Brain Imaging and Behavior

, Volume 11, Issue 3, pp 722–735 | Cite as

Effects of childhood trauma on working memory in affective and non-affective psychotic disorders

  • Yann Quidé
  • Nicole O’Reilly
  • Jesseca E. Rowland
  • Vaughan J. Carr
  • Bernet M. Elzinga
  • Melissa J. GreenEmail author
Original Research


Childhood trauma is a significant risk factor for the development of psychotic disorders, and may influence executive brain functions. We thus set out to investigate the long-term effects of childhood trauma exposure on brain function of adult chronic patients diagnosed with schizophrenia, schizoaffective disorder and (psychotic) bipolar-I disorder while performing a standard 2/0-back working memory task. Participants were 50 cases diagnosed with schizophrenia/schizoaffective disorder (SCZ), 42 cases with bipolar-I disorder (BD), and 47 healthy controls (HC). Among this sample, 56 clinical cases (SCZ = 32; BD = 24) and 17 HC reported significant levels of childhood trauma, while 36 clinical cases (SCZ = 18; BD = 18) and 30 HC did not. Effects of childhood trauma on working memory-related brain activation were examined in combined samples of clinical cases (independently of diagnosis) relative to HCs, as well as within each diagnostic category. Case–control analyses revealed increased activation of the left inferior parietal lobule as a main effect of trauma exposure. In addition, trauma exposure interacted with a diagnosis of SCZ or BD to reveal trauma-related increased activation in the cuneus in clinical cases and decreased activation in this region in controls. Disorder-specific functional alterations were also evident in the SCZ sample, but not BD. Childhood trauma exposure elicits aberrant function of parietal regions involved in working memory performance regardless of clinical status, as well as task-relevant visual regions that participates to attentional processes. Childhood trauma may therefore contribute to alterations in attention in SCZ and BD while performing an n-back working memory task.


Childhood trauma Schizophrenia Bipolar-I disorder Psychosis Working memory Functional magnetic resonance imaging 



We would like to acknowledge the contribution of Meelah Hamilton (now deceased), Nicholas Vella, and Inika Gillis for assistance with data collection and entry. We would also like to thank the volunteers who participated in this study. We acknowledge recruitment assistance from the Australian Schizophrenia Research Bank (ASRB), which is supported by the National Health and Medical Research Council of Australia (NHMRC) Enabling Grant (No. 386500), the Pratt Foundation, Ramsay Health Care, the Viertel Charitable Foundation and the Schizophrenia Research Institute.

Compliance with ethical standards


This study was funded by the National Health and Medical Research Council (NHMRC) of Australia (Project 630471; CIA Green). Quidé was supported by the Schizophrenia Research Institute with combined funding awarded to CI-Green from their internal “Grants-in-Aid” program, and the Macquarie University’s ARC Centre of Excellence in Cognition and its Disorders. Green was supported by the NMHRC’s R.D. Wright Biomedical Career Development Award (1061875; 2014- 17). Rowland was supported by Australian Postgraduate Awards for PhD research. The funding bodies had no role in the decision to publish these data.

Conflict of interest

Yann Quidé, Nicole O’Reilly, Jesseca E. Rowland, Vaughan J. Carr, Bernet M. Elzinga and Melissa J. Green declare that they have no conflict of interest.

Ethic approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation.

Informed consent

Informed consent was obtained from all patients for being included in the study.


  1. Aas, M., Navari, S., Gibbs, A., Mondelli, V., Fisher, H. L., Morgan, C., et al. (2012). Is there a link between childhood trauma, cognition, and amygdala and hippocampus volume in first-episode psychosis? Schizophrenia Research, 137(1-3), 73–79. doi: 10.1016/j.schres.2012.01.035.CrossRefPubMedGoogle Scholar
  2. Aas, M., Haukvik, U. K., Djurovic, S., Bergmann, O., Athanasiu, L., Tesli, M. S., et al. (2013). BDNF val66met modulates the association between childhood trauma, cognitive and brain abnormalities in psychoses. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 46, 181–188. doi: 10.1016/j.pnpbp.2013.07.008.CrossRefGoogle Scholar
  3. Aas, M., Dazzan, P., Mondelli, V., Melle, I., Murray, R. M., & Pariante, C. M. (2014a). A systematic review of cognitive function in first-episode psychosis, including a discussion on childhood trauma, stress, and inflammation. Frontiers in Psychiatry, 4, 182. doi: 10.3389/fpsyt.2013.00182.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Aas, M., Haukvik, U. K., Djurovic, S., Tesli, M., Athanasiu, L., Bjella, T., et al. (2014b). Interplay between childhood trauma and BDNF val66met variants on blood BDNF mRNA levels and on hippocampus subfields volumes in schizophrenia spectrum and bipolar disorders. Journal of Psychiatric Research, 59, 14–21. doi: 10.1016/j.jpsychires.2014.08.011.CrossRefPubMedGoogle Scholar
  5. Alsawy, S., Wood, L., Taylor, P. J., & Morrison, A. P. (2015). Psychotic experiences and PTSD: exploring associations in a population survey. Psychological Medicine, 1-11, doi: 10.1017/S003329171500080X.
  6. Alvarez, M. J., Roura, P., Oses, A., Foguet, Q., Sola, J., & Arrufat, F. X. (2011). Prevalence and clinical impact of childhood trauma in patients with severe mental disorders. Journal of Nervous and Mental Disease, 199(3), 156–161. doi: 10.1097/NMD.0b013e31820c751c.CrossRefPubMedGoogle Scholar
  7. Berk, M., Malhi, G. S., Cahill, C., Carman, A. C., Hadzi-Pavlovic, D., Hawkins, M. T., et al. (2007). The Bipolar Depression Rating Scale (BDRS): its development, validation and utility. [Comparative Study Research Support, Non-U.S. Gov’t Validation Studies]. Bipolar Disorders, 9(6), 571–579.CrossRefPubMedGoogle Scholar
  8. Bernstein, D. P., Stein, J. A., Newcomb, M. D., Walker, E., Pogge, D., Ahluvalia, T., et al. (2003). Development and validation of a brief screening version of the Childhood Trauma Questionnaire. Child Abuse and Neglect, 27(2), 169–190.CrossRefPubMedGoogle Scholar
  9. Brandt, C. L., Eichele, T., Melle, I., Sundet, K., Server, A., Agartz, I., et al. (2014). Working memory networks and activation patterns in schizophrenia and bipolar disorder: comparison with healthy controls. [Research Support, Non-U.S. Gov’t]. The British Journal of Psychiatry, 204, 290–298. doi: 10.1192/bjp.bp.113.129254.CrossRefPubMedGoogle Scholar
  10. Brett, M., Anton, J.-L., Valabregue, R., & Poline, J.-B. (2002). Region of interest analysis using an SPM toolbox. Paper presented at the 8th International Conference on Functional Mapping of the Human Brain, Sendai, Japan, June 2-6, 2002.Google Scholar
  11. Brietzke, E., Kauer-Sant’anna, M., Jackowski, A., Grassi-Oliveira, R., Bucker, J., Zugman, A., et al. (2012). Impact of childhood stress on psychopathology. Revista Brasileira de Psiquiatria, 34, 480–488.CrossRefPubMedGoogle Scholar
  12. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011.CrossRefPubMedGoogle Scholar
  13. Callicott, J. H., Ramsey, N. F., Tallent, K., Bertolino, A., Knable, M. B., Coppola, R., et al. (1998). Functional magnetic resonance imaging brain mapping in psychiatry: methodological issues illustrated in a study of working memory in schizophrenia. [Comparative Study]. Neuropsychopharmacology, 18(3), 186–196. doi: 10.1016/S0893-133X(97)00096-1.CrossRefPubMedGoogle Scholar
  14. Castle, D. J., Jablensky, A., McGrath, J. J., Carr, V., Morgan, V., Waterreus, A., et al. (2006). The diagnostic interview for psychoses (DIP): development, reliability and applications. Psychological Medicine, 36(1), 69–80.CrossRefPubMedGoogle Scholar
  15. Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–599. doi: 10.1146/annurev-neuro-061010-113731.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Craig, A. D. (2005). Forebrain emotional asymmetry: a neuroanatomical basis? Trends in Cognitive Sciences, 9(12), 566–571. doi: 10.1016/j.tics.2005.10.005.CrossRefPubMedGoogle Scholar
  17. Craig, A. D. (2009). How do you feel--now? The anterior insula and human awareness. [Research Support, Non-U.S. Gov’t]. Nature Reviews Neuroscience, 10(1), 59–70. doi: 10.1038/nrn2555.CrossRefPubMedGoogle Scholar
  18. Cremaschi, L., Penzo, B., Palazzo, M., Dobrea, C., Cristoffanini, M., Dell’Osso, B., et al. (2013). Assessing working memory via N-back task in euthymic bipolar I disorder patients: a review of functional magnetic resonance imaging studies. Neuropsychobiology, 68(2), 63–70. doi: 10.1159/000352011.CrossRefPubMedGoogle Scholar
  19. D’Esposito, M. (2007). From cognitive to neural models of working memory. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1481), 761–772. doi: 10.1098/rstb.2007.2086.CrossRefPubMedPubMedCentralGoogle Scholar
  20. D’Esposito, M., Aguirre, G. K., Zarahn, E., Ballard, D., Shin, R. K., & Lease, J. (1998). Functional MRI studies of spatial and nonspatial working memory. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Brain Research. Cognitive Brain Research, 7(1), 1–13.CrossRefPubMedGoogle Scholar
  21. Daniels, J. K., McFarlane, A. C., Bluhm, R. L., Moores, K. A., Clark, C. R., Shaw, M. E., et al. (2010). Switching between executive and default mode networks in posttraumatic stress disorder: alterations in functional connectivity. Journal of Psychiatry & Neuroscience, 35(4), 258–266.CrossRefGoogle Scholar
  22. Daniels, J. K., Frewen, P., McKinnon, M. C., & Lanius, R. A. (2011). Default mode alterations in posttraumatic stress disorder related to early-life trauma: a developmental perspective. [Research Support, Non-U.S. Gov’t]. Journal of Psychiatry & Neuroscience, 36(1), 56–59. doi: 10.1503/jpn.100050.CrossRefGoogle Scholar
  23. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. doi: 10.1016/j.neuroimage.2006.01.021.CrossRefPubMedGoogle Scholar
  24. Duhig, M., Patterson, S., Connell, M., Foley, S., Capra, C., Dark, F., et al. (2015). The prevalence and correlates of childhood trauma in patients with early psychosis. The Australian and New Zealand Journal of Psychiatry, 49(7), 651–659. doi: 10.1177/0004867415575379.CrossRefPubMedGoogle Scholar
  25. Etain, B., Mathieu, F., Henry, C., Raust, A., Roy, I., Germain, A., et al. (2010). Preferential association between childhood emotional abuse and bipolar disorder. Journal of Traumatic Stress, 23(3), 376–383. doi: 10.1002/jts.20532.PubMedGoogle Scholar
  26. Fernandez-Corcuera, P., Salvador, R., Monte, G. C., Salvador Sarro, S., Goikolea, J. M., Amann, B., et al. (2013). Bipolar depressed patients show both failure to activate and failure to de-activate during performance of a working memory task. Journal of Affective Disorders, 148(2-3), 170–178. doi: 10.1016/j.jad.2012.04.009.CrossRefPubMedGoogle Scholar
  27. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. doi: 10.1073/pnas.0504136102.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Green, M. J., Chia, T. Y., Cairns, M. J., Wu, J., Tooney, P. A., Scott, R. J., et al. (2014a). Catechol-O-methyltransferase (COMT) genotype moderates the effects of childhood trauma on cognition and symptoms in schizophrenia. Journal of Psychiatric Research, 49, 43–50. doi: 10.1016/j.jpsychires.2013.10.018.CrossRefPubMedGoogle Scholar
  29. Green, M. J., Girshkin, L., Teroganova, N., & Quidé, Y. (2014b). Stress, schizophrenia and bipolar disorder. Current Topics in Behavioral Neurosciences, 18, 217–235. doi: 10.1007/7854_2014_290.CrossRefPubMedGoogle Scholar
  30. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. doi: 10.1073/pnas.0135058100.CrossRefPubMedGoogle Scholar
  31. Hart, H., & Rubia, K. (2012). Neuroimaging of child abuse: a critical review. Frontiers in Human Neuroscience, 6, 52. doi: 10.3389/fnhum.2012.00052.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Hernaus, D., van Winkel, R., Gronenschild, E., Habets, P., Kenis, G., Marcelis, M., et al. (2014). Brain-derived neurotrophic factor/FK506-binding protein 5 genotype by childhood trauma interactions do not impact on hippocampal volume and cognitive performance. PLoS ONE, 9(3), e92722. doi: 10.1371/journal.pone.0092722.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hoy, K., Barrett, S., Shannon, C., Campbell, C., Watson, D., Rushe, T., et al. (2012). Childhood trauma and hippocampal and amygdalar volumes in first-episode psychosis. Schizophrenia Bulletin, 38(6), 1162–1169. doi: 10.1093/schbul/sbr085.CrossRefPubMedGoogle Scholar
  34. Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D. S. M. D., Quinn, K., et al. (2010). Research Domain Criteria (RDoC): toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748–751.CrossRefPubMedGoogle Scholar
  35. Ivleva, E. I., Bidesi, A. S., Thomas, B. P., Meda, S. A., Francis, A., Moates, A. F., et al. (2012a). Brain gray matter phenotypes across the psychosis dimension. Psychiatry Research, 204(1), 13–24. doi: 10.1016/j.pscychresns.2012.05.001.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ivleva, E. I., Morris, D. W., Osuji, J., Moates, A. F., Carmody, T. J., Thaker, G. K., et al. (2012b). Cognitive endophenotypes of psychosis within dimension and diagnosis. Psychiatry Research, 196(1), 38–44. doi: 10.1016/j.psychres.2011.08.021.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kay, S. R., Opler, L. A., & Lindenmayer, J.-P. (1989). The Positive and Negative Syndrome Scale (PANSS): rationale and standardisation. The British Journal of Psychiatry, 155(Suppl 7), 59–65.Google Scholar
  38. Kim, D., Kim, J. W., Koo, T. H., Yun, H. R., & Won, S. H. (2015). Shared and distinct neurocognitive endophenotypes of schizophrenia and psychotic bipolar disorder. Clinical Psychopharmacology and Neuroscience, 13(1), 94–102. doi: 10.9758/cpn.2015.13.1.94.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lancaster, J. L., Rainey, L. H., Summerlin, J. L., Freitas, C. S., Fox, P. T., Evans, A. C., et al. (1997). Automated labeling of the human brain: a preliminary report on the development and evaluation of a forward-transform method. Human Brain Mapping, 5(4), 238–242. doi: 10.1002/(SICI)1097-0193(1997)5:4<238::AID-HBM6>3.0.CO;2-4.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lancaster, J. L., Woldorff, M. G., Parsons, L. M., Liotti, M., Freitas, C. S., Rainey, L., et al. (2000). Automated Talairach atlas labels for functional brain mapping. [Research Support, U.S. Gov’t, P.H.S.]. Human Brain Mapping, 10(3), 120–131.CrossRefPubMedGoogle Scholar
  41. Landré, L., Destrieux, C., Andersson, F., Barantin, L., Quidé, Y., Tapia, G., et al. (2012). Working memory processing of traumatic material in women with posttraumatic stress disorder. Journal of Psychiatry & Neuroscience, 37(2), 87–94. doi: 10.1503/jpn.100167.CrossRefGoogle Scholar
  42. Lanius, R. A., Frewen, P. A., Tursich, M., Jetly, R., & McKinnon, M. C. (2015). Restoring large-scale brain networks in PTSD and related disorders: a proposal for neuroscientifically-informed treatment interventions. European Journal of Psychotraumatology, 6, 27313. doi: 10.3402/ejpt.v6.27313.CrossRefPubMedGoogle Scholar
  43. Larsson, S., Andreassen, O. A., Aas, M., Rossberg, J. I., Mork, E., Steen, N. E., et al. (2013). High prevalence of childhood trauma in patients with schizophrenia spectrum and affective disorder. Comprehensive Psychiatry, 54(2), 123–127. doi: 10.1016/j.comppsych.2012.06.009.CrossRefPubMedGoogle Scholar
  44. Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137(Pt 1), 12–32. doi: 10.1093/brain/awt162.CrossRefPubMedGoogle Scholar
  45. Leucht, S., Wahlbeck, K., Hamann, J., & Kissling, W. (2003). New generation antipsychotics versus low-potency conventional antipsychotics: a systematic review and meta-analysis. [Meta-Analysis Review]. Lancet, 361(9369), 1581–1589. doi: 10.1016/S0140-6736(03)13306-5.CrossRefPubMedGoogle Scholar
  46. Loughland, C., Draganic, D., McCabe, K., Richards, J., Nasir, A., Allen, J., et al. (2010). Australian Schizophrenia Research Bank: a database of comprehensive clinical, endophenotypic and genetic data for aetiological studies of schizophrenia. [Research Support, Non-U.S. Gov’t]. Australian and New Zealand Journal of Psychiatry, 44(11), 1029–1035. doi: 10.3109/00048674.2010.501758.PubMedGoogle Scholar
  47. Lovibond, S. H., & Lovibond, P. F. (1995). The DASS: Manual for the depression, anxiety stress scales (2nd Edition). Psychology Foundation of Australia.Google Scholar
  48. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239.CrossRefPubMedGoogle Scholar
  49. Maldjian, J. A., Laurienti, P. J., & Burdette, J. H. (2004). Precentral gyrus discrepancy in electronic versions of the Talairach atlas. NeuroImage, 21(1), 450–455.CrossRefPubMedGoogle Scholar
  50. Mamah, D., Barch, D. M., & Repovs, G. (2013). Resting state functional connectivity of five neural networks in bipolar disorder and schizophrenia. Journal of Affective Disorders, 150(2), 601–609. doi: 10.1016/j.jad.2013.01.051.CrossRefPubMedPubMedCentralGoogle Scholar
  51. McGuffin, P., & Farmer, A. (1991). A polydiagnostic application of operational criteria in studies of psychotic illness: development and validation of the OPCRIT system. Archives of General Psychiatry, 48, 764–770.CrossRefPubMedGoogle Scholar
  52. Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822. doi: 10.1001/archgenpsychiatry.2009.91.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mitchell, P. B., Johnston, A. K., Corry, J., Ball, J. R., & Malhi, G. S. (2009). Characteristics of bipolar disorder in an Australian specialist outpatient clinic: comparison across large datasets. Australian and New Zealand Journal of Psychiatry, 43(2), 1009–1017.CrossRefGoogle Scholar
  54. Montgomery, P., & Asberg, B. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry, 134, 382–389.CrossRefPubMedGoogle Scholar
  55. Nieuwenhuys, R., Voogd, J., & van Huijzen, C. (2008). The human central nervous system. Berlin: Springer.CrossRefGoogle Scholar
  56. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113. doi: 10.1016/0028-3932(71)90067-4.CrossRefPubMedGoogle Scholar
  57. Palaniyappan, L., Simmonite, M., White, T. P., Liddle, E. B., & Liddle, P. F. (2013). Neural primacy of the salience processing system in schizophrenia. Neuron, 79(4), 814–828. doi: 10.1016/j.neuron.2013.06.027.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Philip, N. S., Sweet, L. H., Tyrka, A. R., Carpenter, S. L., Albright, S. E., Price, L. H., et al. (2015). Exposure to childhood trauma is associated with altered n-back activation and performance in healthy adults: implications for a commonly used working memory task. Brain Imaging and Behavior. doi: 10.1007/s11682-015-9373-9.PubMedGoogle Scholar
  59. Purcell, S. M., Wray, N. R., Stone, J. L., Visscher, P. M., O’Donovan, M. C., Sullivan, P. F., et al. (2009). Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature, 460(7256), 748–752.PubMedGoogle Scholar
  60. Quidé, Y., Morris, R. W., Shepherd, A. M., Rowland, J. E., & Green, M. J. (2013). Task-related fronto-striatal functional connectivity during working memory performance in schizophrenia. Schizophrenia Research, 150(2-3), 468–475. doi: 10.1016/j.schres.2013.08.009.CrossRefPubMedGoogle Scholar
  61. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. doi: 10.1073/pnas.98.2.676.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Raine, A., Park, S., Lencz, T., Bihrle, S., LaCasse, L., Widom, C. S., et al. (2001). Reduced right hemisphere activation in severely abused violent offenders during a working memory task: An fMRI study. Aggressive Behavior, 27(2), 111–129. doi: 10.1002/ab.4.CrossRefGoogle Scholar
  63. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neuroscience, 27(9), 2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janvas, J., Weiller, E., et al. (1998). The mini-international neuropsychiatric interview (MINI): the development and validation of a structured diagnostic interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 59(Suppl 20), 22–33.PubMedGoogle Scholar
  65. Sheffield, J. M., Williams, L. E., Woodward, N. D., & Heckers, S. (2013). Reduced gray matter volume in psychotic disorder patients with a history of childhood sexual abuse. Schizophrenia Research, 143(1), 185–191. doi: 10.1016/j.schres.2012.10.032.CrossRefPubMedGoogle Scholar
  66. Shepherd, A. M., Quidé, Y., Laurens, K. R., O’Reilly, N., Rowland, J. E., Mitchell, P. B., et al. (2015). Shared intermediate phenotypes for schizophrenia and bipolar disorder: neuroanatomical features of subtypes distinguished by executive dysfunction. Journal of Psychiatry & Neuroscience, 40(1), 58–68.CrossRefGoogle Scholar
  67. Simonsen, C., Sundet, K., Vaskinn, A., Birkenaes, A. B., Engh, J. A., Faerden, A., et al. (2011). Neurocognitive dysfunction in bipolar and schizophrenia spectrum disorders depends on history of psychosis rather than diagnostic group. Schizophrenia Bulletin, 37(1), 73–83. doi: 10.1093/schbul/sbp034.CrossRefPubMedGoogle Scholar
  68. Teicher, M. H., & Samson, J. A. (2013). Childhood maltreatment and psychopathology: a case for ecophenotypic variants as clinically and neurobiologically distinct subtypes. American Journal of Psychiatry, 170(10), 1114–1133. doi: 10.1176/appi.ajp.2013.12070957.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Torta, D. M., & Cauda, F. (2011). Different functions in the cingulate cortex, a meta-analytic connectivity modeling study. NeuroImage, 56(4), 2157–2172. doi: 10.1016/j.neuroimage.2011.03.066.CrossRefPubMedGoogle Scholar
  70. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289. doi: 10.1006/nimg.2001.0978.CrossRefPubMedGoogle Scholar
  71. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews Neuroscience, 16(1), 55–61. doi: 10.1038/nrn3857.CrossRefPubMedGoogle Scholar
  72. van Winkel, R., van Nierop, M., Myin-Germeys, I., & van Os, J. (2013). Childhood trauma as a cause of psychosis: linking genes, psychology, and biology. Canadian Journal of Psychiatry / Revue Canadienne de Psychiatrie, 58(1), 44–51.CrossRefPubMedGoogle Scholar
  73. W.H.O. (2008). ICD-10: International statistical classification of diseases and related health problems (10 Revth ed.). New York: World Health Organization.Google Scholar
  74. Wechsler, D. (1999). Wechsler Abbreviated Scale of Intelligence (WASI). New York: The Psychological Corporation.Google Scholar
  75. Whitfield-Gabrieli, S., & Ford, J. M. (2012). Default mode network activity and connectivity in psychopathology. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Annual Review of Clinical Psychology, 8, 49–76. doi: 10.1146/annurev-clinpsy-032511-143049.CrossRefPubMedGoogle Scholar
  76. Woods, S. W. (2003). Chlorpromazine equivalent doses for the newer atypical antipsychotics. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Review]. Journal of Clinical Psychiatry, 64(6), 663–667.CrossRefPubMedGoogle Scholar
  77. Young, R. C., Biggs, J. T., Ziegler, V. E., & Meyer, D. A. (1978). A rating scale for mania: reliability, validity, and sensitivity. The British Journal of Psychiatry, 133, 429–435.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yann Quidé
    • 1
    • 2
  • Nicole O’Reilly
    • 1
  • Jesseca E. Rowland
    • 1
    • 2
  • Vaughan J. Carr
    • 1
    • 2
    • 3
  • Bernet M. Elzinga
    • 4
    • 5
  • Melissa J. Green
    • 1
    • 2
    • 6
    • 7
    • 8
    Email author
  1. 1.School of PsychiatryUniversity of New South WalesRandwickAustralia
  2. 2.Schizophrenia Research InstituteRandwickAustralia
  3. 3.Department of Psychiatry School of Clinical SciencesMonash UniversityClaytonAustralia
  4. 4.Leiden Institute for Brain and Cognition (LIBC)Leiden UniversityLeidenThe Netherlands
  5. 5.Clinical, Health and Neuropsychology UnitLeiden UniversityLeidenThe Netherlands
  6. 6.Neuroscience Research AustraliaRandwickAustralia
  7. 7.Black Dog InstitutePrince of Wales HospitalRandwickAustralia
  8. 8.ARC Centre for Cognition and its Disorders (CCD)Macquarie UniversitySydneyAustralia

Personalised recommendations