Brain Imaging and Behavior

, Volume 11, Issue 4, pp 954–963 | Cite as

Short-term memory deficits correlate with hippocampal-thalamic functional connectivity alterations following acute sleep restriction

  • Li Chengyang
  • Huang Daqing
  • Qi Jianlin
  • Chang Haisheng
  • Meng Qingqing
  • Wang Jin
  • Liu Jiajia
  • Ye Enmao
  • Shao Yongcong
  • Zhang Xi
Original Research


Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established. In the current study, we utilized resting-state functional magnetic resonance imaging (fMRI) to examine the association between hippocampal functional connectivity (FC) and the decline of short-term memory following total sleep deprivation (TSD). Twenty healthy adult males aged 20.9 ± 2.3 years (age range, 18–24 years) were enrolled in a within-subject crossover study. Short-term memory and FC were assessed using a Delay-matching short-term memory test and a resting-state fMRI scan before and after TSD. Seed-based correlation analysis was performed using fMRI data for the left and right hippocampus to identify differences in hippocampal FC following TSD. Subjects demonstrated reduced alertness and a decline in short-term memory performance following TSD. Moreover, fMRI analysis identified reduced hippocampal FC with the superior frontal gyrus (SFG), temporal regions, and supplementary motor area. In addition, an increase in FC between the hippocampus and bilateral thalamus was observed, the extent of which correlated with short-term memory performance following TSD. Our findings indicate that the disruption of hippocampal–cortical connectivity is linked to the decline in short-term memory observed after acute sleep restriction. Such results provide further evidence that support the cognitive impairment model of sleep deprivation.


Sleep deprivation Hippocampus Thalamus Memory Functional connectivity 


Compliance with ethical standards


This work was supported by the National Military Science Foundation of China, No. AWS14J011.

Conflict of interest


Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Alger, S. E., Chambers, A. M., Cunningham, T., & Payne, J. D. (2014). The Role of Sleep in Human Declarative Memory Consolidation. 25, 269–306.Google Scholar
  2. Anderson, C., & Platten, C. R. (2011). Sleep deprivation lowers inhibition and enhances impulsivity to negative stimuli. Behavioural Brain Research, 217(2), 463–466.CrossRefPubMedGoogle Scholar
  3. Bird, C. M., & Burgess, N. (2008). The hippocampus and memory: insights from spatial processing. Nature Reviews Neuroscience, 9(3), 182–194.CrossRefPubMedGoogle Scholar
  4. Cabeza, R., Dolcos, F., Prince, S. E., Rice, H. J., Weissman, D. H., & Nyberg, L. (2003). Attention-related activity during episodic memory retrieval: a cross-function fMRI study. Neuropsychologia, 41(3), 390–399.CrossRefPubMedGoogle Scholar
  5. Chee, M. W. L., & Chuah, L. Y. M. (2008). Functional neuroimaging insights into how sleep and sleep deprivation affect memory and cognition. Current Opinion in Neurology, 21(4), 417–423. doi: 10.1097/WCO.0b013e3283052cf7.CrossRefPubMedGoogle Scholar
  6. Curran, T. (2004). Effects of attention and confidence on the hypothesized ERP correlates of recollection and familiarity. Neuropsychologia, 42(8), 1088–1106.CrossRefPubMedGoogle Scholar
  7. De Havas, J. A., Parimal, S., Soon, C. S., & Chee, M. W. L. (2012). Sleep deprivation reduces default mode network connectivity and anti-correlation during rest and task performance. NeuroImage, 59(2), 1745–1751. doi: 10.1016/j.neuroimage.2011.08.026.CrossRefPubMedGoogle Scholar
  8. Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11(2), 114–126.PubMedGoogle Scholar
  9. Dolcos, F., Iordan, A. D., Kragel, J., Stokes, J., Campbell, R., McCarthy, G., & Cabeza, R. (2013). Neural correlates of opposing effects of emotional distraction on working memory and episodic memory: an event-related FMRI investigation. Frontiers in Psychology, 4, 293.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Durmer, J. S., & Dinges, D. F. (2005). Neurocognitive consequences of sleep deprivation. In Seminars in neurology, 25, 117–129.CrossRefGoogle Scholar
  11. Eichenbaum, H., Sauvage, M., Fortin, N., Komorowski, R., & Lipton, P. (2012). Towards a functional organization of episodic memory in the medial temporal lobe. Neuroscience & Biobehavioral Reviews, 36(7), 1597–1608.CrossRefGoogle Scholar
  12. Fell, J., Klaver, P., Lehnertz, K., Grunwald, T., Schaller, C., Elger, C. E., & Fernández, G. (2001). Human memory formation is accompanied by rhinal–hippocampal coupling and decoupling. Nature Neuroscience, 4(12), 1259–1264.CrossRefPubMedGoogle Scholar
  13. Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Initiative, A. D. N. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 20–40.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fox, M. D., Zhang, D., Snyder, A. Z., & Raichle, M. E. (2009). The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology, 101(6), 3270–3283. doi: 10.1152/jn.90777.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Havekes, R., Vecsey, C. G., & Abel, T. (2012). The impact of sleep deprivation on neuronal and glial signaling pathways important for memory and synaptic plasticity. Cellular Signalling, 24(6), 1251–1260.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Holmes, M., Folley, B. S., Sonmezturk, H. H., Gore, J. C., Kang, H., Abou-Khalil, B., & Morgan, V. L. (2014). Resting state functional connectivity of the hippocampus associated with neurocognitive function in left temporal lobe epilepsy. Human Brain Mapping, 35(3), 735–744.CrossRefPubMedGoogle Scholar
  17. Izquierdo, I., & Medina, J. H. (1997). Memory formation: the sequence of biochemical events in the hippocampus and its connection to activity in other brain structures. Neurobiology of Learning and Memory, 68(3), 285–316.CrossRefPubMedGoogle Scholar
  18. Krasuski, J. S., Alexander, G. E., Horwitz, B., Rapoport, S. I., & Schapiro, M. B. (2014). Relation of medial temporal lobe volumes to age and memory function in nondemented adults with Down’s syndrome: Implications for the prodromal phase of Alzheimer’s disease. American Journal of Psychiatry, 159(1), 74-81.Google Scholar
  19. Kumar, T., & Jha, S. K. (2012). Sleep deprivation impairs consolidation of cued fear memory in rats. 7(10), e47042Google Scholar
  20. Kwon, D., Maillet, D., Pasvanis, S., Ankudowich, E., Grady, C. L., & Rajah, M. N. (2015). Context memory decline in middle aged adults is related to changes in prefrontal cortex function. Cerebral Cortex, 26(6), 2440–2460.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Leavitt, V. M., Wylie, G. R., Girgis, P. A., DeLuca, J., & Chiaravalloti, N. D. (2014). Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging and Behavior, 8(3), 394–402.CrossRefPubMedGoogle Scholar
  22. Lee, K. A., Hicks, G., & Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. Psychiatry Research, 36(3), 291–298.CrossRefPubMedGoogle Scholar
  23. Lim, J., & Dinges, D. F. (2008). Sleep deprivation and vigilant attention. Annals of the New York Academy of Sciences, 1129, 305–322. doi: 10.1196/annals.1417.002.CrossRefPubMedGoogle Scholar
  24. Luber, B., Steffener, J., Tucker, A., Habeck, C., Peterchev, A. V., Deng, Z.-D., et al. (2013). Extended remediation of sleep deprived-induced working memory deficits using fMRI-guided transcranial magnetic stimulation. Sleep, 36(6), 857.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Maguire, E. A., Vargha-Khadem, F., & Mishkin, M. (2001). The effects of bilateral hippocampal damage on fMRI regional activations and interactions during memory retrieval. Brain, 124(6), 1156–1170.CrossRefPubMedGoogle Scholar
  26. Mander, B. A., Rao, V., Lu, B., Saletin, J. M., Ancoli-Israel, S., Jagust, W. J., & Walker, M. P. (2013). Impaired prefrontal sleep spindle regulation of hippocampal-dependent learning in older adults. Cerebral Cortex, 24(12), 3301–3309.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Menz, M. M., Rihm, J. S., Salari, N., Born, J., Kalisch, R., Pape, H. C., et al. (2013). The role of sleep and sleep deprivation in consolidating fear memories. NeuroImage, 75, 87–96.CrossRefPubMedGoogle Scholar
  28. Murphy, K., Birn, R. M., Handwerker, D. a., Jones, T. B., & Bandettini, P. A. (2009). The impact of global signal regression on resting state correlations: are anti-correlated networks introduced? NeuroImage, 44(3), 893–905. doi: 10.1016/j.neuroimage.2008.09.036.CrossRefPubMedGoogle Scholar
  29. Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14(2), 198–202.CrossRefPubMedGoogle Scholar
  30. Service, P., Service, P., & Diego, S. (2006). Effects of two nights sleep deprivation and two nights recovery sleep on response inhibition, 4201, 261–265.Google Scholar
  31. Shao, Y., Wang, L., Ye, E., Jin, X., Ni, W., Yang, Y., et al. (2013). Decreased thalamocortical functional connectivity after 36 hours of total sleep deprivation: evidence from resting state FMRI. PloS One, 8(10), e78830. doi: 10.1371/journal.pone.0078830.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Sidhu, M. K., Stretton, J., Winston, G. P., Bonelli, S., Centeno, M., Vollmar, C., et al. (2013). A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain, 136(6), 1868–1888.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Tallon-Baudry, C., Bertrand, O., Peronnet, F., & Pernier, J. (1998). Induced γ-band activity during the delay of a visual short-term memory task in humans. The Journal of Neuroscience, 18(11), 4244–4254.PubMedGoogle Scholar
  34. Tallon-Baudry, C., Kreiter, A., & Bertrand, O. (1999). Sustained and transient oscillatory responses in the gamma and beta bands in a visual short-term memory task in humans. Visual Neuroscience, 16(03), 449–459.CrossRefPubMedGoogle Scholar
  35. van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., & Linden, D. E. J. (2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping, 22(3), 165–178.CrossRefPubMedGoogle Scholar
  36. Van Dijk, K. R. A., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438. doi: 10.1016/j.neuroimage.2011.07.044.CrossRefPubMedGoogle Scholar
  37. Voets, N. L., Zamboni, G., Stokes, M. G., Carpenter, K., Stacey, R., & Adcock, J. E. (2014). Aberrant functional connectivity in dissociable hippocampal networks is associated with deficits in memory. The Journal of Neuroscience, 34(14), 4920–4928.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ward, A. M., Schultz, A. P., Huijbers, W., Dijk, K. R. A., Hedden, T., & Sperling, R. A. (2014). The parahippocampal gyrus links the default-mode cortical network with the medial temporal lobe memory system. Human Brain Mapping, 35(3), 1061–1073.CrossRefPubMedGoogle Scholar
  39. Ward, A. M., Mormino, E. C., Huijbers, W., Schultz, A. P., Hedden, T., & Sperling, R. A. (2015). Relationships between default-mode network connectivity, medial temporal lobe structure, and age-related memory deficits. Neurobiology of Aging, 36(1), 265–272.CrossRefPubMedGoogle Scholar
  40. Wittenberg, G. M., & Tsien, J. Z. (2002). An emerging molecular and cellular framework for memory processing by the hippocampus. Trends in Neurosciences, 25(10), 501–505.CrossRefPubMedGoogle Scholar
  41. Xu, W., & Südhof, T. C. (2013). A neural circuit for memory specificity and generalization. Science, 339(6125), 1290–1295.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Yoo, S.-S., Gujar, N., Hu, P., Jolesz, F. A., & Walker, M. P. (2007a). The human emotional brain without sleep—a prefrontal amygdala disconnect. Current Biology, 17(20), R877–R878.CrossRefPubMedGoogle Scholar
  43. Yoo, S.-S., Hu, P. T., Gujar, N., Jolesz, F. A., & Walker, M. P. (2007b). A deficit in the ability to form new human memories without sleep. Nature Neuroscience, 10(3), 385–392.CrossRefPubMedGoogle Scholar
  44. Zeng, L., Wang, D., Fox, M. D., Sabuncu, M. R., Hu, D., Ge, M., et al. (2014). Neurobiological basis of head motion in brain imaging. Proceedings of the National Academy of Sciences of the United States of America, 111(16), 6058–6062. doi: 10.1073/pnas.1317424111.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zou, Q., Ross, T. J., Gu, H., Geng, X., Zuo, X.-N. X., Hong, L. E., et al. (2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Human Brain Mapping, 34(12), 3204–3215. doi: 10.1002/hbm.22136.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Li Chengyang
    • 1
  • Huang Daqing
    • 2
  • Qi Jianlin
    • 3
  • Chang Haisheng
    • 4
  • Meng Qingqing
    • 5
  • Wang Jin
    • 3
  • Liu Jiajia
    • 3
  • Ye Enmao
    • 6
  • Shao Yongcong
    • 6
  • Zhang Xi
    • 5
  1. 1.Department of CardiologyThe People’s Hospital of Liaoning ProvinceShenyangPeople’s Republic of China
  2. 2.Center of Psychological Quality EducationBeijing Union UniversityBeijingPeople’s Republic of China
  3. 3.Department of Clinical Psychology PLAAir Force General HospitalBeijingPeople’s Republic of China
  4. 4.Chinese People’s Armed Police ForcesThe Third Hospital of Beijing Municipal CorpsBeijingPeople’s Republic of China
  5. 5.Department of Geriatric Neurology, Sleep Medicine Research CenterChinese PLA General Hospital, The General Hospital of the People’s Liberation ArmyBeijingPeople’s Republic of China
  6. 6.Cognitive and Mental Health Research CenterBeijing Institute of Basic Medical ScienceBeijingPeople’s Republic of China

Personalised recommendations