Skip to main content
Log in

Imbalanced functional link between reward circuits and the cognitive control system in patients with obsessive-compulsive disorder

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Altered reward processing and cognitive deficits are often observed in patients with obsessive-compulsive disorder (OCD); however, whether the imbalance in activity between reward circuits and the cognitive control (CC) system is associated with compulsive behavior remains unknown. Sixty-eight OCD patients and 33 cognitively normal (CN) healthy subjects participated in this resting-state functional magnetic resonance imaging study. Alterations in the functional connectivity between reward circuits and the CC system were quantitatively assessed and compared between the groups. A Granger causality analysis was used to determine the causal informational influence between and within reward circuits and the CC system across all subjects. OCD patients showed a dichotomous pattern of enhanced functional coupling in their reward circuits and a weakened functional coupling in their CC system when compared to CN subjects. Neural correlates of compulsive behavior were primarily located in the reward circuits and CC system in OCD patients. Importantly, the CC system exerted a reduced interregional causal influence over the reward system in OCD patients relative to its effect in CN subjects. The limitations of this study are that it was a cross-sectional study and the potential effects of environmental and genetic factors were not explored. OCD patients showed an imbalance in the functional link between reward circuits and the CC system at rest. This bias toward a loss of control may define a pathological state in which subjects are more vulnerable to engaging in compulsive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abramovitch, A., Abramowitz, J. S., & Mittelman, A. (2013). The neuropsychology of adult obsessive-compulsive disorder: a meta-analysis. Clinical Psychology Review, 33, 1163–1171.

    Article  PubMed  Google Scholar 

  • Admon, R., Bleich-Cohen, M., Weizmant, R., Poyurovsky, M., Faragian, S., & Hendler, T. (2012). Functional and structural neural indices of risk aversion in obsessive-compulsive disorder (OCD. Psychiatry Research, 203, 207–213.

    Article  PubMed  Google Scholar 

  • Ahmari, S. E., Spellman, T., Douglass, N. L., Kheirbek, M. A., Simpson, H. B., Deisseroth, K., Gordon, J. A., & Hen, R. (2013). Repeated cortico-striatal stimulation generates persistent OCD-like behavior. Science, 340, 1234–1239.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, R. A., & Cui, H. (2009). Intention, action planning, and decision making in parietal-frontal circuits. Neuron, 63, 568–583.

    Article  CAS  PubMed  Google Scholar 

  • Anticevic, A., Hu, S., Zhang, S., Savic, A., Billingslea, E., Wasylink, S., Repovs, G., Cole, M. W., Bednarski, S., Krystal, J. H., Bloch, M. H., Li, C. S., & Pittenger, C. (2014). Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biological Psychiatry, 75, 595–605.

    Article  PubMed  Google Scholar 

  • Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology, 35, 48–69.

    Article  PubMed  Google Scholar 

  • Banca, P., Voon, V., Vestergaard, M. D., Philipiak, G., Almeida, I., Pocinho, F., Relvas, J., & Castelo-Branco, M. (2015). Imbalance in habitual versus goal directed neural systems during symptom provocation in obsessive-compulsive disorder. Brain, 138, 798–811.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bechara, A. (2005). Decision making, impulse control and loss of willpower to resist drugs: a neurocognitive perspective. Nature Neuroscience, 8, 1458–1463.

    Article  CAS  PubMed  Google Scholar 

  • Belin, D., Mar, A. C., Dalley, J. W., Robbins, T. W., & Everitt, B. J. (2008). High impulsivity predicts the switch to compulsive cocaine-taking. Science, 320, 1352–1355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beucke, J. C., Sepulcre, J., Eldaief, M. C., Sebold, M., Kathmann, N., & Kaufmann, C. (2014). Default mode network subsystem alterations in obsessive-compulsive disorder. The British Journal of Psychiatry, 205, 376–382.

    Article  PubMed  Google Scholar 

  • Blinowska, K. J., Kus, R., & Kaminski, M. (2004). Granger causality and information flow in multivariate processes. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 70, 050902.

    Article  PubMed  Google Scholar 

  • Chamberlain, S. R., Blackwell, A. D., Fineberg, N. A., Robbins, T. W., & Sahakian, B. J. (2005). The neuropsychology of obsessive compulsive disorder: the importance of failures in cognitive and behavioural inhibition as candidate endophenotypic markers. Neuroscience and Biobehavioral Reviews, 29, 399–419.

    Article  CAS  PubMed  Google Scholar 

  • Chen, G., Chen, G., Xie, C., Ward, B. D., Li, W., Antuono, P., & Li, S. J. (2012). A method to determine the necessity for global signal regression in resting-state fMRI studies. Magnetic Resonance in Medicine, 68, 1828–1835.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z. W., Williams, L. M., Glover, G. H., Deisseroth, K., & Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 110, 19944–19949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, G., Ward, B. D., Chen, G., & Li, S. J. (2014). Decreased effective connectivity from cortices to the right parahippocampal gyrus in Alzheimer’s disease subjects. Brain Connectivity, 4, 702–708.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choi, J.S., Shin, Y.C., Jung, W.H., Jang, J.H., Kang, D.H., Choi, C.H., Choi, S.W., Lee, J.Y., Hwang, J.Y., Kwon, J.S. (2012) Altered brain activity during reward anticipation in pathological gambling and obsessive-compulsive disorder. PloS One, 7:e45938.

  • Deng, X., Wang, G., Zhou, L., Zhang, X., Yang, M., Han, G., Tu, Z., & Liu, B. (2014). Randomized controlled trial of adjunctive EEG-biofeedback treatment of obsessive-compulsive disorder. Shanghai archives of psychiatry, 26, 272–279.

    PubMed  PubMed Central  Google Scholar 

  • Denys, D., Mantione, M., Figee, M., van den Munckhof, P., Koerselman, F., Westenberg, H., Bosch, A., & Schuurman, R. (2010). Deep brain stimulation of the nucleus accumbens for treatment-refractory obsessive-compulsive disorder. Archives of General Psychiatry, 67, 1061–1068.

    Article  PubMed  Google Scholar 

  • Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., Buckner, R. L., Dale, A. M., Maguire, R. P., Hyman, B. T., Albert, M. S., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980.

    Article  PubMed  Google Scholar 

  • Dias-Ferreira, E., Sousa, J. C., Melo, I., Morgado, P., Mesquita, A. R., Cerqueira, J. J., Costa, R. M., & Sousa, N. (2009). Chronic stress causes frontostriatal reorganization and affects decision-making. Science, 325, 621–625.

    Article  CAS  PubMed  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A. T., Fox, M. D., Snyder, A. Z., Vincent, J. L., Raichle, M. E., Schlaggar, B. L., & Petersen, S. E. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences of the United States of America, 104, 11073–11078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dosenbach, N. U. F., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12, 99–105.

    Article  PubMed  PubMed Central  Google Scholar 

  • Feusner, J.D., Moody, T., Lai, T.M., Sheen, C., Khalsa, S., Brown, J., Levitt, J., Alger, J., O’Neill, J. (2015) Brain connectivity and prediction of relapse after cognitive-behavioral therapy in obsessive-compulsive disorder. Front Psychiatry, 6:74.

  • Figee, M., Vink, M., de Geus, F., Vulink, N., Veltman, D. J., Westenberg, H., & Denys, D. (2011). Dysfunctional reward circuitry in obsessive-compulsive disorder. Biological Psychiatry, 69, 867–874.

    Article  PubMed  Google Scholar 

  • Fineberg, N. A., Potenza, M. N., Chamberlain, S. R., Berlin, H. A., Menzies, L., Bechara, A., Sahakian, B. J., Robbins, T. W., Bullmore, E. T., & Hollander, E. (2010). Probing compulsive and impulsive behaviors, from animal models to endophenotypes: a narrative review. Neuropsychopharmacology, 35, 591–604.

    Article  PubMed  Google Scholar 

  • Gillan, C. M., Papmeyer, M., Morein-Zamir, S., Sahakian, B. J., Fineberg, N. A., Robbins, T. W., & de Wit, S. (2011). Disruption in the balance between goal-directed behavior and habit learning in obsessive-compulsive disorder. The American Journal of Psychiatry, 168, 718–726.

    Article  PubMed  PubMed Central  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Goodman, W. K., Price, L. H., Rasmussen, S. A., Mazure, C., Fleischmann, R. L., Hill, C. L., Heninger, G. R., & Charney, D. S. (1989). The Yale-Brown obsessive compulsive scale. I. Development, use, and reliability. Archives of General Psychiatry, 46, 1006–1011.

    Article  CAS  PubMed  Google Scholar 

  • Gottlich, M., Kramer, U. M., Kordon, A., Hohagen, F., & Zurowski, B. (2014). Decreased limbic and increased fronto-parietal connectivity in unmedicated patients with obsessive-compulsive disorder. Human Brain Mapping, 35, 5617–5632.

    Article  PubMed  Google Scholar 

  • Gottlich, M., Kramer, U. M., Kordon, A., Hohagen, F., & Zurowski, B. (2015). Resting-state connectivity of the amygdala predicts response to cognitive behavioral therapy in obsessive compulsive disorder. Biological Psychology, 111, 100–109.

    Article  PubMed  Google Scholar 

  • Greenberg, B. D., Rauch, S. L., & Haber, S. N. (2010). Invasive circuitry-based neurotherapeutics: stereotactic ablation and deep brain stimulation for OCD. Neuropsychopharmacology, 35, 317–336.

    Article  PubMed  Google Scholar 

  • Gruner, P., Vo, A., Argyelan, M., Ikuta, T., Degnan, A. J., John, M., Peters, B. D., Malhotra, A. K., Ulug, A. M., & Szeszko, P. R. (2014). Independent component analysis of resting state activity in pediatric obsessive-compulsive disorder. Human Brain Mapping, 35, 5306–5315.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gu, B. M., Park, J. Y., Kang, D. H., Lee, S. J., Yoo, S. Y., Jo, H. J., Choi, C. H., Lee, J. M., & Kwon, J. S. (2008). Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain, 131, 155–164.

    Article  PubMed  Google Scholar 

  • Hamilton, M. (1980). Rating depressive patients. The Journal of Clinical Psychiatry, 41, 21–24.

    CAS  PubMed  Google Scholar 

  • Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324, 646–648.

    Article  CAS  PubMed  Google Scholar 

  • Harrison, B. J., Soriano-Mas, C., Pujol, J., Ortiz, H., Lopez-Sola, M., Hernandez-Ribas, R., Deus, J., Alonso, P., Yucel, M., Pantelis, C., Menchon, J. M., & Cardoner, N. (2009). Altered corticostriatal functional connectivity in obsessive-compulsive disorder. Archives of General Psychiatry, 66, 1189–1200.

    Article  PubMed  Google Scholar 

  • Hou, J. M., Zhao, M., Zhang, W., Song, L. H., Wu, W. J., Wang, J., Zhou, D. Q., Xie, B., He, M., Guo, J. W., Qu, W., & Li, H. T. (2014). Resting-state functional connectivity abnormalities in patients with obsessive-compulsive disorder and their healthy first-degree relatives. Journal of Psychiatry & Neuroscience : JPN, 39, 304–311.

    Article  Google Scholar 

  • Jung, W. H., Kang, D. H., Han, J. Y., Jang, J. H., Gu, B. M., Choi, J. S., Jung, M. H., Choi, C. H., & Kwon, J. S. (2011). Aberrant ventral striatal responses during incentive processing in unmedicated patients with obsessive-compulsive disorder. Acta psychiatrica. Scandinavica, 123, 376–386.

    CAS  Google Scholar 

  • Jung, W. H., Kang, D. H., Kim, E., Shin, K. S., Jang, J. H., & Kwon, J. S. (2013). Abnormal corticostriatal-limbic functional connectivity in obsessive-compulsive disorder during reward processing and resting-state. NeuroImage. Clinical, 3, 27–38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufmann, C., Beucke, J. C., Preusse, F., Endrass, T., Schlagenhauf, F., Heinz, A., Juckel, G., & Kathmann, N. (2013). Medial prefrontal brain activation to anticipated reward and loss in obsessive-compulsive disorder. NeuroImage. Clinical, 2, 212–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kennerley, S. W., Behrens, T. E., & Wallis, J. D. (2011). Double dissociation of value computations in orbitofrontal and anterior cingulate neurons. Nature Neuroscience, 14, 1581–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marsh, R., Tau, G. Z., Wang, Z., Huo, Y., Liu, G., Hao, X., Packard, M. G., Peterson, B. S., & Simpson, H. B. (2015). Reward-based spatial learning in unmedicated adults with obsessive-compulsive disorder. The American Journal of Psychiatry, 172, 383–392.

    Article  PubMed  Google Scholar 

  • McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2004). Separate neural systems value immediate and delayed monetary rewards. Science, 306, 503–507.

    Article  CAS  PubMed  Google Scholar 

  • McClure, S. M., Ericson, K. M., Laibson, D. I., Loewenstein, G., & Cohen, J. D. (2007). Time discounting for primary rewards. The Journal of Neuroscience, 27, 5796–5804.

    Article  CAS  PubMed  Google Scholar 

  • Mechelli, A., Price, C. J., Friston, K. J., & Ashburner, J. (2005). Voxel-Based Morphometry of the Human Brain: Methods and Applications. Current Medical Imaging Reviews, 1, 105–113.

    Article  Google Scholar 

  • Melloni, M., Urbistondo, C., Sedeno, L., Gelormini, C., Kichic, R., & Ibanez, A. (2012). The extended fronto-striatal model of obsessive compulsive disorder: convergence from event-related potentials, neuropsychology and neuroimaging. Frontiers in Human Neuroscience, 6, 259.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menzies, L., Chamberlain, S. R., Laird, A. R., Thelen, S. M., Sahakian, B. J., & Bullmore, E. T. (2008). Integrating evidence from neuroimaging and neuropsychological studies of obsessive-compulsive disorder: the orbitofronto-striatal model revisited. Neuroscience and Biobehavioral Reviews, 32, 525–549.

    Article  PubMed  Google Scholar 

  • Mian, M.K., Campos, M., Sheth, S.A., Eskandar, E.N. (2010) Deep brain stimulation for obsessive-compulsive disorder: past, present, and future. Neurosurgical Focus, 29:E10.

  • Milad, M. R., & Rauch, S. L. (2012). Obsessive-compulsive disorder: beyond segregated cortico-striatal pathways. Trends in Cognitive Sciences, 16, 43–51.

    Article  PubMed  Google Scholar 

  • Pena-Garijo, J., Barros-Loscertales, A., Ventura-Campos, N., Ruiperez-Rodriguez, M. A., Edo-Villamon, S., & Avila, C. (2011). Involvement of the thalamic-cortical-striatal circuit in patients with obsessive-compulsive disorder during an inhibitory control task with reward and punishment contingencies. Revista de Neurologia, 53, 77–86.

    PubMed  Google Scholar 

  • Posner, J., Marsh, R., Maia, T. V., Peterson, B. S., Gruber, A., & Simpson, H. B. (2014). Reduced functional connectivity within the limbic cortico-striato-thalamo-cortical loop in unmedicated adults with obsessive-compulsive disorder. Human Brain Mapping, 35, 2852–2860.

    Article  PubMed  Google Scholar 

  • Remijnse, P. L., Nielen, M. M., van Balkom, A. J., Cath, D. C., van Oppen, P., Uylings, H. B., & Veltman, D. J. (2006). Reduced orbitofrontal-striatal activity on a reversal learning task in obsessive-compulsive disorder. Archives of General Psychiatry, 63, 1225–1236.

    Article  PubMed  Google Scholar 

  • Russo, S. J., & Nestler, E. J. (2013). The brain reward circuitry in mood disorders. Nature Reviews. Neuroscience, 14, 609–625.

    Article  CAS  PubMed  Google Scholar 

  • Shiflett, M. W., & Balleine, B. W. (2011). Molecular substrates of action control in cortico-striatal circuits. Progress in Neurobiology, 95, 1–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern, E. R., Welsh, R. C., Gonzalez, R., Fitzgerald, K. D., Abelson, J. L., & Taylor, S. F. (2013). Subjective uncertainty and limbic hyperactivation in obsessive-compulsive disorder. Human Brain Mapping, 34, 1956–1970.

    Article  PubMed  Google Scholar 

  • Tobler, P. N., Christopoulos, G. I., O’Doherty, J. P., Dolan, R. J., & Schultz, W. (2009). Risk-dependent reward value signal in human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 7185–7190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van den Heuvel, O. A., Veltman, D. J., Groenewegen, H. J., Cath, D. C., van Balkom, A. J., van Hartskamp, J., Barkhof, F., & van Dyck, R. (2005). Frontal-striatal dysfunction during planning in obsessive-compulsive disorder. Archives of General Psychiatry, 62, 301–309.

    Article  PubMed  Google Scholar 

  • Wood, J., & Ahmari, S. E. (2015). A framework for understanding the emerging role of Corticolimbic-ventral striatal networks in OCD-associated repetitive behaviors. Frontiers in Systems Neuroscience, 9, 171.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, C., Shao, Y., Ma, L., Zhai, T., Ye, E., Fu, L., Bi, G., Chen, G., Cohen, A., Li, W., Chen, G., Yang, Z., & Li, S. J. (2014). Imbalanced functional link between valuation networks in abstinent heroin-dependent subjects. Molecular Psychiatry, 19, 10–12.

    Article  CAS  PubMed  Google Scholar 

  • Yue, Y., Yuan, Y., Hou, Z., Jiang, W., Bai, F., & Zhang, Z. (2013). Abnormal functional connectivity of amygdala in late-onset depression was associated with cognitive deficits. PloS One, 8, e75058.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zar, J. (1996) Biostatistical analysis, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, Inc.

  • Zhang, T., Wang, J., Yang, Y., Wu, Q., Li, B., Chen, L., Yue, Q., Tang, H., Yan, C., Lui, S., Huang, X., Chan, R. C., Zang, Y., He, Y., & Gong, Q. (2011). Abnormal small-world architecture of top-down control networks in obsessive-compulsive disorder. Journal of Psychiatry & Neuroscience : JPN, 36, 23–31.

    Article  Google Scholar 

  • Zhang, X., Liu, J., Cui, J., & Liu, C. (2013). Study of symptom dimensions and clinical characteristics in Chinese patients with OCD. Journal of Affective Disorders, 151, 868–874.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

All authors have made substantial intellectual contributions to this manuscript in one or more of the following areas: design or conceptualization of the study, analysis or interpretation of the data, and drafting or revising the manuscript. All authors have given their final approval of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunming Xie or Shu Xu.

Ethics declarations

Study funding

Supported by National Natural Science Foundation of China (30825014, 30971016, ZJZ; 81171323, 91332118, CMX); Six Talent Peaks Project in Jiangsu Province (2014-WSN-042, CMX); Major International Joint Research Project (81420108012, ZJZ), National Key Technology R&D Program (2015BAI13B01, ZJZ).

Funding and disclosure

Dr. Xie receives research funding support from the National Natural Science Foundation of China (81171323, 91332118) and Six Talent Peaks Project in Jiangsu Province (2014-WSN-042). Dr. Xu receives support from the National Natural Science Foundation of China (81171277). Dr. Zhijun Zhang receives research support from the National Basic Research Program of China (973 Program) (2007CB512308), National Hi-Tech Research and Development Program of China (863 Program) (2008AA02Z413), National Science and Technology Major Projects for “Major New Drugs Innovation and Development” (2012ZX09506–001-009, ZJZ), the National Natural Science Foundation of China (30770779, 30825014, 30971016, 81061120529), and Major International Joint Research Project (81420108012, ZJZ). The authors declare no conflict of interest.

Electronic supplementary material

ESM 1

(DOC 1.47 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, C., Ma, L., Jiang, N. et al. Imbalanced functional link between reward circuits and the cognitive control system in patients with obsessive-compulsive disorder. Brain Imaging and Behavior 11, 1099–1109 (2017). https://doi.org/10.1007/s11682-016-9585-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9585-7

Keywords

Navigation