Brain Imaging and Behavior

, Volume 11, Issue 4, pp 925–935 | Cite as

Overweight adolescents’ brain response to sweetened beverages mirrors addiction pathways

  • Sarah W. Feldstein Ewing
  • Eric D. Claus
  • Karen A. Hudson
  • Francesca M. Filbey
  • Elizabeth Yakes Jimenez
  • Krista M. Lisdahl
  • Alberta S. Kong
Original Research


Many adolescents struggle with overweight/obesity, which exponentially increases in the transition to adulthood. Overweight/obesity places youth at risk for serious health conditions, including type 2 diabetes. In adults, neural substrates implicated in addiction (e.g., orbitofrontal cortex (OFC), striatum, amygdala, and ventral tegmental area) have been found to be relevant to risk for overweight/obesity. In this study, we examined three hypotheses to disentangle the potential overlap between addiction and overweight/obesity processing by examining (1) brain response to high vs. low calorie beverages, (2) the strength of correspondence between biometrics, including body mass index (BMI) and insulin resistance, and brain response and (3) the relationship between a measure of food addiction and brain response using an established fMRI gustatory cue exposure task with a sample of overweight/obese youth (M age = 16.46; M BMI = 33.1). Greater BOLD response was observed across the OFC, inferior frontal gyrus (IFG), nucleus accumbens, right amygdala, and additional frontoparietal and temporal regions in neural processing of high vs. low calorie beverages. Further, BMI scores positively correlated with BOLD activation in the high calorie > low calorie contrast in the right postcentral gyrus and central operculum. Insulin resistance positively correlated with BOLD activation across the bilateral middle/superior temporal gyrus, left OFC, and superior parietal lobe. No relationships were observed between measures of food addiction and brain response. These findings support the activation of parallel addiction-related neural pathways in adolescents’ high calorie processing, while also suggesting the importance of refining conceptual and neurocognitive models to fit this developmental period.


Adolescents Overweight/obesity Cue exposure fMRI Addiction 



The authors would like to thank Dustin Truitt for his contribution to this project.

Sources of support

This research was supported by the University of New Mexico Pediatric Research Allocations Committee, the La Tierra Sagrada Society, and the Mind Research Network.

Compliance with ethical standards

Financial disclosures

The authors declare that they have no competing financial or other conflicts of interest relating to the data included in the manuscript.


  1. Batterink, L., Yokum, S., & Stice, E. (2010). Body mass correlates inversely with inhibitory control in response to food among adolescent girls: an fMRI study. NeuroImage, 52(4), 1696–1703. doi: 10.1016/j.neuroimage.2010.05.059.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bodo, M. J., Jimenez, E. Y., Conn, C., Dye, A., Pomo, P., Kolkmeyer, D., et al. (2015). Association between circulating CCL2 levels and modifiable behaviors in overweight and obese adolescents: a cross-sectional pilot study. Journal of Pediatric Endocrinology & Metabolism. doi: 10.1515/jpem-2015-0260.Google Scholar
  3. Burger, K. S., & Stice, E. (2011). Variability in reward response and obesity: evidence from brain imaging studies. Current Drug Abuse Reviews, 4, 182–189.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Burger, K. S., & Stice, E. (2014). Neural responsivity during soft drink intake, anticipation, and advertisement exposure in habitually consuming youth. Obesity (Silver Spring), 22, 441–450.CrossRefGoogle Scholar
  5. Centers for Disease Control and Prevention. (2009). Percentile data files with LMS values. Retrieved from
  6. Chen, G., Tang, Z., Guo, G., Liu, X., & Xiao, S. (2015). The Chinese version of the Yale food addiction scale: an examination of its validation in a sample of female adolescents. Eating Behaviors, 18, 97–102. doi: 10.1016/j.eatbeh.2015.05.002.CrossRefPubMedGoogle Scholar
  7. Claus, E. D., Ewing, S. W., Filbey, F. M., Sabbineni, A., & Hutchison, K. E. (2011). Identifying neurobiological phenotypes associated with alcohol use disorder severity. Neuropsychopharmacology, 36(10), 2086–2096. doi: 10.1038/npp.2011.99.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Claus, E. D., Feldstein Ewing, S. W., Filbey, F. M., & Hutchison, K. E. (2013). Behavioral control in alcohol use disorders: relationships with severity. Journal of Studies on Alcohol and Drugs, 74(1), 141–151. Retrieved from
  9. Cook, S., Auinger, P., Li, C., & Ford, E. S. (2008). Metabolic syndrome rates in United States adolescents, from the National Health and nutrition examination survey, 1999-2002. The Journal of Pediatrics, 152(2), 165–170. doi: 10.1016/j.jpeds.2007.06.004.CrossRefPubMedGoogle Scholar
  10. DeBoer, M. D., Gurka, M. J., Woo, J. G., & Morrison, J. A. (2015). Severity of the metabolic syndrome as a predictor of type 2 diabetes between childhood and adulthood: the Princeton lipid research cohort study. Diabetologia, 58(12), 2745–2752. doi: 10.1007/s00125-015-3759-5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Deichmann, R., Gottfried, J. A., Hutton, C., & Turner, R. (2003). Optimized EPI for fMRI studies of the orbitofrontal cortex. NeuroImage, 19, 430–441.CrossRefPubMedGoogle Scholar
  12. Feldstein Ewing, S. W., Filbey, F. M., Chandler, L. D., & Hutchison, K. E. (2010). Exploring the relationship between depressive and anxiety symptoms and neuronal response to alcohol cues. Alcoholism, Clinical and Experimental Research, 34(3), 396–403. doi: 10.1111/j.1530-0277.2009.01104.x.CrossRefPubMedGoogle Scholar
  13. Feldstein Ewing, S. W., McEachern, A. D., Yezhuvath, U., Bryan, A. D., Hutchison, K. E., & Filbey, F. M. (2013a). Integrating brain and behavior: evaluating adolescents' response to a cannabis intervention. Psychology of Addictive Behaviors, 27, 510–525.CrossRefPubMedGoogle Scholar
  14. Feldstein Ewing, S. W., McEachern, A. D., Yezhuvath, U., Bryan, A. D., Hutchison, K. E., & Filbey, F. M. (2013b). Integrating brain and behavior: evaluating adolescents' response to a cannabis intervention. Psychology of Addictive Behaviors, 27(2), 510–525. doi: 10.1037/a0029767.CrossRefPubMedGoogle Scholar
  15. Feldstein Ewing, S. W., Sakhardande, A., & Blakemore, S. J. (2014). The effect of alcohol consumption on the adolescent brain: a systematic review of MRI and fMRI studies of alcohol-using youth. NeuroImage: Clinical, 5, 420–437. doi: 10.1016/j.nicl.2014.06.011.CrossRefGoogle Scholar
  16. Feldstein Ewing, S. W., Apodaca, T. R., & Gaume, J. (2016a). Ambivalence: prerequisite for success in motivational interviewing with adolescents? Addiction. doi: 10.1111/add.13286.PubMedPubMedCentralGoogle Scholar
  17. Feldstein Ewing, S. W., Ryman, S. G., Gillman, A. S., Weiland, B. J., Thayer, R. E., & Bryan, A. D. (2016b). Developmental cognitive neuroscience of adolescent sexual risk and alcohol use. AIDS and Behavior, 20(Suppl 1), 97–108. doi: 10.1007/s10461-015-1155-2.CrossRefGoogle Scholar
  18. Feldstein Ewing, S. W., Tapert, S. F., & Molina, B. S. (2016c). Uniting adolescent neuroimaging and treatment research: recommendations in pursuit of improved integration. Neuroscience and Biobehavioral Reviews, 62, 109–114. doi: 10.1016/j.neubiorev.2015.12.011.CrossRefPubMedGoogle Scholar
  19. Filbey, F. M., & Dunlop, J. (2014). Differential reward network functional connectivity in cannabis dependent and non-dependent users. Drug and Alcohol Dependence, 140, 101–111. doi: 10.1016/j.drugalcdep.2014.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Filbey, F. M., Claus, E., Audette, A. R., Niculescu, M., Banich, M. T., Tanabe, J., et al. (2008). Exposure to the taste of alcohol elicits activation of the mesocorticolimbic neurocircuitry. Neuropsychopharmacology, 33(6), 1391–1401. doi: 10.1038/sj.npp.1301513.CrossRefPubMedGoogle Scholar
  21. Filbey, F. M., Myers, U. S., & DeWitt, S. J. (2012). Reward circuit function in high BMI indivduals iwth compulsive overeating: similarities with addiction. NeuroImage, 63, 1800–1806.CrossRefPubMedGoogle Scholar
  22. Filbey, F. M., Aslan, S., Calhoun, V. D., Spence, J. S., Damaraju, E., Caprihan, A., et al. (2014). Long-term effects of marijuana use on the brain. Proceedings of the National Academy of Sciences of the United States of America, 25, 16913–16918.CrossRefGoogle Scholar
  23. Gearhardt, A. N., Grilo, C. M., DiLeone, R. J., Brownell, K. D., & Potenza, M. N. (2011a). Can food be addictive? Public health and policy implications. Addiction, 106, 1208–1212.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gearhardt, A. N., Yokum, A. N., Orr, P. T., Stice, E., Corbin, W. R., & Brownell, K. D. (2011b). Neural correlates of food addiction. Archives of General Psychiatry, 68, 808–816.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gearhardt, A. N., Roberto, C. A., Seamans, M. J., Corbin, W. R., & Brownell, K. D. (2013). Preliminary validation of the Yale food addiction scale for children. Eating Behaviors, 14(4), 508–512. doi: 10.1016/j.eatbeh.2013.07.002.CrossRefPubMedGoogle Scholar
  26. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. The American Journal of Psychiatry, 159(10), 1642–1652. doi: 10.1176/appi.ajp.159.10.1642.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Harris, K. M., Gordon-Larsen, P., Chantala, K., & Udry, J. R. (2006). Longitudinal trends in race/ethnic disparities in leading health indicators from adolescence to young adulthood. Archives of Pediatrics & Adolescent Medicine, 160(1), 74–81. doi: 10.1001/archpedi.160.1.74.CrossRefGoogle Scholar
  28. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17, 825–841.CrossRefPubMedGoogle Scholar
  29. Karoly, H. C., Weiland, B. J., Sabbineni, A., & Hutchison, K. E. (2014). Preliminary functional MRI results from a combined stop-signal alcohol-cue task. Journal of Studies on Alcohol and Drugs, 75(4), 664–673. Retrieved from
  30. Katz, A., Nambi, S. S., & Mather, K. (2000). Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. The Journal of Clinical Endocrinology and Metabolism, 85, 2402–2410.CrossRefPubMedGoogle Scholar
  31. Kong, A. S., Dalen, J., Negrete, S., Sanders, S. G., Keane, P. C., & Davis, S. M. (2012). Interventions for treating overweight and obesity in adolescents. 23, 544–570.Google Scholar
  32. Kong, A. S., Sussman, A. L., Yahne, C., Skipper, B. J., Burge, M. R., & Davis, S. M. (2013). School-based health center intervention improves body mass index in overweight and obese adolescents. Journal of Obesity, 2013, 575016. doi: 10.1155/2013/575016.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lanza, H. I., Grella, C. E., & Chung, P. J. (2015). Adolescent obesity and future substance use: incorporating the psychosocial context. Journal of Adolescence, 45, 20–30. doi: 10.1016/j.adolescence.2015.08.014.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lee, H., Lee, D., Guo, G., & Harris, K. M. (2011). Trends in body mass index in adolescence and young adulthood in the United States: 1959-2002. The Journal of Adolescent Health, 49(6), 601–608. doi: 10.1016/j.jadohealth.2011.04.019.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Magnussen, C. G., Koskinen, J., Chen, W., Thomson, R., Schmidt, M. D., Srinivasan, S. R., et al. (2010). Pediatric metabolic syndrome predicts adulthood metabolic syndrome, subclinical atherosclerosis, and type 2 diabetes mellitus but is no better than body mass index alone: the Bogalusa heart study and the cardiovascular risk in young Finns study. Circulation, 122(16), 1604–1611. doi: 10.1161/circulationaha.110.940809.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Meule, A., Hermann, T., & Kubler, A. (2015). Food addiction in overweight and obese adolescents seeking weight-loss treatment. European Eating Disorders Review, 23(3), 193–198. doi: 10.1002/erv.2355.CrossRefPubMedGoogle Scholar
  37. Miller, W. R., & Heather, N. (Eds.). (1986). Treating Addictive Behaviors: Processes of Change (1 ed.): Springer US.Google Scholar
  38. Morrison, J. A., Friedman, L. A., Wang, P., & Glueck, C. J. (2008). Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. The Journal of Pediatrics, 152(2), 201–206. doi: 10.1016/j.jpeds.2007.09.010.CrossRefPubMedGoogle Scholar
  39. National Institute of Diabetes and Digestive and Kidney Diseases. (2014). Insulin resistance and prediabetes. In N. I. o. Health (Ed.).Google Scholar
  40. Ogden, C. L., Carroll, M. D., Kit, B. K., & Flegal, K. M. (2014). Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA, 311(8), 806–814. doi: 10.1001/jama.2014.732.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Poobalan, A. S., Aucott, L. S., Clarke, A., & Smith, W. C. (2012). Physical activity attitudes, intentions and behaviour among 18-25 year olds: a mixed method study. BMC Public Health, 12, 640. doi: 10.1186/1471-2458-12-640.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Poobalan, A. S., Aucott, L. S., Clarke, A., & Smith, W. C. (2014). Diet behaviour among young people in transition to adulthood (18-25 year olds): a mixed method study. Health Psychol Behav Med, 2(1), 909–928. doi: 10.1080/21642850.2014.931232.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Pursey, K. M., Stanwell, P., Gearhardt, A. N., Collins, C. E., & Burrows, T. L. (2014). The prevalence of food addiction as assessed by the Yale food addiction scale: a systematic review. Nutrients, 6(10), 4552–4590. doi: 10.3390/nu6104552.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Rhee, K. E., Jelalian, E., Boutelle, K., Dickstein, S., Seifer, R., & Wing, R. (2016). Warm parenting associated with decreasing or stable child BMI during treatment. Child Obes, 12(2), 94–102. doi: 10.1089/chi.2015.0127.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Schacht, J. P., Hutchison, K. E., & Filbey, F. M. (2012). Associations between cannabinoid receptor-1 (CNR1) variation and hippocampus and amygdala volumes in heavy cannabis users. Neuropsychopharmacology, 37(11), 2368–2376. doi: 10.1038/npp.2012.92.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Schmiege, S. J., Broaddus, M. R., Levin, M., & Bryan, A. D. (2009). Randomized trial of group interventions to reduce HIV/STD risk and change theoretical mediators among detained adolescents. Journal of Consulting and Clinical Psychology, 77(1), 38–50. doi: 10.1037/a0014513.CrossRefPubMedGoogle Scholar
  47. Simon, J. J., Skunde, M., Hamze Sinno, M., Brockmeyer, T., Herpertz, S. C., Bendszus, M., et al. (2014). Impaired cross-talk between mesolimbic food reward processing and metabolic signaling predicts body mass index. Frontiers in Behavioral Neuroscience, 8, 359. doi: 10.3389/fnbeh.2014.00359.PubMedPubMedCentralGoogle Scholar
  48. Sinaiko, A. R., & Caprio, S. (2012). Insulin resistance. The Journal of Pediatrics, 161(1), 11–15. doi: 10.1016/j.jpeds.2012.01.012.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. doi: 10.1002/hbm.10062.CrossRefPubMedGoogle Scholar
  50. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.CrossRefPubMedGoogle Scholar
  51. Stice, E., & Yokum, S. (2014). Brain reward region responsivity of adolescents with and without parental substance use disorders. Psychology of Addictive Behaviors, 28, 805–815.CrossRefPubMedGoogle Scholar
  52. Stice, E., Yokum, S., Bohon, C., Marti, N., & Smolen, A. (2010). Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. NeuroImage, 50(4), 1618–1625. doi: 10.1016/j.neuroimage.2010.01.081.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Stice, E., Yokum, S., & Burger, K. S. (2013). Elevated reward region responsivity predicts future substance use onset but not overweight/obesity onset. Biological Psychiatry, 73, 896–876.CrossRefGoogle Scholar
  54. Stice, E., Burger, K. S., & Yokum, S. (2015). Reward region responsivity predicts future weight gain and moderating effects of the TaqIA allele. The Journal of Neuroscience, 35(28), 10316–10324. doi: 10.1523/jneurosci.3607-14.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Volkow, N. D., & Baler, R. D. (2015). NOW vs LATER brain circuits: implications for obesity and addiction. Trends in Neurosciences, 38(6), 345–352. doi: 10.1016/j.tins.2015.04.002.CrossRefPubMedGoogle Scholar
  56. Volkow, N. D., Wang, G. J., Tomasi, D., & Baler, R. D. (2013a). The addictive dimension of obesity. Biological Psychiatry, 73, 811–818.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Volkow, N. D., Wang, G. J., Tomasi, D., & Baler, R. D. (2013b). Obesity and addiction: neurobiological overlaps. Obesity Reviews, 14(1), 2–18. doi: 10.1111/j.1467-789X.2012.01031.x.CrossRefPubMedGoogle Scholar
  58. Weiss, R., Bremer, A. A., & Lustig, R. H. (2013). What is metabolic syndrome, and why are children getting it? Annals of the New York Academy of Sciences, 1281, 123–140. doi: 10.1111/nyas.12030.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Yip, S. W., Lacadie, C. M., Sinha, R., Mayes, L. C., & Potenza, M. N. (2016). Prenatal cocaine exposure, illicit-substance use and stress and craving processes during adolescence. Drug and Alcohol Dependence, 158, 76–85. doi: 10.1016/j.drugalcdep.2015.11.012.CrossRefPubMedGoogle Scholar
  60. Yokum, S., Gearhardt, A. N., Harris, J. L., Brownell, K. D., & Stice, E. (2014). Individual differences in striatum activity to food commercials predict weight gain in adolescents. Obesity (Silver Spring), 22, 2544–2551.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Sarah W. Feldstein Ewing
    • 1
  • Eric D. Claus
    • 2
  • Karen A. Hudson
    • 1
  • Francesca M. Filbey
    • 3
  • Elizabeth Yakes Jimenez
    • 4
  • Krista M. Lisdahl
    • 5
  • Alberta S. Kong
    • 6
  1. 1.Oregon Health & Science UniversityPortlandUSA
  2. 2.The Mind Research NetworkAlbuquerqueUSA
  3. 3.Center for BrainHealth, School of Behavioral and Brain SciencesThe University of Texas at DallasDallasUSA
  4. 4.Departments of Individual, Family and Community Education and Family and Community Medicine, University of New Mexico1 University of New MexicoAlbuquerqueUSA
  5. 5.Department of PsychologyUniversity of Wisconsin-MilwaukeeMilwaukeeUSA
  6. 6.Department of Pediatrics, Division of Adolescent Medicine and Department of Family and Community MedicineUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations