Advertisement

Brain Imaging and Behavior

, Volume 11, Issue 4, pp 1018–1028 | Cite as

The relationship between repetition suppression and face perception

  • Petra HermannEmail author
  • Mareike Grotheer
  • Gyula Kovács
  • Zoltán Vidnyánszky
Original Research

Abstract

Repetition of identical face stimuli leads to fMRI response attenuation (fMRI adaptation, fMRIa) in the core face-selective occipito-temporal visual cortical network, involving the bilateral fusiform face area (FFA) and the occipital face area (OFA). However, the functional relevance of fMRIa observed in these regions is unclear as of today. Therefore, here we aimed at investigating the relationship between fMRIa and face perception ability by measuring in the same human participants both the repetition-induced reduction of fMRI responses and identity discrimination performance outside the scanner for upright and inverted face stimuli. In the correlation analysis, the behavioral and fMRI results for the inverted faces were used as covariates to control for the individual differences in overall object perception ability and basic visual feature adaptation processes, respectively. The results revealed a significant positive correlation between the participants’ identity discrimination performance and the strength of fMRIa in the core face processing network, but not in the extrastriate body area (EBA). Furthermore, we found a strong correlation of the fMRIa between OFA and FFA and also between OFA and EBA, but not between FFA and EBA. These findings suggest that there is a face-selective component of the repetition-induced reduction of fMRI responses within the core face processing network, which reflects functionally relevant adaptation processes involved in face identity perception.

Keywords

Repetition suppression fMRI adaptation Face discrimination FFA OFA 

Notes

Acknowledgments

We thank Balázs Knakker, Viktor Gál, and Béla Weiss for their help and advice during data analysis and also for their comments on the manuscript. We also would like to thank the anonymous reviewers for their valuable comments and suggestions.

Author contributions

P.H., G.K., and Z.V. designed research; P.H., G.K., and M.G. performed research; P.H., M.G., G.K., and Z.V. analyzed data; P.H., M.G., G.K., and Z.V. wrote the paper.

Compliance with ethical standards

Funding

This work was supported by Deutsche Forschungsgemeinschaft Grant (KO 3918/1–2; 2–2).

Conflict of interest

Petra Hermann, Mareike Grotheer, Gyula Kovács, and Zoltán Vidnyánszky declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all patients for being included in the study. Written informed consent was obtained from persons depicted in the photographs.

References

  1. Andrews, T. J., & Ewbank, M. P. (2004). Distinct representations for facial identity and changeable aspects of faces in the human temporal lobe. NeuroImage, 23(3), 905–913. doi: 10.1016/j.neuroimage.2004.07.060.PubMedCrossRefGoogle Scholar
  2. Auksztulewicz, R., & Friston, K. (2016). Repetition suppression and its contextual determinants in predictive coding. Cortex, 80, 125–140. doi: 10.1016/j.cortex.2015.11.024.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Avidan, G., Hasson, U., Malach, R., & Behrmann, M. (2005). Detailed exploration of face-related processing in congenital prosopagnosia: 2. Functional Neuroimaging Findings. Journal of Cognitive Neuroscience, 17(7), 1150–1167. doi: 10.1162/0898929054475145.PubMedCrossRefGoogle Scholar
  4. Baene, W. D., & Vogels, R. (2010). Effects of adaptation on the stimulus selectivity of macaque inferior temporal spiking activity and local field potentials. Cerebral Cortex, 20(9), 2145–2165. doi: 10.1093/cercor/bhp277.PubMedCrossRefGoogle Scholar
  5. Baylis, G. C., & Rolls, E. T. (1987). Responses of neurons in the inferior temporal cortex in short term and serial recognition memory tasks. Experimental Brain Research, 65(3), 614–622. doi: 10.1007/BF00235984.PubMedCrossRefGoogle Scholar
  6. Brainard, D. H. (1997). The psychophysics toolbox. Spatial Vision, 10(4), 433–436. doi: 10.1163/156856897X00357.PubMedCrossRefGoogle Scholar
  7. Bunzeck, N., & Thiel, C. (2016). Neurochemical modulation of repetition suppression and novelty signals in the human brain. Cortex, 80, 161–173. doi: 10.1016/j.cortex.2015.10.013.PubMedCrossRefGoogle Scholar
  8. Dakin, S. C., Hess, R. F., Ledgeway, T., & Achtman, R. L. (2002). What causes non-monotonic tuning of fMRI response to noisy images? Current Biology, 12(14), R476–R477. doi: 10.1016/S0960-9822(02)00960-0.PubMedCrossRefGoogle Scholar
  9. Davies-Thompson, J., & Andrews, T. J. (2012). Intra- and interhemispheric connectivity between face-selective regions in the human brain. Journal of Neurophysiology, 108(11), 3087–3095. doi: 10.1152/jn.01171.2011.PubMedPubMedCentralCrossRefGoogle Scholar
  10. Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293(5539), 2470–2473. doi: 10.1126/science.1063414
  11. Duchaine, B., & Yovel, G. (2015). A Revised Neural Framework for Face Processing. Annual Review of Vision Science, 1(1), 393–416. doi: 10.1146/annurev-vision-082114-035518.PubMedCrossRefGoogle Scholar
  12. Ewbank, M. P., Henson, R. N., Rowe, J. B., Stoyanova, R. S., & Calder, A. J. (2013). Different neural mechanisms within occipitotemporal cortex underlie repetition suppression across same and different-size faces. Cerebral Cortex, 23(5), 1073–1084. doi: 10.1093/cercor/bhs070.PubMedCrossRefGoogle Scholar
  13. Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society of London B:. Biological Sciences, 360(1456), 815–836. doi: 10.1098/rstb.2005.1622.PubMedPubMedCentralCrossRefGoogle Scholar
  14. Furl, N., Garrido, L., Dolan, R., Driver, J., & Duchaine, B. (2011). Fusiform gyrus face-selectivity reflects facial recognition ability. Journal of Cognitive Neuroscience, 23(7), 1723–1740. doi: 10.1162/jocn.2010.21545.PubMedCrossRefGoogle Scholar
  15. Ganel, T., Gonzalez, C. L. R., Valyear, K. F., Culham, J. C., Goodale, M. A., & Köhler, S. (2006). The relationship between fMRI adaptation and repetition priming. NeuroImage, 32(3), 1432–1440. doi: 10.1016/j.neuroimage.2006.05.039.PubMedCrossRefGoogle Scholar
  16. Gilaie-Dotan, S., Gelbard-Sagiv, H., & Malach, R. (2010). Perceptual shape sensitivity to upright and inverted faces is reflected in neuronal adaptation. NeuroImage, 50(2), 383–395. doi: 10.1016/j.neuroimage.2009.12.077.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Goh, J. O., Suzuki, A., & Park, D. C. (2010). Reduced neural selectivity increases fMRI adaptation with age during face discrimination. NeuroImage, 51(1), 336–344. doi: 10.1016/j.neuroimage.2010.01.107.PubMedPubMedCentralCrossRefGoogle Scholar
  18. Grill-Spector, K., Kushnir, T., Hendler, T., & Malach, R. (2000). The dynamics of object-selective activation correlate with recognition performance in humans. Nature Neuroscience, 3(8), 837–843. doi: 10.1038/77754.PubMedCrossRefGoogle Scholar
  19. Grill-Spector, K., Knouf, N., & Kanwisher, N. (2004). The fusiform face area subserves face perception, not generic within-category identification. Nature Neuroscience, 7(5), 555–562. doi: 10.1038/nn1224.PubMedCrossRefGoogle Scholar
  20. Grill-Spector, K., Henson, R., & Martin, A. (2006). Repetition and the brain: neural models of stimulus-specific effects. Trends in Cognitive Sciences, 10(1), 14–23. doi: 10.1016/j.tics.2005.11.006.PubMedCrossRefGoogle Scholar
  21. Grotheer, M., & Kovács, G. (2016). Can predictive coding explain repetition suppression? Cortex, 80, 113–124. doi: 10.1016/j.cortex.2015.11.027.PubMedCrossRefGoogle Scholar
  22. Grotheer, M., Hermann, P., Vidnyánszky, Z., & Kovács, G. (2014). Repetition probability effects for inverted faces. NeuroImage, 102, Part 2, 416–423. doi: 10.1016/j.neuroimage.2014.08.006
  23. Gschwind, M., Pourtois, G., Schwartz, S., Ville, D. V. D., & Vuilleumier, P. (2012). White-matter connectivity between face-responsive regions in the human brain. Cerebral Cortex, 22(7), 1564–1576. doi: 10.1093/cercor/bhr226.PubMedCrossRefGoogle Scholar
  24. Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2000). The distributed human neural system for face perception. Trends in Cognitive Sciences, 4(6), 223–233. doi: 10.1016/S1364-6613(00)01482-0.PubMedCrossRefGoogle Scholar
  25. Hecaen, H., & Angelergues, R. (1962). Agnosia for faces (prosopagnosia). Archives of Neurology, 7, 92–100.PubMedCrossRefGoogle Scholar
  26. Henson, R. N. A. (2003). Neuroimaging studies of priming. Progress in Neurobiology, 70(1), 53–81.PubMedCrossRefGoogle Scholar
  27. Henson, R. N. A., & Rugg, M. D. (2003). Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia, 41(3), 263–270.PubMedCrossRefGoogle Scholar
  28. Hermann, P., Bankó, É. M., Gál, V., & Vidnyánszky, Z. (2015). Neural Basis of Identity Information Extraction from Noisy Face Images. The Journal of Neuroscience, 35(18), 7165–7173. doi: 10.1523/JNEUROSCI.3572-14.2015.PubMedCrossRefGoogle Scholar
  29. Horner, A. J., & Henson, R. N. (2011). Repetition suppression in occipitotemporal cortex despite negligible visual similarity: evidence for postperceptual processing? Human Brain Mapping, 32(10), 1519–1534. doi: 10.1002/hbm.21124.PubMedCrossRefGoogle Scholar
  30. Huang, L., Song, Y., Li, J., Zhen, Z., Yang, Z., & Liu, J. (2014). Individual differences in cortical face selectivity predict behavioral performance in face recognition. Frontiers in Human Neuroscience, 8, 483. doi: 10.3389/fnhum.2014.00483.PubMedPubMedCentralCrossRefGoogle Scholar
  31. Jiang, X., Bollich, A., Cox, P., Hyder, E., James, J., Gowani, S. A., et al. (2013). A quantitative link between face discrimination deficits and neuronal selectivity for faces in autism. NeuroImage: Clinical, 2, 320–331. doi: 10.1016/j.nicl.2013.02.002.CrossRefGoogle Scholar
  32. Jonas, J., Rossion, B., Krieg, J., Koessler, L., Colnat-Coulbois, S., Vespignani, H., et al. (2014). Intracerebral electrical stimulation of a face-selective area in the right inferior occipital cortex impairs individual face discrimination. NeuroImage, 99, 487–497. doi: 10.1016/j.neuroimage.2014.06.017.PubMedCrossRefGoogle Scholar
  33. Kaiser, D., Walther, C., Schweinberger, S. R., & Kovács, G. (2013). Dissociating the neural bases of repetition-priming and adaptation in the human brain for faces. Journal of Neurophysiology, 110(12), 2727–2738. doi: 10.1152/jn.00277.2013.PubMedCrossRefGoogle Scholar
  34. Kaliukhovich, D. A., & Vogels, R. (2011). Stimulus repetition probability does not affect repetition suppression in macaque inferior temporal cortex. Cerebral Cortex, 21(7), 1547–1558. doi: 10.1093/cercor/bhq207.PubMedCrossRefGoogle Scholar
  35. Kaliukhovich, D. A., & Vogels, R. (2012). Stimulus repetition affects both strength and synchrony of macaque inferior temporal cortical activity. Journal of Neurophysiology, 107(12), 3509–3527. doi: 10.1152/jn.00059.2012.PubMedCrossRefGoogle Scholar
  36. Kanwisher, N., McDermott, J., & Chun, M. M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.PubMedGoogle Scholar
  37. Kovács, G., & Vogels, R. (2014). When does repetition suppression depend on repetition probability? Frontiers in Human Neuroscience, 8, 685. doi: 10.3389/fnhum.2014.00685.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Kovács, G., Iffland, L., Vidnyánszky, Z., & Greenlee, M. W. (2012). Stimulus repetition probability effects on repetition suppression are position invariant for faces. NeuroImage, 60(4), 2128–2135. doi: 10.1016/j.neuroimage.2012.02.038.PubMedCrossRefGoogle Scholar
  39. Kovács, G., Kaiser, D., Kaliukhovich, D. A., Vidnyánszky, Z., & Vogels, R. (2013). Repetition probability does not affect fMRI repetition suppression for objects. The Journal of Neuroscience, 33(23), 9805–9812. doi: 10.1523/JNEUROSCI.3423-12.2013.PubMedCrossRefGoogle Scholar
  40. Larsson, J., & Smith, A. T. (2012). fMRI repetition suppression: neuronal adaptation or stimulus expectation? Cerebral Cortex, 22(3), 567–576. doi: 10.1093/cercor/bhr119.PubMedCrossRefGoogle Scholar
  41. Liu, Y., Murray, S. O., & Jagadeesh, B. (2009). Time course and stimulus dependence of repetition-induced response suppression in inferotemporal cortex. Journal of Neurophysiology, 101(1), 418–436. doi: 10.1152/jn.90960.2008.PubMedCrossRefGoogle Scholar
  42. Magnussen, S. (2000). Low-level memory processes in vision. Trends in Neurosciences, 23(6), 247–251. doi: 10.1016/S0166-2236(00)01569-1.PubMedCrossRefGoogle Scholar
  43. McGugin, R. W., & Gauthier, I. (2015). The reliability of individual differences in face-selective responses in the fusiform gyrus and their relation to face recognition ability. Brain Imaging and Behavior, 1–12. doi: 10.1007/s11682-015-9467-4.
  44. Meadows, J. C. (1974). The anatomical basis of prosopagnosia. Journal of Neurology, Neurosurgery, and Psychiatry, 37(5), 489–501.PubMedPubMedCentralCrossRefGoogle Scholar
  45. Miller, E. K., Gochin, P. M., & Gross, C. G. (1991a). Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque. Visual Neuroscience, 7(4), 357–362.PubMedCrossRefGoogle Scholar
  46. Miller, E. K., Li, L., & Desimone, R. (1991b). A neural mechanism for working and recognition memory in inferior temporal cortex. Science (New York, N.Y.), 254(5036), 1377–1379.CrossRefGoogle Scholar
  47. Nagy, K., Greenlee, M. W., & Kovács, G. (2012). The lateral occipital cortex in the face perception network: an effective connectivity study. Frontiers in Psychology, 3, 141. doi: 10.3389/fpsyg.2012.00141.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Nasr, S., & Tootell, R. B. (2012). Role of fusiform and anterior temporal cortical areas in facial recognition. NeuroImage, 63(3), 1743–1753. doi: 10.1016/j.neuroimage.2012.08.031.PubMedPubMedCentralCrossRefGoogle Scholar
  49. Nestor, A., Vettel, J. M., & Tarr, M. J. (2008). Task-specific codes for face recognition: how they shape the neural representation of features for detection and individuation. PloS One, 3(12), e3978. doi: 10.1371/journal.pone.0003978.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Pelli, D. G. (1997). The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision, 10(4), 437–442. doi: 10.1163/156856897X00366.PubMedCrossRefGoogle Scholar
  51. Pernet, C. R., Wilcox, R., & Rousselet, G. A. (2012). Robust correlation analyses: false positive and power validation using a new open source matlab toolbox. Frontiers in Psychology, 3, 606. doi: 10.3389/fpsyg.2012.00606.PubMedCrossRefGoogle Scholar
  52. Pinsk, M. A., Arcaro, M., Weiner, K. S., Kalkus, J. F., Inati, S. J., Gross, C. G., & Kastner, S. (2009). Neural representations of faces and body parts in macaque and human cortex: a comparative fMRI study. Journal of Neurophysiology, 101(5), 2581–2600. doi: 10.1152/jn.91198.2008.PubMedPubMedCentralCrossRefGoogle Scholar
  53. Pitcher, D., Walsh, V., Yovel, G., & Duchaine, B. (2007). TMS Evidence for the Involvement of the Right Occipital Face Area in Early Face Processing. Current Biology, 17(18), 1568–1573. doi: 10.1016/j.cub.2007.07.063.PubMedCrossRefGoogle Scholar
  54. Pitcher, D., Walsh, V., & Duchaine, B. (2011). The role of the occipital face area in the cortical face perception network. Experimental Brain Research, 209(4), 481–493. doi: 10.1007/s00221-011-2579-1.PubMedCrossRefGoogle Scholar
  55. Ringo, J. L. (1996). Stimulus specific adaptation in inferior temporal and medial temporal cortex of the monkey. Behavioural Brain Research, 76(1–2), 191–197. doi: 10.1016/0166-4328(95)00197-2.PubMedCrossRefGoogle Scholar
  56. Rossion, B. (2008). Constraining the cortical face network by neuroimaging studies of acquired prosopagnosia. NeuroImage, 40(2), 423–426. doi: 10.1016/j.neuroimage.2007.10.047.PubMedCrossRefGoogle Scholar
  57. Rossion, B., Hanseeuw, B., & Dricot, L. (2012). Defining face perception areas in the human brain: a large-scale factorial fMRI face localizer analysis. Brain and Cognition, 79(2), 138–157. doi: 10.1016/j.bandc.2012.01.001.PubMedCrossRefGoogle Scholar
  58. Sawamura, H., Orban, G. A., & Vogels, R. (2006). Selectivity of neuronal adaptation does not match response selectivity: a single-cell study of the fMRI adaptation paradigm. Neuron, 49(2), 307–318. doi: 10.1016/j.neuron.2005.11.028.PubMedCrossRefGoogle Scholar
  59. Sayres, R., & Grill-Spector, K. (2006). Object-selective cortex exhibits performance-independent repetition suppression. Journal of Neurophysiology, 95(2), 995–1007. doi: 10.1152/jn.00500.2005.PubMedCrossRefGoogle Scholar
  60. Schiltz, C., Sorger, B., Caldara, R., Ahmed, F., Mayer, E., Goebel, R., & Rossion, B. (2006). Impaired Face Discrimination in Acquired Prosopagnosia Is Associated with Abnormal Response to Individual Faces in the Right Middle Fusiform Gyrus. Cerebral Cortex, 16(4), 574–586. doi: 10.1093/cercor/bhj005.PubMedCrossRefGoogle Scholar
  61. Sobotka, S., & Ringo, J. L. (1994). Stimulus specific adaptation in excited but not in inhibited cells in inferotemporal cortex of macaque. Brain Research, 646(1), 95–99.PubMedCrossRefGoogle Scholar
  62. Soldan, A., Habeck, C., Gazes, Y., & Stern, Y. (2010). Neural mechanisms of repetition priming of familiar and globally unfamiliar visual objects. Brain Research, 1343, 122–134. doi: 10.1016/j.brainres.2010.04.071.PubMedPubMedCentralCrossRefGoogle Scholar
  63. Solomon-Harris, L. M., Mullin, C. R., & Steeves, J. K. E. (2013). TMS to the “occipital face area” affects recognition but not categorization of faces. Brain and Cognition, 83(3), 245–251. doi: 10.1016/j.bandc.2013.08.007.PubMedCrossRefGoogle Scholar
  64. Spiridon, M., Fischl, B., & Kanwisher, N. (2006). Location and spatial profile of category-specific regions in human extrastriate cortex. Human Brain Mapping, 27(1), 77–89. doi: 10.1002/hbm.20169.PubMedPubMedCentralCrossRefGoogle Scholar
  65. Steeves, J., Dricot, L., Goltz, H. C., Sorger, B., Peters, J., Milner, A. D., et al. (2009). Abnormal face identity coding in the middle fusiform gyrus of two brain-damaged prosopagnosic patients. Neuropsychologia, 47(12), 2584–2592. doi: 10.1016/j.neuropsychologia.2009.05.005.PubMedCrossRefGoogle Scholar
  66. Summerfield, C., Trittschuh, E. H., Monti, J. M., Mesulam, M.-M., & Egner, T. (2008). Neural repetition suppression reflects fulfilled perceptual expectations. Nature Neuroscience, 11(9), 1004–1006. doi: 10.1038/nn.2163.PubMedPubMedCentralCrossRefGoogle Scholar
  67. Tiddeman, B., Burt, M., & Perrett, D. (2001). Prototyping and transforming facial textures for perception research. IEEE Computer Graphics and Applications, 21(5), 42–50. doi: 10.1109/38.946630.CrossRefGoogle Scholar
  68. Trujillo-Ortiz, A., Hernandez-Walls, R., Barba-Rojo, K., & Cupul-Magana, L. (2007). HZmvntest: Henze–Zirkler’s Multivariate Normality Test. http://www.mathworks.com/matlabcentral/fileexchange/loadFile.do?objectId=17931
  69. Vogels, R. (2016). Sources of adaptation of inferior temporal cortical responses. Cortex, 80, 185–195. doi: 10.1016/j.cortex.2015.08.024.PubMedCrossRefGoogle Scholar
  70. Ward, E. J., Chun, M. M., & Kuhl, B. A. (2013). Repetition suppression and multi-voxel pattern similarity differentially track implicit and explicit visual memory. The Journal of Neuroscience, 33(37), 14749–14757. doi: 10.1523/JNEUROSCI.4889-12.2013.PubMedPubMedCentralCrossRefGoogle Scholar
  71. Winston, J. S., Henson, R. N. A., Fine-Goulden, M. R., & Dolan, R. J. (2004). fMRI-adaptation reveals dissociable neural representations of identity and expression in face perception. Journal of Neurophysiology, 92(3), 1830–1839. doi: 10.1152/jn.00155.2004.PubMedCrossRefGoogle Scholar
  72. Yang, H., Susilo, T., & Duchaine, B. (2016). The anterior temporal face area contains invariant representations of face identity that can persist despite the loss of right FFA and OFA. Cerebral Cortex, 26(3), 1096–1107. doi: 10.1093/cercor/bhu289.PubMedCrossRefGoogle Scholar
  73. Yin, R. K. (1969). Looking at upside-down faces. Journal of Experimental Psychology, 81(1), 141–145. doi: 10.1037/h0027474.CrossRefGoogle Scholar
  74. Yovel, G., & Kanwisher, N. (2005). The neural basis of the behavioral face-inversion effect. Current Biology, 15(24), 2256–2262. doi: 10.1016/j.cub.2005.10.072.PubMedCrossRefGoogle Scholar
  75. Yovel, G., Tambini, A., & Brandman, T. (2008). The asymmetry of the fusiform face area is a stable individual characteristic that underlies the left-visual-field superiority for faces. Neuropsychologia, 46(13), 3061–3068. doi: 10.1016/j.neuropsychologia.2008.06.017.PubMedCrossRefGoogle Scholar
  76. Zhen, Z., Fang, H., & Liu, J. (2013). The hierarchical brain network for face recognition. PloS One, 8(3), e59886. doi: 10.1371/journal.pone.0059886.PubMedPubMedCentralCrossRefGoogle Scholar
  77. Zou, G. Y. (2007). Toward using confidence intervals to compare correlations. Psychological Methods, 12(4), 399–413. doi: 10.1037/1082-989X.12.4.399.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Petra Hermann
    • 1
    • 2
    Email author
  • Mareike Grotheer
    • 3
    • 4
  • Gyula Kovács
    • 3
    • 4
    • 5
  • Zoltán Vidnyánszky
    • 1
    • 5
  1. 1.Brain Imaging Centre, Research Centre for Natural SciencesHungarian Academy of SciencesBudapestHungary
  2. 2.Faculty of Information Technology and BionicsPázmány Péter Catholic UniversityBudapestHungary
  3. 3.Institute of PsychologyFriedrich-Schiller-University of JenaJenaGermany
  4. 4.DFG Research Unit Person PerceptionFriedrich-Schiller-University of JenaJenaGermany
  5. 5.Department of Cognitive ScienceBudapest University of Technology and EconomicsBudapestHungary

Personalised recommendations