51. Hickok, G. (2001). Functional anatomy of speech perception and speech production: psycholinguistic implications. J Psycholinguist Res, 30(3), 225–235.PubMedCrossRefGoogle Scholar
  52. Hickok, G., & Poeppel, D. (2000). Towards a functional neuroanatomy of speech perception. Trends Cogn Sci, 4(4), 131–138.PubMedCrossRefGoogle Scholar
  53. Hickok, G., & Poeppel, D. (2007). The cortical organization of speech processing. Nat Rev Neurosci, 8(5), 393–402.PubMedCrossRefGoogle Scholar
  54. Jenkinson, M., & Smith, S. (2001). A global optimisation method for robust affine registration of brain images. Med Image Anal, 5(2), 143–156.PubMedCrossRefGoogle Scholar
  55. Kamali, A., Flanders, A. E., Brody, J., Hunter, J. V., & Hasan, K. M. (2014a). Tracing superior longitudinal fasciculus connectivity in the human brain using high resolution diffusion tensor tractography. Brain Struct Funct, 219(1), 269–281. doi:10.1007/s00429-012-0498-y.PubMedCrossRefGoogle Scholar
  56. Kamali, A., Sair, H. I., Radmanesh, A., & Hasan, K. M. (2014b). Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience, 277, 577–583. doi:10.1016/j.neuroscience.2014.07.035.PubMedCrossRefGoogle Scholar
  57. Karnath, H. O., Ferber, S., & Himmelbach, M. (2001). Spatial awareness is a function of the temporal not the posterior parietal lobe. Nature, 411(6840), 950–953.PubMedCrossRefGoogle Scholar
  58. Kasai, K., Shenton, M. E., Salisbury, D. F., Hirayasu, Y., Lee, C. U., Ciszewski, A. A., et al. (2003). Progressive decrease of left superior temporal gyrus gray matter volume in patients with first-episode schizophrenia. Am J Psychiatry, 160(1), 156–164.PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kellmeyer, P., Ziegler, W., Peschke, C., Juliane, E., Schnell, S., Baumgaertner, A., et al. (2013). Fronto-parietal dorsal and ventral pathways in the context of different linguistic manipulations. Brain Lang, 127(2), 241–250. doi:10.1016/j.bandl.2013.09.011.PubMedCrossRefGoogle Scholar
  60. Klingberg, T., Hedehus, M., Temple, E., Salz, T., Gabrieli, J. D., Moseley, M. E., et al. (2000). Microstructure of temporo-parietal white matter as a basis for reading ability: evidence from diffusion tensor magnetic resonance imaging. Neuron, 25(2), 493–500.PubMedCrossRefGoogle Scholar
  61. Lacquaniti, F., Guigon, E., Bianchi, L., Ferraina, S., & Caminiti, R. (1995). Representing spatial information for limb movement: role of area 5 in the monkey. Cereb Cortex, 5(5), 391–409.PubMedCrossRefGoogle Scholar
  62. Le Bihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–407. doi:10.1148/radiology.161.2.3763909.PubMedCrossRefGoogle Scholar
  63. Lori, N. F., Akbudak, E., Shimony, J. S., Cull, T. S., Snyder, A. Z., Guillory, R. K., et al. (2002). Diffusion tensor fiber tracking of human brain connectivity: aquisition methods, reliability analysis and biological results. NMR Biomed, 15(7–8), 494–515.Google Scholar
  64. Ludwig, E., & Klingler, J. (1956). Atlas cerebri humani. Der innere Bau des Gehirns dargestellt auf Grund makroskopischer Präparate. Little, Brown: The inner structure of the brain demonstrated on the basis of macroscopical preparations. Boston.Google Scholar
  65. Luria, A. R. (1980). Higher cortical functions in man (2nd ed.). New York: Consultants Bureau.CrossRefGoogle Scholar
  66. Makris, N. (1999). Delineation of human assocation fiber pathways using histologic and magnetic resonance methodologies. Doctoral thesis: Boston University, Boston, MA.Google Scholar
  67. Makris, N., & Pandya, D. N. (2009). The extreme capsule in humans and rethinking of the language circuitry. Brain Struct Funct, 213(3), 343–358.PubMedCrossRefGoogle Scholar
  68. Makris, N., Worth, A. J., Sorensen, A. G., Papadimitriou, G. M., Wu, O., Reese, T. G., et al. (1997). Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Annals of Neurology, 42(6), 951–962.PubMedCrossRefGoogle Scholar
  69. Makris, N., Meyer, J. W., Bates, J. F., Yeterian, E. H., Kennedy, D. N., & Caviness, V. S. (1999). MRI-Based topographic parcellation of human cerebral white matter and nuclei II. Rationale and applications with systematics of cerebral connectivity. Neuroimage, 9(1), 18–45.PubMedCrossRefGoogle Scholar
  70. Makris, N., Pandya, D. N., & Normandin, J. J. (2002a). Quantitative DT-MRI investigations of the human cingulum bundle. Central Nervous System Spectrums, 7(7), 522–528.Google Scholar
  71. Makris, N., Papadimitriou, G. M., Worth, A. J., Jenkins, B. G., Garrido, L., Sorensen, A. G., et al. (2002b). Diffusion tensor imaging. In C. Nemeroff (Ed.), Neuropsychopharmacology: the fifth generation of progress (Vol. 3, Chapter 27, pp. 357–371). New York: Lippincott, Williams, and Wilkins.Google Scholar
  72. Makris, N., Kennedy, D. N., McInerney, S., Sorensen, A. G., Wang, R., Caviness Jr., V. S., et al. (2005). Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex, 15(6), 854–869.PubMedCrossRefGoogle Scholar
  73. Makris, N., Biederman, J., Valera, E. M., Bush, G., Kaiser, J., Kennedy, D. N., et al. (2007a). Cortical thinning of the attention and executive function networks in adults with attention-deficit/hyperactivity disorder. Cereb Cortex, 17(6), 1364–1375.PubMedCrossRefGoogle Scholar
  74. Makris, N., Papadimitriou, G. M., Sorg, S., Kennedy, D. N., Caviness, V. S., & Pandya, D. N. (2007b). The occipitofrontal fascicle in humans: a quantitative, in vivo, DT-MRI study. Neuroimage, 37(4), 1100–1111. doi:10.1016/j.neuroimage.2007.05.042.PubMedPubMedCentralCrossRefGoogle Scholar
  75. Makris, N., Buka, S. L., Biederman, J., Papadimitriou, G. M., Hodge, S. M., Valera, E. M., et al. (2008). Attention and executive systems abnormalities in adults with childhood ADHD: A DT-MRI study of connections. Cereb Cortex, 18(5), 1210–1220. doi:10.1093/cercor/bhm156.PubMedCrossRefGoogle Scholar
  76. Makris, N., Papadimitriou, G. M., Kaiser, J. R., Sorg, S., Kennedy, D. N., & Pandya, D. N. (2009). Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex, 19(4), 777–785. doi:10.1093/cercor/bhn124.PubMedCrossRefGoogle Scholar
  77. Makris, N., Seidman, L. J., Ahern, T., Kennedy, D. N., Caviness, V. S., Tsuang, M. T., et al. (2010). White matter volume abnormalities and associations with symptomatology in schizophrenia. Psychiatry Research, 183(1), 21–29. doi:10.1016/j.pscychresns.2010.04.016.PubMedPubMedCentralCrossRefGoogle Scholar
  78. Makris, N., Preti, M. G., Asami, T., Pelavin, P., Campbell, B., Papadimitriou, G. M., et al. (2013a). Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Structure & Function, 218(4), 951–968. doi:10.1007/s00429-012-0441-2.CrossRefGoogle Scholar
  79. Makris, N., Preti, M. G., Wassermann, D., Rathi, Y., Papadimitriou, G. M., Yergatian, C., et al. (2013b). Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging and Behavior, 7(3), 335–352. doi:10.1007/s11682-013-9235-2.PubMedCrossRefGoogle Scholar
  80. Makris, N., Rathi, Y., Mouradian, P., Bonmassar, G., Papadimitriou, G., Ing, W. I., et al. (2015). Variability and anatomical specificity of the orbitofrontothalamic fibers of passage in the ventral capsule/ventral striatum (VC/VS): precision care for patient-specific tractography-guided targeting of deep brain stimulation (DBS) in obsessive compulsive disorder (OCD). Brain Imaging Behav. doi:10.1007/s11682-015-9462-9.PubMedCentralGoogle Scholar
  81. Malcolm, J. G., Shenton, M. E., & Rathi, Y. (2010). Filtered multitensor tractography. IEEE Trans Med Imaging, 29(9), 1664–1675. doi:10.1109/TMI.2010.2048121.PubMedPubMedCentralCrossRefGoogle Scholar
  82. Maldonado, I. L., de Champfleur, N. M., Velut, S., Destrieux, C., Zemmoura, I., & Duffau, H. (2013). Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat, 223(1), 38–45. doi:10.1111/joa.12055.PubMedPubMedCentralCrossRefGoogle Scholar
  83. Martino, J., da Silva-Freitas, R., Caballero, H., de Lucas Marco, E., Garcia-Porrero, J. A., & Vazquez-Barquero, A. (2013). Fiber dissection and diffusion tensor imaging tractography study of the temporoparietal fiber intersection area. Neurosurgery, 72(1 Suppl Operative), 87–97 discussion 97–88. doi:10.1227/NEU.0b013e318274294b.
  84. Menjot de Champfleur, N., Lima Maldonado, I., Moritz-Gasser, S., Machi, P., Le Bars, E., Bonafe, A., et al. (2013). Middle longitudinal fasciculus delineation within language pathways: a diffusion tensor imaging study in human. European Journal of Radiology, 82(1), 151–157. doi:10.1016/j.ejrad.2012.05.034.PubMedCrossRefGoogle Scholar
  85. Mesulam, M. M. (1978). Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. The Journal of Histochemistry and Cytochemistry, 26(2), 106–117.PubMedCrossRefGoogle Scholar
  86. Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28(5), 597–613.PubMedCrossRefGoogle Scholar
  87. Mesulam, M. M. (1998). From sensation to cognition. Brain, 121 (Pt 6), 1013–1052.Google Scholar
  88. Mesulam, M. M., Thompson, C. K., Weintraub, S., & Rogalski, E. J. (2015). The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain, 138(Pt 8), 2423–2437. doi:10.1093/brain/awv154.PubMedPubMedCentralCrossRefGoogle Scholar
  89. Meynert, T. (1865). Anatomie der Hirnrinde und ihre Verbindungsbahnen mit den empfindenden Oberflachen und den bewegenden Massen. Erlangen: In Leidesdorf’s Lehrbuch der phychischen Krankheiten.Google Scholar
  90. Molholm, S., Sehatpour, P., Mehta, A. D., Shpaner, M., Gomez-Ramirez, M., Ortigue, S., et al. (2006). Audio-visual multisensory integration in superior parietal lobule revealed by human intracranial recordings. Journal of Neurophysiology, 96(2), 721–729.PubMedCrossRefGoogle Scholar
  91. Mori, S., Crain, B. J., Chacko, V. P., & van Zijl, P. C. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol, 45(2), 265–269.PubMedCrossRefGoogle Scholar
  92. Mountcastle, V. B., Lynch, J. C., Georgopoulos, A., Sakata, H., & Acuna, C. (1975). Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. J Neurophysiol, 38(4), 871–908.PubMedGoogle Scholar
  93. Pandya, D. N., & Yeterian, E. H. (1985). Architecture and connections of cortical association areas. In A. Peters, & E. G. Jones (Eds.), Cerebral cortex: association and auditory areas (Vol. 4, pp. 3–61): New York: Plenum.Google Scholar
  94. Petkov, C. I., Kayser, C., Steudel, T., Whittingstall, K., Augath, M., & Logothetis, N. K. (2008). A voice region in the monkey brain. Nat Neurosci, 11(3), 367–374. doi:10.1038/nn2043.PubMedCrossRefGoogle Scholar
  95. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med, 36(6), 893–906.PubMedCrossRefGoogle Scholar
  96. Poremba, A., Saunders, R. C., Crane, A. M., Cook, M., Sokoloff, L., & Mishkin, M. (2003). Functional mapping of the primate auditory system. Science, 299(5606), 568–572.PubMedCrossRefGoogle Scholar
  97. Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annu Rev Neurosci, 13, 25–42.PubMedCrossRefGoogle Scholar
  98. Rajarethinam, R., Sahni, S., Rosenberg, D. R., & Keshavan, M. S. (2004). Reduced superior temporal gyrus volume in young offspring of patients with schizophrenia. Am J Psychiatry, 161(6), 1121–1124.PubMedCrossRefGoogle Scholar
  99. Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(Pt 9), 2456–2477. doi:10.1093/brain/awr179.PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rathi, Y., Malcolm, J. G., Bouix, S., Westin, C.-F., & Shenton, M. E. (2010). False positive detection using filtered tractography. Proc Intl Soc Mag Reson Med, 18, 4019.Google Scholar
  101. Rauschecker, J. P., & Tian, B. (2000). Mechanisms and streams for processing of “what” and “where” in auditory cortex. Proc Natl Acad Sci U S A, 97(22), 11800–11806. doi:10.1073/pnas.97.22.11800.PubMedPubMedCentralCrossRefGoogle Scholar
  102. Reil, D. J. C., & Autenrieth, D. J. H. F. (1809). Archiv fur die Physiologie. Halle: In Der Curtschen Buchhandlung.Google Scholar
  103. Rilling, J. K., Glasser, M. F., Preuss, T. M., Ma, X., Zhao, T., Hu, X., et al. (2008). The evolution of the arcuate fasciculus revealed with comparative DTI. Nature Neuroscience, 11(4), 426–428. doi:10.1038/nn2072.PubMedCrossRefGoogle Scholar
  104. Sakata, H., Takaoka, Y., Kawarasaki, A., & Shibutani, H. (1973). Somatosensory properties of neurons in the superior parietal cortex (area 5) of the rhesus monkey. Brain Res, 64, 85–102.PubMedCrossRefGoogle Scholar
  105. Sapolsky, D., Bakkour, A., Negreira, A., Nalipinski, P., Weintraub, S., Mesulam, M. M., et al. (2010). Cortical neuroanatomic correlates of symptom severity in primary progressive aphasia. Neurology, 75(4), 358–366.PubMedPubMedCentralCrossRefGoogle Scholar
  106. Schmahmann, J. D., & Pandya, D. N. (2006). Fiber pathways of the brain. New York: Oxford University Press.CrossRefGoogle Scholar
  107. Seltzer, B., & Pandya, D. N. (1978). Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey. Brain Res, 149(1), 1–24.PubMedCrossRefGoogle Scholar
  108. Seltzer, B., & Pandya, D. N. (1984). Further observations on parieto-temporal connections in the rhesus monkey. Exp Brain Res, 55(2), 301–312.PubMedCrossRefGoogle Scholar
  109. Seltzer, B., & Pandya, D. N. (1991). Post-rolandic cortical projections of the superior temporal sulcus in the rhesus monkey. J Comp Neurol, 312(4), 625–640.PubMedCrossRefGoogle Scholar
  110. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage, 17(3), 1429–1436.PubMedCrossRefGoogle Scholar
  111. Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage, 20(3), 1714–1722.PubMedCrossRefGoogle Scholar
  112. Suchan, J., Umarova, R., Schnell, S., Himmelbach, M., Weiller, C., Karnath, H. O., et al. (2014). Fiber pathways connecting cortical areas relevant for spatial orienting and exploration. Human Brain Mapping, 35(3), 1031–1043. doi:10.1002/hbm.22232.PubMedCrossRefGoogle Scholar
  113. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Inc..Google Scholar
  114. Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G., et al. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245–1246.PubMedCrossRefGoogle Scholar
  115. Tian, B., Reser, D., Durham, A., Kustov, A., & Rauschecker, J. P. (2001). Functional specialization in rhesus monkey auditory cortex. Science, 292(5515), 290–293. doi:10.1126/science.1058911.PubMedCrossRefGoogle Scholar
  116. Tuch, D. S., Reese, T. G., Wiegell, M. R., Makris, N., Belliveau, J. W., & Wedeen, V. J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magn Reson Med, 48(4), 577–582.PubMedCrossRefGoogle Scholar
  117. Turken, A. U., & Dronkers, N. F. (2011). The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci, 5, 1.PubMedPubMedCentralCrossRefGoogle Scholar
  118. Wang, Y., Fernandez-Miranda, J. C., Verstynen, T., Pathak, S., Schneider, W., & Yeh, F. C. (2013). Rethinking the role of the middle longitudinal fascicle in language and auditory pathways. Cereb Cortex, 23(10), 2347–2356. doi:10.1093/cercor/bhs225.PubMedCrossRefGoogle Scholar
  119. Watson, R. T., Valenstein, E., Day, A., & Heilman, K. M. (1994). Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions. Arch Neurol, 51(10), 1014–1021.PubMedCrossRefGoogle Scholar
  120. Wernicke, C. (1874). Der aphasiche Symptomenkomplex. Breslau: Cohn und Weigert.Google Scholar
  121. Whitwell, J. L., Weigand, S. D., Boeve, B. F., Senjem, M. L., Gunter, J. L., DeJesus-Hernandez, M., et al. (2012). Neuroimaging signatures of frontotemporal dementia genetics: C9ORF72, tau, progranulin and sporadics. Brain, 135(Pt 3), 794–806. doi:10.1093/brain/aws001.PubMedPubMedCentralCrossRefGoogle Scholar
  122. Wolk, D. A., Dickerson, B. C., & Alzheimer’s Disease Neuroimaging, I. (2010). Apolipoprotein E (APOE) genotype has dissociable effects on memory and attentional-executive network function in Alzheimer’s disease. Proc Natl Acad Sci U S A, 107(22), 10256–10261. doi:10.1073/pnas.1001412107.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Nikos Makris
    • 1
    • 2
    • 3
    • 4
  • A. Zhu
    • 2
    • 5
  • G. M. Papadimitriou
    • 1
  • P. Mouradian
    • 1
  • I. Ng
    • 1
  • E. Scaccianoce
    • 6
  • G. Baselli
    • 6
  • F. Baglio
    • 6
  • M. E. Shenton
    • 2
    • 5
    • 8
  • Y. Rathi
    • 1
    • 2
  • B. Dickerson
    • 1
  • E. Yeterian
    • 7
  • M. Kubicki
    • 1
    • 2
    • 8
  1. 1.Departments of Psychiatry and Neurology Services, Center for Morphometric Analysis, Center for Neural Systems Investigations, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General HospitalHarvard Medical SchoolBostonUSA
  2. 2.Psychiatry Neuroimaging LaboratoryDepartment of Psychiatry, Brigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.Department of Anatomy and NeurobiologyBoston University School of MedicineBostonUSA
  4. 4.McLean HospitalHarvard Medical School (Affiliated School/Hospital)BelmontUSA
  5. 5.VA Boston Healthcare SystemBostonUSA
  6. 6.Department of BioengineeringPolitecnico di MilanoMilanItaly
  7. 7.Department of PsychologyColby CollegeWatervilleUSA
  8. 8.Department of RadiologyBrigham and Women’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations