Brain Imaging and Behavior

, Volume 11, Issue 3, pp 619–631 | Cite as

Altered functional brain networks in amnestic mild cognitive impairment: a resting-state fMRI study

  • Suping Cai
  • Tao Chong
  • Yanlin Peng
  • Wenyue Shen
  • Jun Li
  • Karen M. von Deneen
  • Liyu Huang
  • Alzheimer’s Disease Neuroimaging Initiative
Original Research


Amnestic mild cognitive impairment MCI (aMCI) has a high progression to Alzheimer’s disease (AD). Recently, resting-state functional MRI (RS-fMRI) has been increasingly utilized in studying the pathogenesis of aMCI, especially in resting-state networks (RSNs). In the current study, we aimed to explore abnormal RSNs related to memory deficits in aMCI patients compared to the aged-matched healthy control group using RS-fMRI techniques. Firstly, we used ALFF (amplitude of low-frequency fluctuation) method to define the regions of interest (ROIs) which exhibited significant changes in aMCI compared with the control group. Then, we divided these ROIs into different networks in line with prior studies. The aim of this study is to explore the functional connectivity between these ROIs within networks and also to investigate the connectivity between networks. Comparing aMCI to the control group, our results showed that 1) the hippocampus (HIPP) had decreased FC with the medial prefrontal cortex (mPFC) and inferior parietal lobe (IPL), and the mPFC showed increased connectivity to IPL in the default mode network; 2) the thalamus showed decreased FC with the putamen and HIPP, and the HIPP showed increased connectivity to the putamen in the limbic system; 3) the supplementary motor area had decreased FC with the middle temporal gyrus and increased FC with the superior parietal lobe in the sensorimotor network; 4) increased connectivity between the lingual gyrus and middle occipital gyrus in the visual network; and 5) the DMN has reduced inter-network connectivities with the SMN and VN. These findings indicated that functional brain networks involved in cognition such as episodic memory, sensorimotor and visual cognition in aMCI were altered, and provided a new sight in understanding the important subtype of aMCI.


Default mode network Limbic system Sensorimotor network Visual network Functional connectivity Amnestic mild cognitive impairment 



This study was funded by the National Natural Science Foundation of China under grant NOs.81071221 and 31271063; the Fundamental Science Research Funds for the Central Universities under grant NO. NSIY131409. Also, all of the authors disclose no conflict of interest for the current study.

Data collection and sharing for this project were funded by the ADNI (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-20012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; F.Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; GE Healthcare; Innogenetics, N.V.; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. Private sector contributions were facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

Compliance with ethical standards

Conflict of interest

Suping Cai, Tao Chong, Jun Li, Yanlin Peng, Wenyue Shen, Karen M. von Deneen, Liyu Huang and Alzheimer’s Disease Neuroimaging Initiative declare that they have no conflict of interest.


  1. A., C.-G. (1995). Vision in Alzheimer’s disease. The Gerontologist, 35, 370–376.CrossRefGoogle Scholar
  2. Albers, M. W., Gilmore, G. C., Kaye, J., Murphy, C., Wingfield, A., Bennett, D. A., Boxer, A. L., Buchman, A. S., Cruickshanks, K. J., & Devanand, D. P. (2015). At the interface of sensory and motor dysfunctions and Alzheimer’s disease. Alzheimer's & Dementia, 11, 70–98.CrossRefGoogle Scholar
  3. Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., Havlicek, M., Rachakonda, S., Fries, J., Kalyanam, R., Michael, A. M., Caprihan, A., Turner, J. A., Eichele, T., Adelsheim, S., Bryan, A. D., Bustillo, J., Clark, V. P., Feldstein Ewing, S. W., Filbey, F., Ford, C. C., Hutchison, K., Jung, R. E., Kiehl, K. A., Kodituwakku, P., Komesu, Y. M., Mayer, A. R., Pearlson, G. D., Phillips, J. P., Sadek, J. R., Stevens, M., Teuscher, U., Thoma, R. J., & Calhoun, V. D. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2.PubMedPubMedCentralGoogle Scholar
  4. Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 322–335.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Backman, L., Almkvist, O., Nyberg, L., & Andersson, J. (2000). Functional changes in brain activity during priming in Alzheimer’s disease. Journal of Cognitive Neuroscience, 12, 134–141.CrossRefPubMedGoogle Scholar
  6. Bai, F., Liao, W., Watson, D. R., Shi, Y., Wang, Y., Yue, C., Teng, Y., Wu, D., Yuan, Y., & Jia, J. (2011). Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients. Behavioural Brain Research, 216, 666–672.CrossRefPubMedGoogle Scholar
  7. Baker, S. C., Rogers, R. D., Owen, A. M., Frith, C. D., Dolan, R. J., Frackowiak, R. S., & Robbins, T. W. (1996). Neural systems engaged by planning: a PET study of the Tower Of London task. Neuropsychologia, 34, 515–526.CrossRefPubMedGoogle Scholar
  8. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society Of London B: Biological Sciences, 360, 1001–1013.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 131, 829–841.CrossRefPubMedGoogle Scholar
  10. Biswal, B., Yetkin, F.Z., Haughton, V.M., Hyde, J.S., 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine: Official Journal of the Society Of Magnetic Resonance in Medicine/Society Of Magnetic Resonance in Medicine 34, 537–541.Google Scholar
  11. Bokde, A. L., Lopez-Bayo, P., Born, C., Dong, W., Meindl, T., Leinsinger, G., Teipel, S. J., Faltraco, F., Reiser, M., Moller, H. J., & Hampel, H. (2008). Functional abnormalities of the visual processing system in subjects with mild cognitive impairment: an fMRI study. Psychiatry Research, 163, 248–259.CrossRefPubMedGoogle Scholar
  12. Braak, H., Alafuzoff, I., Arzberger, T., Kretzschmar, H., & Del Tredici, K. (2006). Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunocytochemistry. Acta Neuropathologica, 112, 389–404.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefPubMedGoogle Scholar
  14. Buckner, R. L., & Carroll, D. C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11, 49–57.CrossRefPubMedGoogle Scholar
  15. Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: an attentional account. Nature Reviews Neuroscience, 9, 613–625.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cabeza, R., Prince, S. E., Daselaar, S. M., Greenberg, D. L., Budde, M., Dolcos, F., LaBar, K. S., & Rubin, D. B. (2004). Brain activity during episodic retrieval of autobiographical and laboratory events: an fMRI study using a novel photo paradigm. Journal of Cognitive Neuroscience, 16, 1583–1594.CrossRefPubMedGoogle Scholar
  17. Cai, S., Huang, L., Zou, J., Jing, L., Zhai, B., Ji, G., von Deneen, K. M., Ren, J., Ren, A., & Initiative, A.s. D. N. (2014). Changes in thalamic connectivity in the early and late stages of amnestic mild cognitive impairment: A resting-state functional magnetic resonance study from ADNI. PloS One, 10, e0115573–e0115573.Google Scholar
  18. Cai, S., Chong, T., Zhang, Y., Li, J., von Deneen, K. M., Ren, J., Dong, M., Huang, L., & Initiative, A. s. D. N. (2015). Altered functional connectivity of fusiform gyrus in subjects with amnestic mild cognitive impairment: a resting-state fMRI study. Frontiers in Human Neuroscience, 9, 471.Google Scholar
  19. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.PubMedPubMedCentralGoogle Scholar
  20. Cronin-Golomb, A., Sugiura, R., Corkin, S., & Growdon, J. H. (1993). Incomplete achromatopsia in Alzheimer’s disease. Neurobiology of Aging, 14, 471–477.CrossRefPubMedGoogle Scholar
  21. Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320, 1510–1512.CrossRefPubMedGoogle Scholar
  22. Damoiseaux, J., Rombouts, S., Barkhof, F., Scheltens, P., Stam, C., Smith, S. M., & Beckmann, C. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences, 103, 13848–13853.CrossRefGoogle Scholar
  23. De Jong, L., Van der Hiele, K., Veer, I., Houwing, J., Westendorp, R., Bollen, E., De Bruin, P., Middelkoop, H., Van Buchem, M., & Van Der Grond, J. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 131, 3277–3285.CrossRefPubMedPubMedCentralGoogle Scholar
  24. de LaCoste, M.-C., & White, C. L. (1993). The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system. Neurobiology of Aging, 14, 1–16.CrossRefPubMedGoogle Scholar
  25. de Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H., Tsui, W., Kandil, E., Scherer, A. J., Roche, A., Imossi, A., Thorn, E., Bobinski, M., Caraos, C., Lesbre, P., Schlyer, D., Poirier, J., Reisberg, B., & Fowler, J. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[(18)F]fluoro-2-deoxy-D-glucose/poitron-emission tomography (FDG/PET). Proceedings of the National Academy of Sciences of the United States of America, 98, 10966–10971.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’disease as a disconnection syndrome? Neuropsychology Review, 13, 79–92.CrossRefPubMedGoogle Scholar
  27. Desjardins, A. E., Kiehl, K. A., & Liddle, P. F. (2001). Removal of confounding effects of global signal in functional MRI analyses. NeuroImage, 13, 751–758.CrossRefPubMedGoogle Scholar
  28. Dunn, C. J., Duffy, S. L., Hickie, I. B., Lagopoulos, J., Lewis, S. J., Naismith, S. L., & Shine, J. M. (2014). Deficits in episodic memory retrieval reveal impaired default mode network connectivity in amnestic mild cognitive impairment. NeuroImage: Clinical, 4, 473–480.Google Scholar
  29. Emre, M. (2003). What causes mental dysfunction in Parkinson’s disease? Movement disorders, 18, 63–71.Google Scholar
  30. Fair, D. A., Cohen, A. L., Dosenbach, N. U., Church, J. A., Miezin, F. M., Barch, D. M., Raichle, M. E., Petersen, S. E., & Schlaggar, B. L. (2008). The maturing architecture of the brain’s default network. Proceedings of the National Academy of Sciences of the United States of America, 105, 4028–4032.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Feldman, H. H., & Jacova, C. (2005). Mild cognitive impairment. The American Journal of Geriatric Psychiatry: Official Journal of the American Association For Geriatric Psychiatry, 13, 645–655.CrossRefGoogle Scholar
  32. Felleman, D. J., & Van Essen, D. C. (1987). Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. Journal of Neurophysiology, 57, 889–920.PubMedGoogle Scholar
  33. Galton, C. J., Patterson, K., Xuereb, J. H., & Hodges, J. R. (2000). Atypical and typical presentations of Alzheimer’s disease: a clinical, neuropsychological, neuroimaging and pathological study of 13 cases. Brain, 123, 484–498.CrossRefPubMedGoogle Scholar
  34. Golby, A., Silverberg, G., Race, E., Gabrieli, S., O’Shea, J., Knierim, K., Stebbins, G., & Gabrieli, J. (2005). Memory encoding in Alzheimer’s disease: an fMRI study of explicit and implicit memory. Brain, 128, 773–787.CrossRefPubMedGoogle Scholar
  35. Gould, R., Arroyo, B., Brown, R., Owen, A., Bullmore, E., & Howard, R. (2006). Brain mechanisms of successful compensation during learning in Alzheimer disease. Neurology, 67, 1011–1017.CrossRefPubMedGoogle Scholar
  36. Grady, C. L., McIntosh, A. R., Beig, S., Keightley, M. L., Burian, H., & Black, S. E. (2003). Evidence from functional neuroimaging of a compensatory prefrontal network in Alzheimer’s disease. The Journal of Neuroscience, 23, 986–993.PubMedGoogle Scholar
  37. Graybiel, A. M. (2005). The basal ganglia: learning new tricks and loving it. Current Opinion in Neurobiology, 15, 638–644.CrossRefPubMedGoogle Scholar
  38. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003a). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.CrossRefPubMedGoogle Scholar
  39. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003b). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100, 253–258.CrossRefGoogle Scholar
  40. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 4259–4264.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hänggi, J., Koeneke, S., Bezzola, L., & Jäncke, L. (2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31, 1196–1206.PubMedGoogle Scholar
  42. Han, Y., Wang, J., Zhao, Z., Min, B., Lu, J., Li, K., He, Y., & Jia, J. (2011b). Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage, 55, 287–295.CrossRefPubMedGoogle Scholar
  43. Hirano, A., & Zimmerman, H. (1962). Alzheimer’s neurofibrillary changes: a topographic study. Archives of Neurology, 7, 227–242.CrossRefPubMedGoogle Scholar
  44. Hyman, B., Van Hoesen, G., Kromer, L., & Damasio, A. (1986). Perforant pathway changes and the memory impairment of Alzheimer’s disease. Annals of Neurology, 20, 472–481.CrossRefPubMedGoogle Scholar
  45. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science, 225, 1168–1170.CrossRefPubMedGoogle Scholar
  46. Jafri, M. J., Pearlson, G. D., Stevens, M., & Calhoun, V. D. (2008). A method for functional network connectivity among spatially independent resting-state components in schizophrenia. NeuroImage, 39, 1666–1681.CrossRefPubMedGoogle Scholar
  47. Jin, M., Pelak, V. S., & Cordes, D. (2012). Aberrant default mode network in subjects with amnestic mild cognitive impairment using resting-state functional MRI. Magnetic Resonance Imaging, 30, 48–61.CrossRefPubMedGoogle Scholar
  48. Kurylo, D. D., Corkin, S., Dolan, R. P., Rizzo, J. F., Parker, S. W., & Growdon, J. H. (1994). Broad-band visual capacities are not selectively impaired in Alzheimer’s disease. Neurobiology of Aging, 15, 305–311.CrossRefPubMedGoogle Scholar
  49. Levine, B., Turner, G. R., Tisserand, D., Hevenor, S. J., Graham, S., & McIntosh, A. R. (2004). The functional neuroanatomy of episodic and semantic autobiographical remembering: a prospective functional MRI study. Cognitive Neuroscience, Journal of, 16, 1633–1646.CrossRefGoogle Scholar
  50. Li, R., Wu, X., Fleisher, A. S., Reiman, E. M., Chen, K., & Yao, L. (2012). Attention-related networks in Alzheimer’s disease: a resting functional MRI study. Human Brain Mapping, 33, 1076–1088.CrossRefPubMedGoogle Scholar
  51. Li, S. J., Li, Z., Wu, G., Zhang, M. J., Franczak, M., & Antuono, P. G. (2002). Alzheimer disease: evaluation of a functional MR imaging index as a marker. Radiology, 225, 253–259.CrossRefPubMedGoogle Scholar
  52. Lowe, M. J., Mock, B. J., & Sorenson, J. A. (1998). Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage, 7, 119–132.CrossRefPubMedGoogle Scholar
  53. Luppino, G., Matelli, M., Camarda, R., & Rizzolatti, G. (1993). Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. Journal of Comparative Neurology, 338, 114–140.CrossRefPubMedGoogle Scholar
  54. Mazoyer, B., Zago, L., Mellet, E., Bricogne, S., Etard, O., Houde, O., Crivello, F., Joliot, M., Petit, L., & Tzourio-Mazoyer, N. (2001). Cortical networks for working memory and executive functions sustain the conscious resting state in man. Brain Research Bulletin, 54, 287–298.CrossRefPubMedGoogle Scholar
  55. Newman, J. (1995). Thalmic contributions to attention and consciousness. Consciousness and Cognition, 4, 172–193.CrossRefPubMedGoogle Scholar
  56. Newsome, W. T., & Pare, E. B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). The Journal of Neuroscience, 8, 2201–2211.PubMedGoogle Scholar
  57. O’Callaghan, C., Shine, J. M., Lewis, S. J., Andrews-Hanna, J. R., & Irish, M. (2015). Shaped by our thoughts–A new task to assess spontaneous cognition and its associated neural correlates in the default network. Brain and Cognition, 93, 1–10.CrossRefPubMedGoogle Scholar
  58. Pariente, J., Cole, S., Henson, R., Clare, L., Kennedy, A., Rossor, M., Cipoloti, L., Puel, M., Demonet, J. F., & Chollet, F. (2005). Alzheimer’s patients engage an alternative network during a memory task. Annals of Neurology, 58, 870–879.CrossRefPubMedGoogle Scholar
  59. Peters, F., Collette, F., Degueldre, C., Sterpenich, V., Majerus, S., & Salmon, E. (2009). The neural correlates of verbal short-term memory in Alzheimer’s disease: an fMRI study. Brain, 132, 1833–1846.CrossRefPubMedGoogle Scholar
  60. Petersen, R., Caracciolo, B., Brayne, C., Gauthier, S., Jelic, V., & Fratiglioni, L. (2014). Mild cognitive impairment: a concept in evolution. Journal of Internal Medicine, 275, 214–228.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., Ritchie, K., Rossor, M., Thal, L., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58, 1985–1992.CrossRefPubMedGoogle Scholar
  62. Petroni, F., Panzeri, S., Hilgetag, C.-C., KoÈtter, R., & Young, M. P. (2001). Simultaneity of responses in a hierarchical visual network. Neuroreport, 12, 2753–2759.CrossRefPubMedGoogle Scholar
  63. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 2142–2154.CrossRefPubMedGoogle Scholar
  64. Power, J. D., Schlaggar, B. L., & Petersen, S. E. (2015). Recent progress and outstanding issues in motion correction in resting state fMRI. NeuroImage, 105, 536–551.CrossRefPubMedGoogle Scholar
  65. Prvulovic, D., Hubl, D., Sack, A., Melillo, L., Maurer, K., Frölich, L., Lanfermann, H., Zanella, F., Goebel, R., & Linden, D. E. J. (2002). Functional imaging of visuospatial processing in Alzheimer’s disease. NeuroImage, 17, 1403–1414.CrossRefPubMedGoogle Scholar
  66. Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., & Li, K. (2010). Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage, 50, 48–55.CrossRefPubMedGoogle Scholar
  67. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001a). A default mode of brain function. Proceedings of the National Academy of Sciences, 98, 676–682.CrossRefGoogle Scholar
  68. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001b). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. NeuroImage, 37, 1083–1090 discussion 1097-1089.CrossRefPubMedGoogle Scholar
  70. Rizzo, M., Anderson, S. W., Dawson, J., & Nawrot, M. (2000). Vision and cognition in Alzheimer’s disease. Neuropsychologia, 38, 1157–1169.CrossRefPubMedGoogle Scholar
  71. Rombouts, S. A., Scheltens, P., Kuijer, J., & Barkhof, F. (2007). Whole brain analysis of T2* weighted baseline FMRI signal in dementia. Human Brain Mapping, 28, 1313–1317.CrossRefPubMedGoogle Scholar
  72. Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A., Hakonarson, H., Gur, R. C., & Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage, 60, 623–632.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Shulman, G. L., Corbetta, M., Buckner, R. L., Fiez, J. A., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997a). Common blood flow changes across visual tasks: I. Increases in Subcortical Structures and Cerebellum but not in Nonvisual Cortex. Journal of Cognitive Neuroscience, 9, 624–647.CrossRefPubMedGoogle Scholar
  74. Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E. (1997b). Common blood flow changes across visual tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience, 9, 648–663.CrossRefPubMedGoogle Scholar
  75. Song, J., Qin, W., Liu, Y., Duan, Y., Liu, J., He, X., Li, K., Zhang, X., Jiang, T., & Yu, C. (2013). Aberrant functional organization within and between resting-state networks in AD. PloS One, 8, e63727.CrossRefPubMedPubMedCentralGoogle Scholar
  76. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., He, Y., Yan, C. G., & Zang, Y. F. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6, e25031.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Todd, J. J., & Marois, R. (2004). Capacity limit of visual short-term memory in human posterior parietal cortex. Nature, 428, 751–754.CrossRefPubMedGoogle Scholar
  78. Truchot, L., Costes, N., Zimmer, L., Laurent, B., Le Bars, D., Thomas-Anterion, C., Mercier, B., Hermier, M., Vighetto, A., & Krolak-Salmon, P. (2008). A distinct [18 F] MPPF PET profile in amnestic mild cognitive impairment compared to mild Alzheimer’s disease. NeuroImage, 40, 1251–1256.CrossRefPubMedGoogle Scholar
  79. Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59, 431–438.CrossRefPubMedGoogle Scholar
  80. Wang, Z., Yan, C., Zhao, C., Qi, Z., Zhou, W., Lu, J., He, Y., & Li, K. (2011). Spatial patterns of intrinsic brain activity in mild cognitive impairment and Alzheimer’s disease: a resting-state functional MRI study. Human Brain Mapping, 32, 1720–1740.CrossRefPubMedGoogle Scholar
  81. Wang, P., Zhou, B., Yao, H., Zhan, Y., Zhang, Z., Cui, Y., Xu, K., Ma, J., Wang, L., & An, N. (2015). Aberrant intra-and inter-network connectivity architectures in Alzheimer’s disease and mild cognitive impairment. Scientific Reports, 5, 14824.Google Scholar
  82. Wolpert, D. M., Ghahramani, Z., & Jordan, M. I. (1995). An internal model for sensorimotor integration. Science, 269, 1880.CrossRefPubMedGoogle Scholar
  83. Wolpert, D. M., Goodbody, S. J., & Husain, M. (1998). Maintaining internal representations: the role of the human Superior parietal lobe. Nature Neuroscience, 1, 529–533.CrossRefPubMedGoogle Scholar
  84. Yetkin, F. Z., Rosenberg, R. N., Weiner, M. F., Purdy, P. D., & Cullum, C. M. (2006). FMRI of working memory in patients with mild cognitive impairment and probable Alzheimer’s disease. European Radiology, 16, 193–206.CrossRefPubMedGoogle Scholar
  85. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., Tian, L. X., Jiang, T. Z., & Wang, Y. F. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29, 83–91.CrossRefGoogle Scholar
  86. Zarei, M., Patenaude, B., Damoiseaux, J., Morgese, C., Smith, S., Matthews, P. M., Barkhof, F., Rombouts, S., Sanz-Arigita, E., & Jenkinson, M. (2010). Combining shape and connectivity analysis: an MRI study of thalamic degeneration in Alzheimer’s disease. NeuroImage, 49, 1–8.CrossRefPubMedGoogle Scholar
  87. Zhao, X., Liu, Y., Wang, X., Liu, B., Xi, Q., Guo, Q., Jiang, H., Jiang, T., & Wang, P. (2012). Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state FMRI study. PloS One, 7, e33540.CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zhao, Z., Lu, J., Jia, X., Chao, W., Han, Y., Jia, J., & Li, K. (2014). Selective changes of resting-state brain oscillations in aMCI: an fMRI study using ALFF. BioMed Research International, 2014, 920902.PubMedPubMedCentralGoogle Scholar
  89. Zhong, Y., Huang, L., Cai, S., Yun, Z., Deneen, K. M. V., Ren, A., & Ren, J. (2014). Altered effective connectivity patterns of the default mode network in Alzheimer’s disease: an fMRI study. Neuroscience Letters, 578, 171–175.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Suping Cai
    • 1
  • Tao Chong
    • 1
  • Yanlin Peng
    • 1
  • Wenyue Shen
    • 1
  • Jun Li
    • 1
  • Karen M. von Deneen
    • 1
  • Liyu Huang
    • 1
  • Alzheimer’s Disease Neuroimaging Initiative
  1. 1.School of Life Science and TechnologyXidian UniversityXi’anChina

Personalised recommendations