Brain Imaging and Behavior

, Volume 11, Issue 3, pp 666–676 | Cite as

Decoupling of reaction time-related default mode network activity with cognitive demand

  • Anita D. Barber
  • Brian S. Caffo
  • James J. Pekar
  • Stewart H. Mostofsky
Original Research

Abstract

Reaction Time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in task positive regions. Few studies have focused on whether opposing RT-related suppression of task activity also occurs. The current study used two Go/No-go tasks with different cognitive demands to examine regions that showed greater BOLD suppression for longer RT trials. These RT-related suppression effects occurred within the DMN and were task-specific, localizing to separate regions for the two tasks. In the task requiring working memory, RT-related de-coupling of the DMN occurred. This was reflected by opposing RT-BOLD effects for different DMN regions, as well as by reduced positive RT-related Psycho-Physiological Interaction (PPI) connectivity within the DMN and a lack of negative RT-related PPI connectivity between DMN and task positive regions. The results suggest that RT-related DMN suppression is task-specific. RT-related de-coupling of the DMN with more complex task demands may contribute to lapses of attention and performance decrements that occur during cognitively-demanding tasks.

Keywords

Default mode network Reaction times Attention Anti-correlation 

Supplementary material

11682_2016_9543_MOESM1_ESM.docx (224 kb)
Fig. S1Total number of significant voxels and proportion of significant voxels within each network for the negative RT contrasts (top panels) and positive RT contrasts (bottom panels). Significance is assessed at a voxel-level threshold of p < 0.01 multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 223 kb)
11682_2016_9543_MOESM2_ESM.docx (742 kb)
Fig. S2Regions showing task differences in RT-related activity and overlap with the DMN. For task differences, significance is assessed at a voxel-level threshold of p < 0.01 for RT contrasts and multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 742 kb)
11682_2016_9543_MOESM3_ESM.docx (90 kb)
Fig. S3Total number of significant voxels and proportion of significant voxels within each network for RT-related task differences. Significance is assessed at a voxel-level threshold of p < 0.01 and multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 90 kb)
11682_2016_9543_MOESM4_ESM.docx (206 kb)
Fig. S4Total number of significant voxels and proportion of significant voxels within each network for MPFC-RT PPI Connectivity. Significance is assessed at a voxel-level threshold of p < 0.01 and multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 205 kb)
11682_2016_9543_MOESM5_ESM.docx (22 kb)
Table S1Regions with Significant Task Differences in RT-related Activity. The number of significant voxels that overlap with the DMN and the total number of significant voxels are displayed. (DOCX 21 kb)

References

  1. Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010a). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 3222335.CrossRefGoogle Scholar
  2. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010b). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 5502562.CrossRefGoogle Scholar
  3. Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Effects of working memory demand on neural mechanisms of motor response selection and control. Journal of Cognitive Neuroscience, 25, 1235–1248.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barber, A. D., Jacobson, L. A., Wexler, J. L., Nebel, M. B., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2015). Connectivity supporting attention in children with attention deficit hyperactivity disorder. NeuroImage: Clinical, 7, 68–81.CrossRefGoogle Scholar
  5. Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2016). Reaction time-related activity reflecting periodic, task-specific cognitive control. Behavioural Brain Research, 296, 100–108.CrossRefPubMedGoogle Scholar
  6. Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.Google Scholar
  7. Carp, J., Kim, K., Taylor, S. F., Fitzgerald, K. D., & Weissman, D. H. (2010). Conditional differences in mean reaction time explain effects of response congruency, but not accuracy, on posterior medial frontal cortex activity. Frontiers in Human Neuroscience, 4, 231.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews Neuroscience, 3(8), 617–628.Google Scholar
  9. Castellanos, F. X., Sonuga-Barke, E. J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological psychiatry, 57(11), 1416–1423.Google Scholar
  10. Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23, 2712–2723.CrossRefPubMedGoogle Scholar
  11. Fassbender, C., Zhang, H., Buzy, W. M., Cortes, C. R., Mizuiri, D., Beckett, L., & Schweitzer, J. B. (2009). A lack of default network suppression is linked to increased distractibility in ADHD. Brain research, 1273, 114–128.Google Scholar
  12. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.Google Scholar
  13. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.CrossRefPubMedGoogle Scholar
  14. Gao, W., Gilmore, J. H., Alcauter, S., & Lin, W. (2013). The dynamic reorganization of the default-mode network during a visual classification task. Frontiers in Systems Neuroscience, 7, 34.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage, 19, 200–207.CrossRefPubMedGoogle Scholar
  16. Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57, 303–311.CrossRefPubMedGoogle Scholar
  17. Henson, R. (2007). Analysis of fMRI timeseries: Linear time-invariant models, event-related fMRI and optimal experimental design. In W. Penny, K. Friston, J. Ashburner, S. Kiebel, & N. Thomas (Eds.), Statistical parametric mapping: the analysis of functional brain images. London: Elsevier.Google Scholar
  18. Johnson, B. P., Pinar, A., Fornito, A., Nandam, L. S., Hester, R., & Bellgrove, M. A. (2015). Left anterior cingulate activity predicts intra-individual reaction time variability in healthy adults. Neuropsychologia, 72, 22–26.CrossRefPubMedGoogle Scholar
  19. Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527–537.Google Scholar
  20. McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of cognitive neuroscience, 15(3), 394–408.Google Scholar
  21. McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage, 61, 1277–1286.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Neta, M., Schlaggar, B. L., & Petersen, S. E. (2014). Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions. NeuroImage, 99C, 59–68.CrossRefGoogle Scholar
  23. O’Reilly, J. X., Woolrich, M. W., Behrens, T. E., Smith, S. M., & Johansen-Berg, H. (2012). Tools of the trade: psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience, 7, 604–609.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665–678.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Prado, J., & Weissman, D. H. (2011). Heightened interactions between a key default-mode region and a key task-positive region are linked to suboptimal current performance but to enhanced future performance. NeuroImage, 56, 2276–2282.CrossRefPubMedGoogle Scholar
  26. Prado, J., Carp, J., & Weissman, D. H. (2011). Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network. NeuroImage, 54, 541–549.CrossRefPubMedGoogle Scholar
  27. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.Google Scholar
  28. Rosenberg, M. D., Finn, E. S., Constable, R. T., & Chun, M. M. (2015). Predicting moment-to-moment attentional state. NeuroImage, 114, 249–256.CrossRefPubMedGoogle Scholar
  29. Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303–317.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Weissman, D. H., & Carp, J. (2013). The congruency effect in the posterior medial frontal cortex is more consistent with time on task than with response conflict. PloS One, 8, e62405.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.CrossRefPubMedGoogle Scholar
  32. Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E., & Braver, T. S. (2009). BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PloS One, 4, e4257.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anita D. Barber
    • 1
  • Brian S. Caffo
    • 2
  • James J. Pekar
    • 3
    • 4
  • Stewart H. Mostofsky
    • 3
    • 4
  1. 1.Feinstein Institute for Medical ResearchManhassetUSA
  2. 2.Johns Hopkins School of Public HealthBaltimoreUSA
  3. 3.Kennedy Krieger InstituteBaltimoreUSA
  4. 4.Johns Hopkins School of MedicineBaltimoreUSA

Personalised recommendations