Brain Imaging and Behavior

, Volume 11, Issue 3, pp 829–845 | Cite as

Neural response patterns in spider, blood-injection-injury and social fearful individuals: new insights from a simultaneous EEG/ECG–fMRI study

  • Jarosław M. Michałowski
  • Jacek Matuszewski
  • Dawid Droździel
  • Wojciech Koziejowski
  • Andrzej Rynkiewicz
  • Katarzyna Jednoróg
  • Artur Marchewka
Original Research

Abstract

In the present simultaneous EEG/ECG-fMRI study we compared the temporal and spatial characteristics of the brain responses and the cardiac activity during fear picture processing between spider, blood-injection-injury (BII) and social fearful as well as healthy (non-fearful) volunteers. All participants were presented with two neutral and six fear-related blocks of pictures: two social, two spider and two blood/injection fear blocks. In a social fear block neutral images were occasionally interspersed with photographs of angry faces and social exposure scenes. In spider and blood/injection fear blocks neutral pictures were interspersed with spider fear-relevant and blood/injection pictures, respectively. When compared to healthy controls the social fear group responded with increased activations in the anterior orbital, middle/anterior cingulate and middle/superior temporal areas for pictures depicting angry faces and with a few elevated superior frontal activations for social exposure scenes. In the blood/injection fear group, heart rate was decreased and the activity in the middle/inferior frontal and visual processing regions was increased for blood/injection pictures. The HR decrease for blood/injection pictures correlated with increased frontal responses. In the spider fear group, spider fear-relevant pictures triggered increased activations within a broad subcortical and cortical neural fear network. The HR response for spider fear-relevant stimuli was increased and correlated with an increased insula and hippocampus activity. When compared to healthy controls, all fear groups showed higher LPP amplitudes for their feared cues and an overall greater P1 hypervigilance effect. Contrasts against the fear control groups showed that the increased responses for fear-specific stimuli are mostly related to specific fears and not to general anxiety proneness. The results suggest different engagement of cognitive evaluation and down-regulation strategies and an overall increased sensitization of the fear system in the three fear groups.

Keywords

Fear EEG/fMRI Spider phobia Blood-injection-injury (BII) phobia Social anxiety disorder (SAD) 

Supplementary material

11682_2016_9557_MOESM1_ESM.doc (30 kb)
ESM 1(DOC 30 kb)
11682_2016_9557_MOESM2_ESM.doc (270 kb)
ESM 2(DOC 269 kb)

References

  1. Allen, P. J., Josephs, O., & Turner, R. (2000). A method for removing imaging artifact from continuous EEG recorded during functional MRI. NeuroImage, 12, 230–239. doi:10.1006/nimg.2000.059.CrossRefPubMedGoogle Scholar
  2. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113. doi:10.1016/j.neuroimage.2007.07.007.CrossRefPubMedGoogle Scholar
  3. Bradley, M. M. (2009). Natural selective attention: orienting and emotion. Psychophysiology, 46, 1–11. doi:10.1111/j.1469-8986.2008.00702.x.CrossRefPubMedGoogle Scholar
  4. Bradley, M. M., & Lang, P. J. (1994). Measuring emotion: the self-assessment manikin and the semantic differential. Journal of Behavior Therapy and Experimental Psychiatry, 25(1), 49–59. doi:10.1016/0005-7916(94)90063-9.CrossRefPubMedGoogle Scholar
  5. Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.Google Scholar
  6. Brühl, A. B., Delsignore, A., Komossa, K., & Weidt, S. (2014). Neuroimaging in social anxiety disorder—a meta-analytic review resulting in a new neurofunctional model. Neuroscience & Biobehavioral Reviews, 47, 260–280. doi:10.1016/j.neubiorev.2014.08.003.CrossRefGoogle Scholar
  7. Buodo, G., Peyk, P., Junghofer, M., Palomba, D., & Rockstroh, B. (2007). Electromagnetic indication of hypervigilant responses to emotional stimuli in blood-injection-injury fear. Neuroscience Letters, 424, 100–105.CrossRefPubMedGoogle Scholar
  8. Buodo, G., Sarlo, M., Codispoti, M., & Palomba, D. (2006). Event-related potentials and visual avoidance in blood phobics: is there any attentional bias? Depression and Anxiety, 23, 304–311.CrossRefPubMedGoogle Scholar
  9. Caseras, X., Giampietro, V., Lamas, A., Brammer, M., Vilarroya, O., Carmona, S., et al. (2010a). The functional neuroanatomy of blood-injection-injury phobia: a comparison with spider phobics and healthy controls. Psychological Medicine, 40(1), 125–134. doi:10.1017/S0033291709005972.
  10. Caseras, X., Mataix-Cols, D., Trasovares, M. V., López-Solà, M., Ortriz, H., Pujol, J., et al. (2010b). Dynamics of brain responses to phobic-related stimulation in specific phobia subtypes. European Journal of Neuroscience, 32(8), 1414–1422. doi:10.1111/j.1460-9568.2010.07424.x.
  11. Dan-Glauser, E. S., & Scherer, K. R. (2011). The Geneva affective picture database(GAPED): a new 730-picture database focusing on valence and normative significance. Behavior Research Methods, 43, 468–477. doi:10.3758/s13428-011-0064-1.CrossRefPubMedGoogle Scholar
  12. Delorme, A., & Makeig, S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21.CrossRefPubMedGoogle Scholar
  13. DeJongh, A., Bongaarts, G., & Vermeule, I. (1998). Blood–injury-injection phobia and dental phobia. Behaviour Research and Therapy, 36, 971–982.CrossRefGoogle Scholar
  14. Dilger, S., Straube, T., Mentzel, H. J., Fitzek, C., Reichenbach, H. R., Hecht, H., et al. (2003). Brain activation to phobia-related pictures in spider phobic humans: an event-related functional magnetic resonance imaging study. Neuroscience Letters, 348, 29–32.CrossRefPubMedGoogle Scholar
  15. Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional processing in anterior cingulate and medial prefrontal cortex. Trends in Cognitive Sciences, 15(2), 85–93. doi:10.1016/j.tics.2010.11.004.CrossRefPubMedGoogle Scholar
  16. Etkin, A., & Wager, T. D. (2007). Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. American Journal of Psychiatry, 164(10), 1476–1488.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Evans, K., Wright, C. I., Wedig, M. M., Gold, A. L., Pollack, M. H., & Rauch, S. L. (2008). A functional MRI study of amygdale responses to angry schematic faces in social anxiety disorders. Depression and Anxiety, 25, 496–505.CrossRefPubMedGoogle Scholar
  18. Fanselow, M. S. (1994). Neural organization of the defensive behavior system responsible for fear. Psychonomic Bulletin & Review, 1, 429–438. doi:10.3758/BF03210947.CrossRefGoogle Scholar
  19. Fredrikson, M. (1981). Orienting and defensive reactions to phobic and conditioned fear stimuli in phobics and normals. Psychophysiology, 18, 456–465.CrossRefPubMedGoogle Scholar
  20. Fredrikson, M., Wik, G., Annas, P., Ericson, K., & Stone-Erlander, S. (1995). Functional neuroanatomy of visually elicited simple phobic fear: additional data and theoretical analysis. Psychophysiology, 32, 43–48.CrossRefPubMedGoogle Scholar
  21. Goldin, P. R., Ziv, M., Jazaieri, H., Werner, K., Kraemer, H., Heimberg, R. G., et al. (2012). Cognitive reappraisal self-efficacy mediates the effects of individual cognitive-behavioral therapy for social anxiety disorder. Journal of Consulting and Clinical Psychology, 80(6), 1034. doi:10.1037/a0028555.
  22. Hahn, A., Stein, P., Windischberger, C., Weissenbacher, A., Spindelegger, C., Moser, E., et al. (2011). Reduced resting-state functional connectivity between amygdala and orbitofrontal cortex in social anxiety disorder. NeuroImage, 56(3), 881–889. doi:10.1016/j.neuroimage.2011.02.064.
  23. Hamm, A., Cuthbert, B. N., Globisch, J., & Vaitl, D. (1997). Fear and the startle reflex: blink modulation and autonomic response patterns in animal and mutilation fearful subjects. Psychophysiology, 34, 97–107.CrossRefPubMedGoogle Scholar
  24. Hare, R. D. (1973). Orienting and defensive responses to visual stimuli. Psychophysiology, 10, 453–464.CrossRefPubMedGoogle Scholar
  25. Hermann, A., Schäfer, A., Walter, B., Stark, R., Vaitl, D., & Schienle, A. (2007). Diminished medial prefrontal cortex activity in blood-injection-injury phobia. Biological Psychology, 75(2), 124–130.CrossRefPubMedGoogle Scholar
  26. Houtem, C. M. H. H., Aartman, I. H. A., Boomsma, D. I., Ligthart, L., Visscher, C. M., & Jongh, A. (2014). Is dental phobia A blood-injection-injury phobia? Depression and Anxiety, 31(12), 1026–1034.CrossRefPubMedGoogle Scholar
  27. Kirk, R. E. (1995). Experimental design: Procedures for behavioral sciences. Pacific Grove, CA: Brooks/Cole Publishing Company.Google Scholar
  28. Kleinknecht, R. A., & Thorndike, R. M. (1990). The mutilation questionnaire as a predictor of blood/injury fear and fainting. Behaviour Research and Therapy, 28(5), 429–437.CrossRefPubMedGoogle Scholar
  29. Klorman, R., Weerts, T. C., Hastings, J. E., Melamed, B. G., & Lang, P. J. (1974). Psychometric description of some specific-fear questionnaires. Behavior Therapy, 5(3), 401–409.CrossRefGoogle Scholar
  30. Kolassa, I. T., Kolassa, S., Musial, F., & Miltner, W. H. R. (2007). Event-related potentials to schematic faces in social phobia. Cognition & Emotion, 21(8), 1721–1744.CrossRefGoogle Scholar
  31. Kolassa, I.T., Musial, F., Kolassa, S., & Miltner, W.H.R. (2006). Event-related potentials when identifying or color-naming threatening schematic stimuli in spider phobic and non-phobic individuals. BMC Psychiatry, 6–38.Google Scholar
  32. Kolassa, I. T., Musial, F., Mohr, A., Trippe, R. H., & Miltner, W. H. R. (2005). Electrophysiological correlates of threat processing in spider phobics. Psychophysiology, 42, 520–530.Google Scholar
  33. Kopp, B., & Altmann, R. (2005). Neurocognitive effects of phobia-related stimuli in animal-fearful individuals. Cognitive, Affective, & Behavioral Neuroscience, 5, 373–387.CrossRefGoogle Scholar
  34. Kramer, M. D., Patrick, C. J., Krueger, R. F., & Gasperi, M. (2012). Delineating physiologic defensive reactivity in the domain of self-report: phenotypic and etiologic structure of dispositional fear. Psychological Medicine, 42(06), 1305–1320.CrossRefPubMedGoogle Scholar
  35. Lang, P. J., Bradley, M. M., & Cuthbert, B. N. (1997). Motivated attention: Affect, activation and action. In P. J. Lang, R. F. Simons, & M. T. Balaban (Eds.), Attention and Orienting: Sensory and Motivational Processes (pp. 97–135). Hilsdale, NJ: Lawrence Erlbaum Associates, Inc..Google Scholar
  36. Lang, P. J., Bradley, M. M., Cuthbert, B. N. (2005). International affective picture system (IAPS): digitized photographs, instruction manual and affective ratings. Technical report no. A-6. University of Florida: Gainesville.Google Scholar
  37. Lang, P. J., Davis, M., & Öhman, A. (2000). Fear and anxiety: animal models and human cognitive psychophysiology. Journal of Affective Disorders, 61, 137–159.CrossRefPubMedGoogle Scholar
  38. LeDoux, J. E. (1987). Emotion. In F. Plum & V. B. Mountcastle (Eds.), Handbook of physiology: Nervous system V, higher function (pp. 419–460). Washington, DC: American Physiology Society.Google Scholar
  39. Leutgeb, V., Schäfer, A., & Schienle, A. (2011). Late cortical positivity and cardiac responsitivity in female dental phobics when exposed to phobia-relevant pictures. International Journal of Psychophysiology, 79(3), 410–416. doi:10.1016/j.ijpsycho.2011.01.003.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liebowitz, M. R. (1987). Social phobia (pp. 141–173). Basel: Karger Publishers.Google Scholar
  41. Lissek, S., Rabin, S., Heller, R. E., Lukenbaugh, D., Geraci, M., Pine, D. S., et al. (2009). Overgeneralization of conditioned fear as a pathogenic marker of panic disorder. American Journal of Psychiatry, 167, 47–55. doi:10.1176/appi.ajp.2009.09030410.
  42. Lueken, U., Hilbert, K., Stolyar, V., Maslowski, N. I., Beesdo-Baum, K., & Wittchen, H. U. (2014). Neural substrates of defensive reactivity in two subtypes of specific phobia. Social cognitive and affective neuroscience, nst159., 9(11), 1668–1675.Google Scholar
  43. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19, 1233–1239.CrossRefPubMedGoogle Scholar
  44. Marchewka, A., Żurawski, Ł., Jednoróg, K., & Grabowska, A. (2014). The Nencki affective picture system (NAPS): introduction to a novel, standardized, wide-range, high-quality, realistic picture database. Behavior Research Methods, 46(2), 596–610. doi:10.3758/s13428-013-0379-1.CrossRefPubMedGoogle Scholar
  45. Michalowski, J. M., Melzig, C. A., Weike, A. I., Stockburger, J., Schupp, H. T., & Hamm, A. O. (2009). Brain dynamics in spider-phobic individuals exposed to phobia-relevant and other emotional stimuli. Emotion, 9(3), 306–315. doi:10.1037/a0015550.CrossRefPubMedGoogle Scholar
  46. Michalowski, J. M., Pané-Farré, C. A., Löw, A., & Hamm, A. O. (2015). Brain dynamics of visual attention during anticipation and encoding of threat- and safe-cues in spider-phobic individuals. Social Cognitive and Affective Neuroscience, 10(9), 1177–1186. doi:10.1093/scan/nsv002.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Miltner, W. H. R., Trippe, R. H., Krieschel, S., Gutberlet, I., Hecht, H., & Weiss, T. (2005). Event-related brain potentials and affective responses to threat in spider/snake-phobic and non-phobic subjects. International Journal of Psychophysiology, 57, 43–52.CrossRefPubMedGoogle Scholar
  48. Moser, J. S., Huppert, J. D., Duval, E., & Simons, R. F. (2008). Face processing biases in social anxiety: an electrophysiological study. Biological Psychology, 78, 93–103. doi:10.1016/j.biopsycho.2008.01.005.CrossRefPubMedGoogle Scholar
  49. Mühlberger, A., Wieser, M.J., Herrmann, M.J., Weyers, P., Tröger, C.,& Pauli, P. (2009). Early cortical processing of natural and artificial emotional faces differs between lower and higher socially anxious persons. Journal of Neural Transmission, 116(6), 735–746. doi: 10.1007/s00702-008-0108-6
  50. Niazy, R. K., Beckmann, C. F., Iannetti, G. D., Brady, J. M., & Smith, S. M. (2005). Removal of MRI environmental artifacts from EEG data using optimal basis sets. NeuroImage, 28, 720–737.CrossRefPubMedGoogle Scholar
  51. Ochsner, K. N., & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5), 242–249.CrossRefPubMedGoogle Scholar
  52. Olszanowski, M., Pochwatko, G., Kuklinski, K., Scibor-Rylski, M., Lewinski, P., & Ohme, R. K. (2015). Warsaw set of emotional facial expression pictures: a validation study of facial display photographs. Frontiers in Psychology, 5, 1516. doi:10.3389/fpsyg.2014.01516.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Paquette, V., Lévesque, J., Mensour, B., Leroux, J.-M., Beaudoin, G., Bourgouin, P., et al. (2003). « change the mind and you change the brain”: effects of cognitive-behavioral therapy on the neural correlates of spider phobia. NeuroImage, 18, 401–409.Google Scholar
  54. Patrick, C. J., & Bernat, E. M. (2010). Neuroscientific foundations of psychopathology. In T. Millon, R. F. Krueger, & E. Simonsen (Eds.), Contemporary directions in psychopathology: Toward the DSM-V (pp. 419–452). New York: Guilford Press.Google Scholar
  55. Pflugshaupt, T., Mosimann, U. P., Schmitt, W. J., von Wartburg, R., Wurtz, P., Lüthi, M., et al. (2007). To look or not to look at threat? Scanpath differences within a group of spider phobics. Journal of Anxiety Disorders, 21, 353–366.Google Scholar
  56. Phan, K. L., Fitzgerald, D. A., Nathan, P. J., Moore, G. J., Uhde, T. W., & Tancer, M. E. (2005). Neural substrates for voluntary suppression of negative affect: a functional magnetic resonance imaging study. Biological Psychiatry, 57(3), 210–219.Google Scholar
  57. Phan, K. L., Coccaro, E. F., Angstadt, M., Kreger, K. J., Mayberg, H. S., Liberzon, I., et al. (2013). Corticolimbic brain reactivity to social signals of threat before and after setraline treatment in generalized social phobia. Biological Psychiatry, 63, 329–336. doi:10.1016/j.biopsych.2012.10.003.
  58. Phelps, E. A., Delgado, M. R., Nearing, K. I., & LeDoux, J. E. (2004). Extinction learning in humans: role of the amygdala and vmPFC. Neuron, 43, 897–905.CrossRefPubMedGoogle Scholar
  59. Prigatano, G. P., & Johnson, H. J. (1974). Autonomic nervous system changes associated with a spider phobic reaction. Journal of Abnormal Psychology, 83, 169–177.CrossRefPubMedGoogle Scholar
  60. Rau, V., DeCola, J. P., & Fanselow, M. S. (2005). Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neuroscience and Biobehavioral Reviews, 29, 1207–1223.CrossRefPubMedGoogle Scholar
  61. Rau, V., & Fanselow, M. S. (2009). Exposure to a stressor produces a long-lasting enhancement of fear learning in rats. Stress, 12(2), 125–133. doi:10.1080/10253890802137320.CrossRefPubMedGoogle Scholar
  62. Riegel, M., Żurawski, Ł., Wierzba, M., Moslehi, A., Klocek, Ł., Horvat, M., Grabowska, A., Michalowski, J. Jednoróg, K., & Marchewka, A. (2016). Characterization of the Nencki Affective Picture System by discrete emotional categories (NAPS BE). Behavior Research Methods, doi:10.3758/s13428-015-0620-1.
  63. Rossignol, M., Anselme, C., Vermeulen, N., Philippot, P., & Campanella, S. (2007). Categorical perception of anger and disgust facial expression is affected by non-clinical social anxiety: an ERP study. Brain Research, 1132, 166–176.CrossRefPubMedGoogle Scholar
  64. Sabatinelli, D., Bradley, M. M., Fitzsimmons, J. R., & Lang, P. J. (2005). Parallel amygdala and inferotemporal activation reflect emotional intensity and fear relevance. NeuroImage, 24, 1265–1270.CrossRefPubMedGoogle Scholar
  65. Schienle, A., Schäfer, A., Hermann, A., Rohrmann, S., & Vaitl, D. (2007). Symptom provocation and reduction in patients suffering from spider phobia. European Archives of Psychiatry and Clinical Neuroscience, 257(8), 486–493.CrossRefPubMedGoogle Scholar
  66. Schienle, A., Schäfer, A., Stark, R., Walter, B., Kirsch, P., & Vaitl, D. (2003). Disgust processing in phobia of blood-injection-injury. An fMRI study. Journal of Psychophysiology, 17, 87–93.Google Scholar
  67. Schienle, A., Schäfer, A., Walter, B., Stark, R., & Vaitl, D. (2005). Elevated disgust sensitivity in blood phobia. Cognition & Emotion, 19, 1229–1241.CrossRefGoogle Scholar
  68. Schupp, H. T., Junghöfer, M., Weike, A. I., & Hamm, A. O. (2003). Attention and emotion: an ERP analysis of facilitated emotional stimulus processing. Neuroreport, 14, 1107–1110.CrossRefPubMedGoogle Scholar
  69. Sewell, C., Palermo, R., Atkinson, C., & McArthur, G. (2008). Anxiety and the neural processing of threat in faces. Neuroreport, 19, 1339–1343. doi:10.1097/WNR.0b013e32830baadf.CrossRefPubMedGoogle Scholar
  70. Schneier, F. R., Pomplun, M., Sy., M., & Hirsch, J. (2011). Neural response to eye contact and paroxetine treatment in generalized social anxiety disorder. Psychiatry Research, 194, 271–278. doi: 10.1016/j.pscychresns.2011.08.006.
  71. Sosnowski, T., & Rynkiewicz, A. (2008). RUN/EDIT information processing mode and phasic cardiac acceleration. Psychophysiology, 45, 1079–1085.Google Scholar
  72. Spielberger, C., Gorsuch, A., & Lushene, R. (1970). The state-trait anxiety inventory. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
  73. Stein, M. B., Simmons, A. N., Feinstein, J. S., & Paulus, M. P. (2007). Increased amygdala and insula activation during emotion processing in anxiety-prone subjects. The American Journal of Psychiatry, 164(2), 318–327.CrossRefPubMedGoogle Scholar
  74. Straube, T., Mentzel, H. J., & Miltner, W. H. R. (2006). Neural mechanisms of automatic and direct processing of phobogenic stimuli in specific phobia. Biological Psychiatry, 59, 162–170.CrossRefPubMedGoogle Scholar
  75. Thayer, J. F., & Friedman, B. H. (2002). Stop that! Inhibition, sensitization, and their neurovisceral concomitants. Scandinavian Journal of Psychology, 43(2), 123–130.CrossRefPubMedGoogle Scholar
  76. Tolin, D. F., Lohr, J. M., Lee, T. C., & Sawchuk, C. N. (1999). Visual avoidance in specific phobia. Behaviour Research and Therapy, 37, 63–70.CrossRefPubMedGoogle Scholar
  77. Vaidyanathan, U., Patrick, C. J., & Bernat, E. M. (2009). Startle reflex potentiation during aversive picture viewing as an indicator of trait fear. Psychophysiology, 46(1), 75–85.CrossRefPubMedGoogle Scholar
  78. Wendt, J., Lotze, M., Weike, A. I., Hosten, N., & Hamm, A. O. (2008). Brain activation and defensive response mobilization during sustained exposure to phobia-related and other affective pictures in spider phobia. Psychophysiology, 45, 205–215.CrossRefPubMedGoogle Scholar
  79. Weymar, M., Keil, A., & Hamm, A. O. (2014). Timing the fearful brain: hypervigilance and spatial attention in early visual perception. Social Cognitive and Affective Neuroscience, 9(5), 723–729. doi:10.1093/scan/nst044.CrossRefPubMedGoogle Scholar
  80. Wrześniewski, K., Sosnowski, T., & Matusik, D. (2002). Inwentarz Stanu i Cechy Lęku STAI. PTP: Polska adaptacja STAI. Podręcznik. Warszawa.Google Scholar
  81. Yoon, K. L., Fitzgerald, T. A., Angstadt, M., McCarron, R. A., & Phan, K. L. (2007). Amygdala reactivity to emotional faces at high and low intensity in generalized social phobia: a 4-tesla functional MRI study. Psychiatry Research, 154, 93–98.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jarosław M. Michałowski
    • 1
  • Jacek Matuszewski
    • 1
    • 2
  • Dawid Droździel
    • 1
    • 2
  • Wojciech Koziejowski
    • 1
  • Andrzej Rynkiewicz
    • 1
  • Katarzyna Jednoróg
    • 3
  • Artur Marchewka
    • 2
  1. 1.Department of Differential Psychology, Faculty of PsychologyUniversity of WarsawWarsawPoland
  2. 2.Laboratory of Brain Imaging, Neurobiology CentreNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland
  3. 3.Laboratory of Psychophysiology, Department of NeurophysiologyNencki Institute of Experimental Biology, Polish Academy of SciencesWarsawPoland

Personalised recommendations