Brain Imaging and Behavior

, Volume 11, Issue 1, pp 205–213 | Cite as

Sex differences in the association between AD biomarkers and cognitive decline

  • Mary Ellen I. Koran
  • Madison Wagener
  • Timothy J. HohmanEmail author
  • for the Alzheimer’s Neuroimaging Initiative
Original Research


Women are disproportionately affected by Alzheimer’s disease (AD) in terms of both disease prevalence and severity. Previous autopsy work has suggested that, in the presence of AD neuropathology, females are more susceptible to the clinical manifestation of AD. This manuscript extends that work by evaluating whether sex alters the established associations between cerebrospinal fluid (CSF) biomarker levels and brain aging outcomes (hippocampal volume, cognition). Participants were drawn from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and included individuals with normal cognition (n = 348), mild cognitive impairment (n = 565), and AD (n = 185). We leveraged mixed effects regression models to assess the interaction between sex and baseline cerebrospinal fluid biomarker levels of amyloid-β42 (Aβ-42) and total tau on cross-sectional and longitudinal brain aging outcomes. We found a significant interaction between sex and Aβ-42 on longitudinal hippocampal atrophy (p = 0.002), and longitudinal decline in memory (p = 0.017) and executive function (p = 0.025). Similarly, we observed an interaction between sex and total tau level on longitudinal hippocampal atrophy (p = 0.008), and longitudinal decline in executive function (p = 0.034). Women with Aβ-42 and total tau levels indicative of worse pathological changes showed more rapid hippocampal atrophy and cognitive decline. The sex difference was particularly pronounced among individuals with MCI, with lower education, and varied by APOE ε4 allele. These results suggest females may be more susceptible to the clinical manifestation of AD.


Biomarkers Hippocampus Sex differences Alzheimer’s disease Cognition 



The authors report no conflicts of interest. Dr. Hohman had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. This research was supported in part by the Building Interdisciplinary Research Careers in Women’s Health program (K12 HD043483), the Vanderbilt Medical Scientist Training Program (T32 GM07347), and the Vanderbilt Memory & Alzheimer’s Center.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904) and DOD ADNI (Department of Defense award number W81XWH-12-2-0012). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen Idec Inc.; Bristol-Myers Squibb Company; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd. and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; ; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Medpace, Inc.; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Synarc Inc.; and Takeda Pharmaceutical Company. The Canadian Institutes of Rev. December 5, 2013 Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health ( The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Compliance with ethical standards

This research was supported in part by the Building Interdisciplinary Research Careers in Women’s Health program (K12 HD043483), the Vanderbilt Medical Scientist Training Program (T32 GM07347), and the Vanderbilt Memory & Alzheimer’s Center. The authors report no conflicts of interest. Informed consent was obtained from all participants included in the study.


  1. Alvarez-de-la-Roza, M., Silva, I., Nilsen, J., Perez, M., Garcia-Segura, L. M., Ávila, J., & Naftolin, F. (2005). Estradiol prevents neural tau hyperphosphorylation characteristic of Alzheimer’s disease. Annals of the New York Academy of Sciences, 1052(1), 210–224.CrossRefGoogle Scholar
  2. Anastasio, T. J. (2013). Exploring the contribution of estrogen to amyloid-beta regulation: a novel multifactorial computational modeling approach. Frontiers in Pharmacology, 4. doi: 10.3389/fphar.2013.00016.
  3. Apostolova, L. G., Dinov, I. D., Dutton, R. A., Hayashi, K. M., Toga, A. W., Cummings, J. L., & Thompson, P. M. (2006). 3D comparison of hippocampal atrophy in amnestic mild cognitive impairment and Alzheimer’s disease. Brain, 129(11), 2867–2873.CrossRefPubMedGoogle Scholar
  4. Barnes, L. L., Wilson, R. S., Bienias, J. L., Schneider, J. A., Evans, D. A., & Bennett, D. A. (2005). Sex differences in the clinical manifestations of Alzheimer disease pathology. Archives of General Psychiatry, 62(6), 685–691.CrossRefPubMedGoogle Scholar
  5. Crane, P. K., Carle, A., Gibbons, L. E., Insel, P., Mackin, R. S., Gross, A., et al. (2012). Development and assessment of a composite score for memory in the Alzheimer’s disease neuroimaging initiative (ADNI). Brain Imaging and Behavior, 6(4), 502–516.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.CrossRefPubMedGoogle Scholar
  7. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.CrossRefPubMedGoogle Scholar
  8. Farrer, L. A., Cupples, L. A., Haines, J. L., Hyman, B., Kukull, W. A., Mayeux, R., et al. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease: a meta-analysis. Jama, 278(16), 1349–1356.CrossRefPubMedGoogle Scholar
  9. Fischl, B., Sereno, M. I., Tootell, R. B. H., & Dale, A. M. (1999a). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.CrossRefPubMedGoogle Scholar
  10. Fischl, B., Sereno, M. I., & Dale, A. M. (1999b). Cortical surface-based analysis: II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.CrossRefPubMedGoogle Scholar
  11. Gibbons, L. E., Carle, A. C., Mackin, R. S., Harvey, D., Mukherjee, S., Insel, P., et al. (2012). A composite score for executive functioning, validated in Alzheimer’s disease neuroimaging initiative (ADNI) participants with baseline mild cognitive impairment. Brain Imaging and Behavior, 6(4), 517–527.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hebert, L. E., Weuve, J., Scherr, P. A., & Evans, D. A. (2013). Alzheimer disease in the United States (2010–2050) estimated using the 2010 census. Neurology, 80(19), 1778–1783.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Henderson, V. W., & Buckwalter, J. G. (1994). Cognitive deficits of men and women with Alzheimer’s disease. Neurology, 44(1), 90–90.CrossRefPubMedGoogle Scholar
  14. Hua, X., Hibar, D. P., Lee, S., Toga, A. W., Jack, C. R., Weiner, M. W., et al. (2010). Sex and age differences in atrophic rates: an ADNI study with n = 1368 MRI scans. Neurobiology of Aging, 31(8), 1463–1480.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Jagust, W. J., Landau, S. M., Shaw, L. M., Trojanowski, J. Q., Koeppe, R. A., Reiman, E. M., et al. (2009). Relationships between biomarkers in aging and dementia. Neurology, 73(15), 1193–1199.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Launer, L., Andersen, K., Dewey, M., Letenneur, L., Ott, A., Amaducci, L., et al. (1999). Rates and risk factors for dementia and Alzheimer’s disease results from EURODEM pooled analyses. Neurology, 52(1), 78–78.CrossRefPubMedGoogle Scholar
  18. Lin, K. A., Choudhury, K. R., Rathakrishnan, B. G., Marks, D. M., Petrella, J. R., Doraiswamy, P. M., & Initiative, A. S. D. N. (2015). Marked gender differences in progression of mild cognitive impairment over 8 years. Alzheimer’s & Dementia: translational Research & Clinical Interventions, 1(2), 103–110.Google Scholar
  19. Luine, V. N. (2014). Estradiol and cognitive function: past, present and future. Hormones and Behavior, 66(4), 602–618. doi: 10.1016/j.yhbeh.2014.08.011.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mormino, E. C., Kluth, J. T., Madison, C. M., Rabinovici, G. D., Baker, S. L., Miller, B. L., et al. (2009). Episodic memory loss is related to hippocampal-mediated beta-amyloid deposition in elderly subjects. Brain, 132(5), 1310–1323.CrossRefPubMedGoogle Scholar
  21. Nilsen, J., Chen, S., Irwin, R. W., Iwamoto, S., & Brinton, R. D. (2006). Estrogen protects neuronal cells from amyloid beta-induced apoptosis via regulation of mitochondrial proteins and function. BMC Neuroscience, 7(1), 74.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Pfeffer, R., Kurosaki, T., Harrah, C., Chance, J., & Filos, S. (1982). Measurement of functional activities in older adults in the community. Journal of Gerontology, 37(3), 323–329.CrossRefPubMedGoogle Scholar
  23. Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Sampedro, F., Vilaplana, E., de Leon, M. J., Alcolea, D., Pegueroles, J., Montal, V., et al. (2015). APOE-by-sex interactions on brain structure and metabolism in healthy elderly controls. Oncotarget, 6(29), 26663–26674. doi: 10.18632/oncotarget.5185.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Figurski, M., Coart, E., Blennow, K., et al. (2011). Qualification of the analytical and clinical performance of CSF biomarker analyses in ADNI. Acta Neuropathologica, 121(5), 597–609.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Tschanz, J. T., Corcoran, C. D., Schwartz, S., Treiber, K., Green, R. C., Norton, M. C., et al. (2011). Progression of cognitive, functional, and neuropsychiatric symptom domains in a population cohort with Alzheimer dementia: the cache county dementia progression study. The American Journal of Geriatric Psychiatry, 19(6), 532–542.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mary Ellen I. Koran
    • 1
  • Madison Wagener
    • 1
  • Timothy J. Hohman
    • 1
    Email author
  • for the Alzheimer’s Neuroimaging Initiative
  1. 1.Vanderbilt Memory & Alzheimer’s CenterVanderbilt University School of MedicineNashvilleUSA

Personalised recommendations