Brain Imaging and Behavior

, Volume 11, Issue 1, pp 86–97 | Cite as

Cognitive dysfunction and symptom burden in women treated for breast cancer: a prospective behavioral and fMRI analysis

  • Mi Sook JungEmail author
  • Min Zhang
  • Mary K. Askren
  • Marc G. Berman
  • Scott Peltier
  • Daniel F. Hayes
  • Barbara Therrien
  • Patricia A. Reuter-Lorenz
  • Bernadine Cimprich
Original Research


Neural dysfunction and cognitive complaints are associated with chemotherapy for breast cancer although trajectory and contributory factors remain unclear. We prospectively examined neurocognition using fMRI and self-reported cognitive, physical and psychological symptoms in women treated with adjuvant chemotherapy over one year. Patients treated with (n = 28) or without (n = 34) chemotherapy for localized breast cancer and healthy controls (n = 30) performed a Verbal Working Memory Task (VWMT) during fMRI and provided self-reports at baseline (pre-adjuvant treatment), five- (M5) and 12-months (M12). Repeated measures ANOVA and multivariable regression determined change over time and possible predictors (e.g., hemoglobin, physical symptoms, worry) of VWMT performance, fMRI activity in the frontoparietal executive network, and cognitive complaints at M12. Trajectories of change in VWMT performance for chemotherapy and healthy control groups differed significantly with the chemotherapy group performing worse at M12. Chemotherapy patients had persistently higher spatial variance (neural inefficiency) in executive network fMRI-activation than both other groups from baseline to M12. Cognitive complaints were similar among groups over time. At M12, VWMT performance and executive network spatial variance were each independently predicted by chemotherapy treatment and their respective baseline values, while cognitive complaints were predicted by baseline level, physical symptoms and worry. Executive network inefficiency and neurocognitive performance deficits pre-adjuvant treatment predict cognitive dysfunction one-year post-baseline, particularly in chemotherapy-treated patients. Persistent cognitive complaints are linked with physical symptom severity and worry regardless of treatment. Pre-chemotherapy interventions should target both neurocognitive deficits and symptom burden to improve cognitive outcomes for breast cancer survivors.


Cognitive disorders Attention Short-term memory Functional magnetic resonance imaging Symptom assessment 



This work was supported by the National Institutes of Health R01 NR01039 (BC).

Compliance with ethical standards

Conflicts of interest

Mi Sook Jung, Min Zhang, Mary K. Askren, Marc G. Berman, Scott Peltier, Daniel F. Hayes, Barbara Therrien, Patricia A. Reuter-Lorenz, and Bernadine Cimprich declare that they have no conflicts of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all participants included in the study.

Supplementary material

11682_2016_9507_MOESM1_ESM.docx (230 kb)
ESM 1 (DOCX 230 kb)
11682_2016_9507_MOESM2_ESM.docx (27 kb)
ESM 2 (DOCX 26 kb)


  1. Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology, 28(29), 4434–4440. doi: 10.1200/JCO.2009.27.0827.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Askren, M. K., Jung, M., Berman, M. G., Zhang, M., Therrien, B., Peltier, S., et al. (2014). Neuromarkers of fatigue and cognitive complaints following chemotherapy for breast cancer: a prospective fMRI investigation. Breast Cancer Research and Treatment, 147(2), 445–455. doi: 10.1007/s10549-014-3092-6.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Berman, M. G., Nee, D. E., Casement, M., Kim, H. S., Deldin, P., Kross, E., et al. (2011). Neural and behavioral effects of interference resolution in depression and rumination. Cognitive, Affective, & Behavioral Neuroscience, 11(1), 85–96. doi: 10.3758/s13415-010-0014-x.CrossRefGoogle Scholar
  4. Berman, M. G., Askren, M. K., Jung, M., Therrien, B., Peltier, S., Noll, D. C., et al. (2014). Pretreatment worry and neurocognitive responses in women with breast cancer. Health Psychology, 33(3), 222–231. doi: 10.1037/a0033425.CrossRefPubMedGoogle Scholar
  5. Cella, D., Land, S. R., Chang, C. H., Day, R., Costantino, J. P., Wolmark, N., et al. (2008). Symptom measurement in the Breast Cancer Prevention Trial (BCPT) (P-1): psychometric properties of a new measure of symptoms for midlife women. Breast Cancer Research and Treatment, 109(3), 515–526. doi: 10.1007/s10549-007-9682-9.CrossRefPubMedGoogle Scholar
  6. Churchill, N. W., Cimprich, B., Askren, M. K., Reuter-Lorenz, P. A., Jung, M. S., Peltier, S., et al. (2014). Scale-free brain dynamics under physical and psychological distress: Pre-treatment effects in women diagnosed with breast cancer. Human Brain Mapping, 36(3), 1077–1092. doi: 10.1002/hbm.22687.CrossRefPubMedGoogle Scholar
  7. Cimprich, B., & Ronis, D. L. (2001). Attention and symptom distress in women with and without breast cancer. Nursing Research, 50(2), 86–94.CrossRefPubMedGoogle Scholar
  8. Cimprich, B., & Ronis, D. L. (2003). An environmental intervention to restore attention in women with newly diagnosed breast cancer. Cancer Nursing, 26(4), 284–292.CrossRefPubMedGoogle Scholar
  9. Cimprich, B., So, H., Ronis, D. L., & Trask, C. (2005). Pre-treatment factors related to cognitive functioning in women newly diagnosed with breast cancer. Psychooncology, 14(1), 70–78. doi: 10.1002/pon.821.CrossRefPubMedGoogle Scholar
  10. Cimprich, B., Reuter-Lorenz, P., Nelson, J., Clark, P. M., Therrien, B., Normolle, D., et al. (2010). Prechemotherapy alterations in brain function in women with breast cancer. Journal of Clinical and Experimental Neuropsychology, 32(3), 324–331. doi: 10.1080/13803390903032537.CrossRefPubMedGoogle Scholar
  11. Cimprich, B., Visovatti, M., & Ronis, D. L. (2011). The attentional function index–a self-report cognitive measure. Psychooncology, 20(2), 194–202. doi: 10.1002/pon.1729.CrossRefPubMedGoogle Scholar
  12. Covin, R., Ouimet, A. J., Seeds, P. M., & Dozois, D. J. (2008). A meta-analysis of CBT for pathological worry among clients with GAD. Journal of Anxiety Disorders, 22(1), 108–116. doi: 10.1016/j.janxdis.2007.01.002.CrossRefPubMedGoogle Scholar
  13. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. Journal of Clinical Oncology, 30(3), 274–281. doi: 10.1200/JCO.2011.36.8571.CrossRefPubMedGoogle Scholar
  14. Early Breast Cancer Trialists’ Collaborative Group, Peto, R., Davies, C., Godwin, J., Gray, R., Pan, H. C., et al. (2012). Comparisons between different polychemotherapy regimens for early breast cancer: meta-analyses of long-term outcome among 100,000 women in 123 randomised trials. Lancet, 379(9814), 432–444. doi: 10.1016/S0140-6736(11)61625-5.CrossRefGoogle Scholar
  15. Fan, H. G., Houédé-Tchen, N., Yi, Q. L., Chemerynsky, I., Downie, F. P., Sabate, K., et al. (2005). Fatigue, menopausal symptoms, and cognitive function in women after adjuvant chemotherapy for breast cancer: 1- and 2-year follow-up of a prospective controlled study. Journal of Clinical Oncology, 23(31), 8025–8032. doi: 10.1200/JCO.2005.01.6550.
  16. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.CrossRefPubMedGoogle Scholar
  17. Ganz, P. A., Kwan, L., Stanton, A. L., Bower, J. E., & Belin, T. R. (2011). Physical and psychosocial recovery in the year after primary treatment of breast cancer. Journal of Clinical Oncology, 29(9), 1101–1109. doi: 10.1200/JCO.2010.28.8043.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Given, C. W., Sikorskii, A., Tamkus, D., Given, B., You, M., McCorkle, R., et al. (2008). Managing symptoms among patients with breast cancer during chemotherapy: results of a two-arm behavioral trial. Journal of Clinical Oncology, 26(36), 5855–5862. doi: 10.1200/JCO.2008.16.8872.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hermelink, K., Küchenhoff, H., Untch, M., Bauerfeind, I., Lux, M. P., Bühner, M., et al. (2010). Two different sides of ‘chemobrain’: determinants and nondeterminants of self-perceived cognitive dysfunction in a prospective, randomized, multicenter study. Psychooncology, 19(12), 1321–1328. doi: 10.1002/pon.1695.
  20. Janelsins, M. C., Kesler, S. R., Ahles, T. A., & Morrow, G. R. (2014). Prevalence, mechanisms, and management of cancer-related cognitive impairment. International Review of Psychiatry, 26(1), 102–113. doi: 10.3109/09540261.2013.864260.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jansen, C. E., Miaskowski, C., Dodd, M., Dowling, G., & Kramer, J. (2005). A metaanalysis of studies of the effects of cancer chemotherapy on various domains of cognitive function. Cancer, 104(10), 2222–2233. doi: 10.1002/cncr.21469.CrossRefPubMedGoogle Scholar
  22. Jenkins, V., Shilling, V., Deutsch, G., Bloomfield, D., Morris, R., Allan, S., et al. (2006). A 3-year prospective study of the effects of adjuvant treatments on cognition in women with early stage breast cancer. British Journal of Cancer, 94(6), 828–834. doi: 10.1038/sj.bjc.6603029.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage, 17(2), 825–841.Google Scholar
  24. Kelly, W. E. (2004). A brief measure of general worry: the three item worry index. North American Journal of Psychology, 6(2), 219–226.Google Scholar
  25. Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B., Berry, J. T., & Mokdad, A. H. (2009). The PHQ-8 as a measure of current depression in the general population. Journal of Affective Disorders, 114(1–3), 163–173. doi: 10.1016/j.jad.2008.06.026.CrossRefPubMedGoogle Scholar
  26. Lazar, N. A., Eddy, W. F., Genovese, C. R., & Welling, J. (2001). Statistical issues in fMRI for brain imaging. International Statistical Review, 69, 105–127.CrossRefGoogle Scholar
  27. Lehto, R. H., & Cimprich, B. (2009). Worry and the formation of cognitive representations of illness in individuals undergoing surgery for suspected lung cancer. Cancer Nursing, 32(1), 2–10. doi: 10.1097/01.NCC.0000343363.75752.f1.
  28. Lund, T. E., Nørgaard, M. D., Rostrup, E., Rowe, J. B., & Paulson, O. B. (2005). Motion or activity: their role in intra- and inter-subject variation in fMRI. Neuroimage, 26(3), 960–964. doi: 10.1016/j.neuroimage.2005.02.021.
  29. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30(20), 2500–2508. doi: 10.1200/JCO.2011.38.5674.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Menning, S., de Ruiter, M. B., Veltman, D. J., Koppelmans, V., Kirschbaum, C., Boogerd, W., et al. (2015). Multimodal MRI and cognitive function in patients with breast cancer prior to adjuvant treatment–the role of fatigue. Neuroimage: Clinical, 7, 547–554. doi: 10.1016/j.nicl.2015.02.005.CrossRefGoogle Scholar
  31. Mišić, B., Fatima, Z., Askren, M. K., Buschkuehl, M., Churchill, N., Cimprich, B., et al. (2014). The functional connectivity landscape of the human brain. PloS One, 9(10), e111007. doi: 10.1371/journal.pone.0111007.
  32. Myers, J. S. (2012). Chemotherapy-related cognitive impairment: the breast cancer experience. Oncology Nursing Forum, 39(1), E31–E40. doi: 10.1188/12.ONF.E31-E40.CrossRefPubMedGoogle Scholar
  33. Nelson, J. K., Reuter-Lorenz, P. A., Sylvester, C. Y., Jonides, J., & Smith, E. E. (2003). Dissociable neural mechanisms underlying response-based and familiarity-based conflict in working memory. Proceedings of the National Academy of Sciences, 100(19), 11171–11175. doi: 10.1073/pnas.1334125100.CrossRefGoogle Scholar
  34. Pullens, M. J., De Vries, J., & Roukema, J. A. (2010). Subjective cognitive dysfunction in breast cancer patients: a systematic review. Psychooncology, 19(11), 1127–1138. doi: 10.1002/pon.1673.CrossRefPubMedGoogle Scholar
  35. Reuter-Lorenz, P. A., & Cimprich, B. (2013). Cognitive function and breast cancer: promise and potential insights from functional brain imaging. Breast Cancer Research and Treatment, 137(1), 33–43. doi: 10.1007/s10549-012-2266-3.CrossRefPubMedGoogle Scholar
  36. Shilling, V., Jenkins, V., Morris, R., Deutsch, G., & Bloomfield, D. (2005). The effects of adjuvant chemotherapy on cognition in women with breast cancer–preliminary results of an observational longitudinal study. Breast, 14(2), 142–150. doi: 10.1016/j.breast.2004.10.004.CrossRefPubMedGoogle Scholar
  37. Smith, S. M. (2002). Fast robust automated brain extraction. Human Brain Mapping, 17(3), 143–155. doi: 10.1002/hbm.10062.CrossRefPubMedGoogle Scholar
  38. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.CrossRefPubMedGoogle Scholar
  39. Stewart, A., Collins, B., Mackenzie, J., Tomiak, E., Verma, S., & Bielajew, C. (2008). The cognitive effects of adjuvant chemotherapy in early stage breast cancer: a prospective study. Psychooncology, 17(2), 122–130. doi: 10.1002/pon.1210.CrossRefPubMedGoogle Scholar
  40. Von Ah, D., Jansen, C. E., & Allen, D. H. (2014). Evidence-based interventions for cancer- and treatment-related cognitive impairment. Clinical Journal of Oncology Nursing, 18 Suppl, 17–25, doi: 10.1188/14.CJON.S3.17-25.
  41. Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 3348–3356. doi: 10.1002/cncr.25098.CrossRefPubMedGoogle Scholar
  42. Wefel, J. S., Vardy, J., Ahles, T., & Schagen, S. B. (2011). International cognition and cancer task force recommendations to harmonise studies of cognitive function in patients with cancer. The Lancet Oncology, 12(7), 703–708. doi: 10.1016/S1470-2045(10)70294-1.CrossRefPubMedGoogle Scholar
  43. Wood, L. J., & Weymann, K. (2013). Inflammation and neural signaling: etiologic mechanisms of the cancer treatment-related symptom cluster. Current Opinion in Supportive and Palliative Care, 7(1), 54–59. doi: 10.1097/SPC.0b013e32835dabe3.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mi Sook Jung
    • 1
    Email author
  • Min Zhang
    • 2
  • Mary K. Askren
    • 3
  • Marc G. Berman
    • 4
  • Scott Peltier
    • 2
  • Daniel F. Hayes
    • 2
  • Barbara Therrien
    • 2
  • Patricia A. Reuter-Lorenz
    • 2
  • Bernadine Cimprich
    • 2
  1. 1.College of Nursing Chungnam National UniversityDaejeonSouth Korea
  2. 2.University of MichiganAnn ArborUSA
  3. 3.University of WashingtonSeattleUSA
  4. 4.University of ChicagoChicagoUSA

Personalised recommendations