Brain Imaging and Behavior

, Volume 10, Issue 4, pp 1068–1079 | Cite as

Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu

  • Daniel Joel Shaw
  • Radek Mareček
  • Milan Brázdil
Original Research


Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.


Déjà vu Memory Grey matter Structural co-variance Meta-analytic connectivity modelling 



This work was supported by the project “CEITEC – Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund. We wish to thank Natasa Kovacevic for her assistance with our structural PLS pipelines.

Compliance with ethical standards


This work was supported by the project “CEITEC – Central European Institute of Technology” (CZ.1.05/1.1.00/02.0068) from European Regional Development Fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Review Board of St. Anne’s Hospital, Brno, and conformed to the Declaration of Helsinki (1964). Written informed consent was obtained from every participant prior to the experiment.

Supplementary material

11682_2015_9471_Fig4_ESM.jpg (215 kb)
Supplementary Figure 1

Meta-analytic co-activation matrix. Meta-analytic connectivity modelling (MACM) was employed to compare the probability of co-activation between cells comprising the positive and negative pattern of structural covariance, and perform a behavioral characterisation of each pattern. The matrix presents the standardized probability of co-activation among each VOI (rows) when each other VOI served as a seed (columns; see Multi-analytic Connectivity Modelling). For abbreviations see Table 1. (JPEG 215 kb)

11682_2015_9471_MOESM_ESM.tif (12 mb)
High resolution (TIFF 12299 kb)


  1. Adachi, N., Akanuma, N., Ito, M., Adachi, T., Takekawa, Y., Adachi, Y., Matsuura, M., Kanemoto, K., & Kato, M. (2010). Two forms of déjà vu experiences in patients with epilepsy. Epilepsy & Behavior, 18(3), 218–222.CrossRefGoogle Scholar
  2. Aggleton, J. P., & Brown, M. W. (1999). Episodic memory, amnesia, and the hippocampal–anterior thalamic axis. Behavioral and brain sciences, 22(03), 425--444.Google Scholar
  3. Aggleton, J. P., Dumont, J. R., & Warburton, E. C. (2011). Unraveling the contributions of the diencephalon to recognition memory: a review. Learning & Memory, 18(6), 384--400. Google Scholar
  4. Alexander-Bloch, A., Raznahan, A., Bullmore, E., & Giedd, J. (2013). The convergence of maturational change and structural covariance in human cortical networks. The Journal of Neuroscience, 33(7), 2889–2899.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.CrossRefPubMedGoogle Scholar
  6. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.CrossRefPubMedGoogle Scholar
  7. Augustine, J. R. (1996). Circuitry and functional aspects of the insular lobe in primates including humans. Brain Research Reviews, 22(3), 229--244.Google Scholar
  8. Bancaud, J., Brunet-Bourgin, F., Chauvel, P., & Halgren, E. (1994). Anatomical origin of déjà vu and vivid ‘memories’ in human temporal lobe epilepsy. Brain, 117(1), 71–90.CrossRefPubMedGoogle Scholar
  9. Bartolomei, F., Barbeau, E., Gavaret, M., Guye, M., McGonigal, A., Regis, J., & Chauvel, P. (2004). Cortical stimulation study of the role of rhinal cortex in deja vu and reminiscence of memories. Neurology, 63(5), 858–864.CrossRefPubMedGoogle Scholar
  10. Bartolomei, F., Barbeau, E. J., Nguyen, T., McGonigal, A., Régis, J., Chauvel, P., & Wendling, F. (2012). Rhinal–hippocampal interactions during déjà vu. Clinical Neurophysiology, 123(3), 489–495.CrossRefPubMedGoogle Scholar
  11. Berntson, G. G., Norman, G. J., Bechara, A., Bruss, J., Tranel, D., & Cacioppo, J. T. (2011). The insula and evaluative processes. Psychological science, 22(1), 80--86.Google Scholar
  12. Brázdil, M., & Zeman, A. (2013). The boundaries of epilepsy: where is the limit? A reply to Labate and Gambardella. Cortex, 49(4), 1163–1164.CrossRefPubMedGoogle Scholar
  13. Brázdil, M., Mareček, R., Fojtíková, D., Mikl, M., Kuba, R., Krupa, P., & Rektor, I. (2009). Correlation study of optimized voxel-based morphometry and 1 H MRS in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. Human Brain Mapping, 30, 1226–1235.CrossRefPubMedGoogle Scholar
  14. Brázdil, M., Mareček, R., Urbánek, T., Kašpárek, T., Mikl, M., Rektor, I., & Zeman, A. (2012). Unveiling the mystery of déjà vu: The structural anatomy of déjà vu. Cortex, 48(9), 1240–1243.CrossRefPubMedGoogle Scholar
  15. Brown, A. S. (2003). A review of the deja vu experience. Psychological Bulletin, 129(3), 394–413.CrossRefPubMedGoogle Scholar
  16. Burwell, R. D. (2000). The parahippocampal region: corticocortical connectivity. Annals of the New York Academy of Sciences, 911(1), 25–42.CrossRefPubMedGoogle Scholar
  17. Chase, H. W., Clos, M., Dibble, S., Fox, P., Grace, A. A., Phillips, M. L., & Eickhoff, S. B. (2015). Evidence for an anterior–posterior differentiation in the human hippocampal formation revealed by meta-analytic parcellation of fMRI coordinate maps: focus on the subiculum. NeuroImage, 113, 44–60.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Clos, M., Rottschy, C., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). Comparison of structural covariance with functional connectivity approaches exemplified by an investigation of the left anterior insula. NeuroImage, 99, 269–280.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cohen, M. X., Lombardo, M. V., & Blumenfeld, R. S. (2008). Covariance-based subdivision of the human striatum using T1-weighted MRI. European Journal of Neuroscience, 27(6), 1534–1546.CrossRefPubMedGoogle Scholar
  20. Craig, A. D. (2009). How do you feel—now? The anterior insula and human awareness. Nature Reviews Neuroscience, 10, 59–70.CrossRefPubMedGoogle Scholar
  21. Dogan, I., Eickhoff, C. R., Fox, P. T., Laird, A. R., Schulz, J. B., Eickhoff, S. B., & Reetz, K. (2015). Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington’s disease. NeuroImage: Clinical, 7, 640–652.CrossRefGoogle Scholar
  22. Duerden, E. G., Arsalidou, M., Lee, M., & Taylor, M. J. (2013). Lateralization of affective processing in the insula. NeuroImage, 78, 159–175.CrossRefPubMedGoogle Scholar
  23. Eichenbaum, H., Yonelinas, A. R., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30, 123–152.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Eickhoff, S. B., Jbabdi, S., Caspers, S., Laird, A. R., Fox, P. T., Zilles, K., & Behrens, T. E. (2010). Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. The Journal of Neuroscience, 30(18), 6409–6421.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361.CrossRefPubMedGoogle Scholar
  27. Evans, A. C. (2013). Networks of anatomical covariance. NeuroImage, 80, 489–504.CrossRefPubMedGoogle Scholar
  28. Gloor, P. (1990). Experiential phenomena of temporal lobe epilepsy: facts and hypotheses. Brain, 113(6), 1673–1694.CrossRefPubMedGoogle Scholar
  29. Gloor, P., Olivier, A., Quesney, L. F., Andermann, F., & Horowitz, S. (1982). The role of the limbic system in experiential phenomena of temporal lobe epilepsy. Annals of Neurology, 12(2), 129–144.CrossRefPubMedGoogle Scholar
  30. Groenewegen, H. J., Wright, C. I., Beijer, A. V., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York Academy of Sciences, 877(1), 49–63.CrossRefPubMedGoogle Scholar
  31. Guedj, E., Aubert, S., McGonigal, A., Mundler, O., & Bartolomei, F. (2010). Déjà-vu in temporal lobe epilepsy: metabolic pattern of cortical involvement in patients with normal brain MRI. Neuropsychologia, 48(7), 2174–2181.CrossRefPubMedGoogle Scholar
  32. Halgren, E., Walter, R. D., Cherlow, D. G., & Crandall, P. H. (1978). Mental phenomena evoked by electrical stimulation of the human hippocampal formation and amygdala. Brain, 101(1), 83–115.CrossRefPubMedGoogle Scholar
  33. Havekes, R., Abel, T., & Van der Zee, E. A. (2011). The cholinergic system and neostriatal memory functions. Behavioural Brain Research, 221(2), 412–423.CrossRefPubMedGoogle Scholar
  34. Hoffstaedter, F., Grefkes, C., Caspers, S., Roski, C., Palomero-Gallagher, N., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2014). The role of anterior midcingulate cortex in cognitive motor control. Human Brain Mapping, 35(6), 2741–2753.CrossRefPubMedGoogle Scholar
  35. Hoffstaedter, F., Grefkes, C., Roski, C., Caspers, S., Zilles, K., & Eickhoff, S. B. (2015). Age-related decrease of functional connectivity additional to gray matter atrophy in a network for movement initiation. Brain Structure and Function, 220(2), 999–1012.CrossRefPubMedGoogle Scholar
  36. Honey, C. J., Thivierge, J. P., & Sporns, O. (2010). Can structure predict function in the human brain? NeuroImage, 52(3), 766–776.CrossRefPubMedGoogle Scholar
  37. Ickes, B. R., Pham, T. M., Sanders, L. A., Albeck, D. S., Mohammed, A. H., & Granholm, A. C. (2000). Long-term environmental enrichment leads to regional increases in neurotrophin levels in rat brain. Experimental Neurology, 164, 45–52.CrossRefPubMedGoogle Scholar
  38. Illman, N. A., Butler, C. R., Souchay, C., & Moulin, C. J. (2012). Deja experiences in temporal lobe epilepsy. Epilepsy Research and Treatment. doi: 10.1155/2012/539567.PubMedPubMedCentralGoogle Scholar
  39. Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., & Milham, M. P. (2012). A convergent functional architecture of the insula emerges across imaging modalities. NeuroImage, 61(4), 1129–1142.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., Ameis, S., Karama, S., Lee, J., Chen, Z., Das, S., & Evans, A. C. (2013). Developmental changes in organization of structural brain networks. Cerebral Cortex, 23(9), 2072–2085. doi: 10.1093/cercor/bhs187.CrossRefPubMedGoogle Scholar
  41. Krishnan, A., Williams, L. J., McIntosh, A. R., & Abdi, H. (2011). Partial least squares (PLS) methods for neuroimaging: a tutorial and review. NeuroImage, 56(2), 455–475.CrossRefPubMedGoogle Scholar
  42. Labate, A., Cerasa, A., Mumoli, L., Ferlazzo, E., Aguglia, U., Quattrone, A., & Gambardella, A. (2015). Neuro-anatomical differences among epileptic and non-epileptic déjà-vu. Cortex, 64, 1–7.CrossRefPubMedGoogle Scholar
  43. Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. The Journal of Neuroscience, 29(46), 14496–14505.CrossRefPubMedPubMedCentralGoogle Scholar
  44. McIntosh, A. R., & Lobaugh, N. J. (2004). Partial least squares analysis of neuroimaging data: applications and advances. NeuroImage, 23, S250–S263.CrossRefPubMedGoogle Scholar
  45. McIntosh, A. R., Bookstein, F. L., Haxby, J. V., & Grady, C. L. (1996). Spatial pattern analysis of functional brain images using partial least squares. NeuroImage, 3, 143–157.CrossRefPubMedGoogle Scholar
  46. Moulin, C. J. (2014). The strange sensation of déjà vu: not so strange in temporal lobe epilepsy. Journal of Neurology, Neurosurgery & Psychiatry, 85(2), 132–132.CrossRefGoogle Scholar
  47. Mullan, S., & Penfield, W. (1959). Illusions of comparative interpretation and emotion: production by epileptic discharge and by electrical stimulation in the temporal cortex. Archives of Neurology and Psychiatry, 81(3), 269–284.CrossRefPubMedGoogle Scholar
  48. O’Connor, A. R., & Moulin, C. J. (2010). Recognition without identification, erroneous familiarity, and déjà vu. Current Psychiatry Reports, 12(3), 165–173.CrossRefPubMedGoogle Scholar
  49. O’Connor, A. R., & Moulin, C. J. A. (2013). Déjà vu experiences in healthy subjects are unrelated to laboratory tests of recollection and familiarity for word stimuli. Frontiers in Psychology, 4(881). doi: 10.3389/fpsyg.2013.00881.
  50. Packard, M. G., & Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review of Neuroscience, 25(1), 563–593.CrossRefPubMedGoogle Scholar
  51. Pail, M., Brázdil, M., Mareček, R., & Mikl, M. (2010). An optimized voxel-based morphometric study of gray matter changes in patients with left-sided and right-sided mesial temporal lobe epilepsy and hippocampal sclerosis (MTLE/HS). Epilepsia, 51(4), 511–518.CrossRefPubMedGoogle Scholar
  52. Penfield, W., & Perot, P. (1963). The brain’s record of auditory and visual experience. A final summary and discussion. Brain, 86, 595–696.CrossRefPubMedGoogle Scholar
  53. Pollock, G. S., Vernon, E., Forbes, M. E., Yan, Q., Ma, Y. T., Hsieh, T., et al. (2001). Effects of early visualexperience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. Journal of Neuroscience, 21, 3923–3931.PubMedGoogle Scholar
  54. Power, J. D., Fair, D. A., Schlaggar, B. L., & Petersen, S. E. (2010). The development of human functional brain networks. Neuron, 67(5), 735–748.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Raznahan, A., Shaw, P., Lalonde, F., Stockman, M., Wallace, G. L., Greenstein, D., Clasen, L., Gogtay, N., & Giedd, J. N. (2011). How does your cortex grow? The Journal of Neuroscience, 31(19), 7174–7177.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rottschy, C., Caspers, S., Roski, C., Reetz, K., Dogan, I., Schulz, J. B., Zilles, K., Laird, A. R., Fox, P. T., & Eickhoff, S. B. (2013). Differentiated parietal connectivity of frontal regions for “what” and “where” memory. Brain Structure and Function, 218(6), 1551–1567.CrossRefPubMedGoogle Scholar
  57. Rykhlevskaia, E., Gratton, G., & Fabiani, M. (2008). Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology, 45(2), 173--187.Google Scholar
  58. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Sno, H. N., Schalken, H. F., de Jonghe, F., & Koeter, M. W. (1994). The inventory for déjà vu experiences assessment: development, utility, reliability, and validity. Journal of Nervous and Mental Disease, 182(1), 27–33.CrossRefPubMedGoogle Scholar
  60. Takeda, Y., Kurita, T., Sakurai, K., Shiga, T., Tamaki, N., & Koyama, T. (2011). Persistent déjà vu associated with hyperperfusion in the entorhinal cortex. Epilepsy & Behavior, 21(2), 196–199.CrossRefGoogle Scholar
  61. Ullsperger, M., Harsay, H. A., Wessel, J. R., & Ridderinkhof, K. R. (2010). Conscious perception of errors and its relation to the anterior insula. Brain Structure and Function, 214(5-6), 629--643.Google Scholar
  62. Vignal, J. P., Maillard, L., McGonigal, A., & Chauvel, P. (2007). The dreamy state: hallucinations of autobiographic memory evoked by temporal lobe stimulations and seizures. Brain, 130(1), 88–99.CrossRefPubMedGoogle Scholar
  63. Warren-Gash, C., & Zeman, A. (2014). Is there anything distinctive about epileptic déjà vu? Journal of Neurology, Neurosurgery & Psychiatry, 85(2), 143–147.CrossRefGoogle Scholar
  64. Weinand, M. E., Hermann, B., Wyler, A. R., Carter, L. P., Oommen, K. J., Labiner, D., Ahern, G., & Herring, A. (1994). Long-term subdural strip electrocorticographic monitoring of ictal deja vu. Epilepsia, 35(5), 1054–1059.CrossRefPubMedGoogle Scholar
  65. Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., Duggirala, R., & Glahn, D. C. (2009). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Wolf, R. C., Sambataro, F., Vasic, N., Depping, M. S., Thomann, P. A., Landwehrmeyer, G. B., Süssmuth, S. D., & Orth, M. (2014). Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychological Medicine, 44(15), 3341–3356.CrossRefPubMedGoogle Scholar
  67. Zielinski, B. A., Gennatas, E. D., Zhou, J., & Seeley, W. W. (2010). Network-level structural covariance in the developing brain. Proceedings of the National Academy of Sciences, 107(42), 18191–18196.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Behavioral and Social Neuroscience Research Group, CEITEC - Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  2. 2.First Department of Neurology, Faculty of MedicineMasaryk University and St. Anne’s Faculty HospitalBrnoCzech Republic

Personalised recommendations