Brain Imaging and Behavior

, Volume 10, Issue 3, pp 869–879 | Cite as

BAS-drive trait modulates dorsomedial striatum activity during reward response-outcome associations

  • Víctor CostumeroEmail author
  • Alfonso Barrós-Loscertales
  • Paola Fuentes
  • Patricia Rosell-Negre
  • Juan Carlos Bustamante
  • César Ávila
Original Research


According to the Reinforcement Sensitivity Theory, behavioral studies have found that individuals with stronger reward sensitivity easily detect cues of reward and establish faster associations between instrumental responses and reward. Neuroimaging studies have shown that processing anticipatory cues of reward is accompanied by stronger ventral striatum activity in individuals with stronger reward sensitivity. Even though establishing response-outcome contingencies has been consistently associated with dorsal striatum, individual differences in this process are poorly understood. Here, we aimed to study the relation between reward sensitivity and brain activity while processing response-reward contingencies. Forty-five participants completed the BIS/BAS questionnaire and performed a gambling task paradigm in which they received monetary rewards or punishments. Overall, our task replicated previous results that have related processing high reward outcomes with activation of striatum and medial frontal areas, whereas processing high punishment outcomes was associated with stronger activity in insula and middle cingulate. As expected, the individual differences in the activity of dorsomedial striatum correlated positively with BAS-Drive. Our results agree with previous studies that have related the dorsomedial striatum with instrumental performance, and suggest that the individual differences in this area may form part of the neural substrate responsible for modulating instrumental conditioning by reward sensitivity.


FMRI Dorsal striatum Reward sensitivity Personality Behavioral approach system Reinforcement sensitivity theory BIS/BAS 


Compliance with ethical standards

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional Review Board of the Universitat Jaume I and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


The project was supported by grants PSI2010-20,168 from Ministerio de Economía y Competitividad, P1•1B2011-09 from the Universitat Jaume I to CA, and grants 040/2011 from Spanish National Drug Strategy Ministerio de Sanidad y Consumo, and PSI2012-33,054 from Ministerio de Economía y Competitividad to ABL.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Aarts, E., van Holstein, M., & Cools, R. (2011). Striatal dopamine and the interface between motivation and cognition. Frontiers in Psychology, 2, 163.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abler, B., Walter, H., Erk, S., Kammerer, H., & Spitzer, M. (2006). Prediction error as a linear function of reward probability is coded in human nucleus accumbens. NeuroImage, 31(2), 790–795.CrossRefPubMedGoogle Scholar
  3. Ávila, C. (2001). Distinguishing BIS-mediated and BAS-mediated disinhibition mechanisms: a comparison of disinhibition models of gray (1981, 1987) and of Patterson and Newman (1993). Journal of Personality and Social Psychology, 80(2), 311–324.CrossRefPubMedGoogle Scholar
  4. Ávila, C., & Torrubia, R. (2008). Performance and conditioning studies. In P. Corr (Ed.), Reinforcement sensitivity theory of personality (pp. 228–260). Cambridge University Press.Google Scholar
  5. Ávila, C., Garbin, G., Sanjuán, A., Forn, C., Barrós-Loscertales, A., Bustamante, J. C., et al. (2012). Frontostriatal response to set switching is moderated by reward sensitivity. Social Cognitive and Affective Neuroscience, 7(4), 423–430.CrossRefPubMedGoogle Scholar
  6. Ávila, C., Moltó, J., & Segarra, P. (1995). Sensitivity to conditioned or unconditioned stimuli: what is the mechanism underlying passive avoidance deficits in extraverts? Journal of Research in Personality, 29(4), 373–394.CrossRefGoogle Scholar
  7. Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(31), 8161–8165.Google Scholar
  8. Balleine, B. W., Liljeholm, M., & Ostlund, S. B. (2009). The integrative function of the basal ganglia in instrumental conditioning. Behavioural Brain Research, 199(1), 43–52.CrossRefPubMedGoogle Scholar
  9. Bartra, O., McGuire, J. T., & Kable, J. W. (2013). The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26(19), 5160–5166.CrossRefGoogle Scholar
  11. Becker, J. B. (2009). Sexual differentiation of motivation: a novel mechanism? Hormones and Behavior, 55(5), 646–654.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Berkman, E. T., Lieberman, M. D., & Gable, S. L. (2009). BIS, BAS, and response conflict: testing predictions of the revised reinforcement sensitivity theory. Personality and Individual Differences, 46(5–6), 586–591.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bijttebier, P., Beck, I., Claes, L., & Vandereycken, W. (2009). Gray’s reinforcement sensitivity theory as a framework for research on personality-psychopathology associations. Clinical Psychology Review, 29(5), 421–430.CrossRefPubMedGoogle Scholar
  14. Boddy, J., Carver, A., & Rowley, K. (1986). Effects of positive and negative verbal reinforcement on performance as a function of extraversion-introversion: some tests of gray’s theory. Personality and Individual Differences, 7(1), 81–88.CrossRefGoogle Scholar
  15. Boileau, I., Payer, D., Chugani, B., Lobo, D., Behzadi, A., Rusjan, P. M., et al. (2013a). The D2/3 dopamine receptor in pathological gambling: a positron emission tomography study with [11C]-(+)-propyl-hexahydro-naphtho-oxazin and [11C]raclopride. Addiction, 108(5), 953–963.CrossRefPubMedGoogle Scholar
  16. Boileau, I., Payer, D., Chugani, B., Lobo, D. S. S., Houle, S., Wilson, A. A., et al. (2013b). In vivo evidence for greater amphetamine-induced dopamine release in pathological gambling: a positron emission tomography study with [(11)C]-(+)-PHNO. Molecular Psychiatry, 19, 1–9.Google Scholar
  17. Bustamante, J.-C., Barrós-Loscertales, A., Costumero, V., Fuentes-Claramonte, P., Rosell-Negre, P., Ventura-Campos, N., et al. (2014). Abstinence duration modulates striatal functioning during monetary reward processing in cocaine patients. Addiction Biology, 19(5), 885–894.CrossRefPubMedGoogle Scholar
  18. Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., et al. (in press). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior.Google Scholar
  19. Cardinal, R. N., Parkinson, J. A., Hall, J., & Everitt, B. J. (2002). Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neuroscience and Biobehavioral Reviews, 26(3), 321–352.CrossRefPubMedGoogle Scholar
  20. Carter, R. M., Macinnes, J. J., Huettel, S. A., & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3(August), 21.PubMedPubMedCentralGoogle Scholar
  21. Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS scales. Journal of Personality and Social Psychology, 67(2), 319–333.CrossRefGoogle Scholar
  22. Caseras, X., Ávila, C., & Torrubia, R. (2003). The measurement of individual differences in behavioural inhibition and behavioural activation systems: a comparison of personality scales. Personality and Individual Differences, 34(6), 999–1013.CrossRefGoogle Scholar
  23. Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., & Ávila, C. (2013a). Reward sensitivity modulates connectivity among reward brain areas during processing of anticipatory reward cues. The European Journal of Neuroscience, 38(3), 2399–2407.CrossRefPubMedGoogle Scholar
  24. Costumero, V., Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Fuentes, P., Rosell-Negre, P., & Ávila, C. (2013b). Reward sensitivity is associated with brain activity during erotic stimulus processing. PloS One, 8(6), e66940.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Cross, C. P., Copping, L. T., & Campbell, A. (2011). Sex differences in impulsivity: a meta-analysis. Psychological Bulletin, 137(1), 97–130.CrossRefPubMedGoogle Scholar
  26. Delgado, M. R. (2007). Reward-related responses in the human striatum. Annals of the New York Academy of Sciences, 1104, 70–88.CrossRefPubMedGoogle Scholar
  27. Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 27–38.CrossRefGoogle Scholar
  28. Delgado, M. R., Nystrom, L. E., Fissell, C., Noll, D. C., & Fiez, J. A. (2000). Tracking the hemodynamic responses to reward and punishment in the striatum. Journal of Neurophysiology, 84(6), 3072–3077.PubMedGoogle Scholar
  29. Diekhof, E. K., Kaps, L., Falkai, P., & Gruber, O. (2012). The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude - an activation likelihood estimation meta-analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 50(7), 1252–1266.CrossRefPubMedGoogle Scholar
  30. Dreher, J. C., Schmidt, P. J., Kohn, P., Furman, D., Rubinow, D., & Berman, K. F. (2007). Menstrual cycle phase modulates reward-related neural function in women. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2465–2470.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ernst, M., Nelson, E. E., McClure, E. B., Monk, C. S., Munson, S., Eshel, N., et al. (2004). Choice selection and reward anticipation: an fMRI study. Neuropsychologia, 42(12), 1585–1597.CrossRefPubMedGoogle Scholar
  32. Everitt, B. J., & Robbins, T. W. (2013). From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neuroscience and Biobehavioral Reviews, 37(9), 1946–1954.CrossRefPubMedGoogle Scholar
  33. Friston, K. J., Holmes, A. P., Worsley, K. J., Poline, J.-P., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 189–210.CrossRefGoogle Scholar
  34. Gomez, R., & McLaren, S. (1997). The effects of reward and punishment on response disinhibition, moods, heart rate and skin conductance level during instrumental learning. Personality and Individual Differences, 23(2), 305–316.CrossRefGoogle Scholar
  35. Gray, J. A. (1987). The neuropsychology of emotion and personality. In S. M. Stahl, S. D. Iverson, & E. C. Goodman (Eds.), Cognitive neurochemistry (pp. 171–190). Oxford: Oxford University Press.Google Scholar
  36. Gray, J. A., & McNaughton, N. (2000). The neuropsychology of anxiety: An enquiry in to the functions of the septo-hippocampal system (2nd ed., ). Oxford: Oxford University Press.Google Scholar
  37. Groenewegen, H. J., Wright, C. I., Beijer, A. V. J., & Voorn, P. (1999). Convergence and segregation of ventral striatal inputs and outputs. Annals of the New York Academy of Sciences, 877, 49–63.CrossRefPubMedGoogle Scholar
  38. Gupta, B. S. (1976). Extraversion and reinforcement in verbal operant conditioning. British Journal of Psychology, 67(1), 47–52.CrossRefPubMedGoogle Scholar
  39. Gupta, B. S., & Nagpal, M. (1978). Impulsivity/sociability and reinforcement in verbal operant conditioning. British Journal of Psychology, 69(2), 203–206.CrossRefPubMedGoogle Scholar
  40. Gupta, S. (1990). Impulsivity/sociability and reinforcement in verbal operant conditioning: a replication. Personality and Individual Differences, 11(6), 585–589.CrossRefGoogle Scholar
  41. Gupta, S., & Shukla, A. P. (1989). Verbal operant conditioning as a function of extraversion and reinforcement. British Journal of Psychology, 80(1), 39–44.CrossRefGoogle Scholar
  42. Haber, S. N., & McFarland, N. R. (1999). The concept of the ventral striatum in nonhuman primates. Annals of the New York Academy of Sciences, 877, 33–48.CrossRefPubMedGoogle Scholar
  43. Hahn, T., Dresler, T., Ehlis, A.-C., Plichta, M. M., Heinzel, S., Polak, T., & Fallgatter, A. J. (2009). Neural response to reward anticipation is modulated by gray’s impulsivity. NeuroImage, 46(4), 1148–1153.CrossRefPubMedGoogle Scholar
  44. Hanlon, C. A., Wesley, M. J., & Porrino, L. J. (2009). Loss of functional specificity in the dorsal striatum of chronic cocaine users. Drug and Alcohol Dependence, 102(1–3), 88–94.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Hart, G., Leung, B. K., & Balleine, B. W. (2014). Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions. Neurobiology of Learning and Memory, 108, 104–118.CrossRefPubMedGoogle Scholar
  46. Hayes, D. J., Duncan, N. W., Xu, J., & Northoff, G. (2014). A comparison of neural responses to appetitive and aversive stimuli in humans and other mammals. Neuroscience and Biobehavioral Reviews, 45, 350–368.CrossRefPubMedGoogle Scholar
  47. He, Z., Cassaday, H. J., Bonardi, C., & Bibby, P. A. (2013). Do personality traits predict individual differences in excitatory and inhibitory learning? Frontiers in Psychology, 4(MAY), 1–12.Google Scholar
  48. Hikosaka, O., Bromberg-Martin, E., Hong, S., & Matsumoto, M. (2008). New insights on the subcortical representation of reward. Current Opinion in Neurobiology, 18(2), 203–208.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hyatt, C. J., Assaf, M., Muska, C. E., Rosen, R. I., Thomas, A. D., Johnson, M. R., et al. (2012). Reward-related dorsal striatal activity differences between former and current cocaine dependent individuals during an interactive competitive game. PloS One, 7(5), e34917.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ikemoto, S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research Reviews, 56(1), 27–78.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Iversen, S. D., & Iversen, L. L. (2007). Dopamine: 50 years in perspective. Trends in Neurosciences, 30(5), 188–193.CrossRefPubMedGoogle Scholar
  52. Kantorowitz, D. A. (1978). Personality and conditioning of tumescence and detumescence. Behaviour Research and Therapy, 16(2), 117–123.CrossRefPubMedGoogle Scholar
  53. Kennis, M., Rademaker, A. R., & Geuze, E. (2013). Neural correlates of personality: an integrative review. Neuroscience and Biobehavioral Reviews, 37(1), 73–95.CrossRefPubMedGoogle Scholar
  54. Kirsch, P., Schienle, A., Stark, R., Sammer, G., Blecker, C., Walter, B., & Vaitl, D. (2003). Anticipation of reward in a nonaversive differential conditioning paradigm and the brain reward system: an event-related fMRI study. NeuroImage, 20(2), 1086–1095.CrossRefPubMedGoogle Scholar
  55. Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(16), RC159.Google Scholar
  56. Knutson, B., Delgado, M. R., & Phillips, P. E. M. (2008). Representation of subjective value in the striatum. In P. W. Glimcher, C. F. Camerer, E. Fehr, & R. A. Poldrack (Eds.), Neuroeconomics: Decision Making and the Brain (pp. 389–406). Elsevier.Google Scholar
  57. Knutson, B., & Greer, S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3771–3786.CrossRefGoogle Scholar
  58. Knyazev, G. G., Slobodskaya, H. R., & Wilson, G. D. (2004). Comparison of the construct validity of the gray-Wilson personality questionnaire and the BIS/BAS scales. Personality and Individual Differences, 37(8), 1565–1582.CrossRefGoogle Scholar
  59. Koepp, M. J., Gunn, R. N., Lawrence, A. D., Cunningham, V. J., Dagher, A., Jones, T., et al. (1998). Evidence for striatal dopamine release during a video game. Nature, 393(6682), 266–268.CrossRefPubMedGoogle Scholar
  60. Kross, E., Egner, T., Ochsner, K., Hirsch, J., & Downey, G. (2007). Neural dynamics of rejection sensitivity. Journal of Cognitive Neuroscience, 19(6), 945–956.CrossRefPubMedGoogle Scholar
  61. Li, Y., Qiao, L., Sun, J., Wei, D., Li, W., Qiu, J., et al. (2014). Gender-specific neuroanatomical basis of behavioral inhibition/approach systems (BIS/BAS) in a large sample of young adults: a voxel-based morphometric investigation. Behavioural Brain Research, 274, 400–408.CrossRefPubMedGoogle Scholar
  62. Liljeholm, M., & O’Doherty, J. P. (2012). Contributions of the striatum to learning, motivation, and performance: an associative account. Trends in Cognitive Sciences, 16(9), 467–475.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Lin, F., Zhou, Y., Du, Y., Zhao, Z., Qin, L., Xu, J., & Lei, H. (2015). Aberrant corticostriatal functional circuits in adolescents with internet addiction disorder. Frontiers in Human Neuroscience, 9, 356.PubMedPubMedCentralGoogle Scholar
  64. Liu, X., Hairston, J., Schrier, M., & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: a meta-analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–1236.CrossRefPubMedGoogle Scholar
  65. McClure, S. M., York, M. K., & Montague, P. R. (2004). The neural substrates of reward processing in humans: the modern role of FMRI. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 10(3), 260–268.CrossRefGoogle Scholar
  66. McCord, R. R., & Wakefield, J. A. (1981). Arithmetic achievement as a function of introversion-extraversion and teacher-presented reward and punishment. Personality and Individual Differences, 2(2), 145–152.CrossRefGoogle Scholar
  67. Nagpal, M., & Gupta, B. S. (1979). Personality, reinforcement and verbal operant conditioning. British Journal of Psychology, 70, 471–476.CrossRefGoogle Scholar
  68. Newman, J. P., Widom, C. S., & Nathan, S. (1985). Passive avoidance in syndromes of disinhibition: psychopathy and extraversion. Journal of Personality and Social Psychology, 48(5), 1316–1327.CrossRefPubMedGoogle Scholar
  69. O’Doherty, J., Dayan, P., Schultz, J., Deichmann, R., Friston, K., & Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454.CrossRefPubMedGoogle Scholar
  70. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.Google Scholar
  71. Paisey, T. J. H., & Mangan, G. L. (1988). Personality and conditioning with appetitive and aversive stimuli. Personality and Individual Differences, 9(1), 69–78.CrossRefGoogle Scholar
  72. Pallanti, S., Haznedar, M. M., Hollander, E., Licalzi, E. M., Bernardi, S., Newmark, R., & Buchsbaum, M. S. (2010). Basal ganglia activity in pathological gambling: a fluorodeoxyglucose-positron emission tomography study. Neuropsychobiology, 62(2), 132–138.CrossRefPubMedGoogle Scholar
  73. Patterson, C. M., Kosson, D. S., & Newman, J. P. (1987). Reaction to punishment, reflectivity, and passive avoidance learning in extraverts. Journal of Personality and Social Psychology, 52(3), 565–575.CrossRefPubMedGoogle Scholar
  74. Pickering, A. D., & Gray, J. A. (2001). Dopamine, appetitive reinforcement, and the neuropsychology of human learning : an individual differences approach. In A. Eliasz, & A. Angleitner (Eds.), Advances in research on temperament (pp. 113–149). Lengerich, Germany: PABST Science Publishers.Google Scholar
  75. Ruge, H., & Wolfensteller, U. (2014). Distinct fronto-striatal couplings reveal the double-faced nature of response–outcome relations in instruction-based learning. Cognitive, Affective, & Behavioral Neuroscience, 15(2), 349–364.CrossRefGoogle Scholar
  76. Sescousse, G., Caldú, X., Segura, B., & Dreher, J.-C. C. (2013). Processing of primary and secondary rewards: a quantitative meta-analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–696.CrossRefPubMedGoogle Scholar
  77. Seunath, O. M. (1975). Personality, reinforcement and learning. Perceptual and Motor Skills, 41(2), 459–463.CrossRefPubMedGoogle Scholar
  78. Simon, J. J., Walther, S., Fiebach, C. J., Friederich, H.-C. C., Stippich, C., Weisbrod, M., & Kaiser, S. (2010). Neural reward processing is modulated by approach- and avoidance-related personality traits. NeuroImage, 49(2), 1868–1874.CrossRefPubMedGoogle Scholar
  79. Smillie, L. D., Dalgleish, L. I., & Jackson, C. J. (2007). Distinguishing between learning and motivation in behavioral tests of the reinforcement sensitivity theory of personality. Personality and Social Psychology Bulletin, 33(4), 476–489.CrossRefPubMedGoogle Scholar
  80. Smillie, L. D., Jackson, C., & Dalgleish, L. (2006). Conceptual distinctions among carver and white’s (1994) BAS scales: a reward-reactivity versus trait impulsivity perspective. Personality and Individual Differences, 40(5), 1039–1050.CrossRefGoogle Scholar
  81. Tricomi, E., Balleine, B. W., & O’Doherty, J. P. (2009). A specific role for posterior dorsolateral striatum in human habit learning. The European Journal of Neuroscience, 29(11), 2225–2232.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281–292.CrossRefPubMedGoogle Scholar
  83. Volkow, N. D., Wang, G.-J., Fowler, J. S., Logan, J., Jayne, M., Franceschi, D., et al. (2002). “Nonhedonic” food motivation in humans involves dopamine in the dorsal striatum and methylphenidate amplifies this effect. Synapse, 44(3), 175–180.CrossRefPubMedGoogle Scholar
  84. Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Logan, J., Childress, A.-R., et al. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 26(24), 6583–6588.Google Scholar
  85. Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fMRI studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4(3), 274–290.CrossRefPubMedGoogle Scholar
  86. Zald, D. H., Boileau, I., El-Dearedy, W., Gunn, R., McGlone, F., Dichter, G. S., & Dagher, A. (2004). Dopamine transmission in the human striatum during monetary reward tasks. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 24(17), 4105–4112.CrossRefGoogle Scholar
  87. Zelenski, J. M., & Larsen, R. J. (1999). Susceptibility to affect: a comparison of three personality taxonomies. Journal of Personality, 67(5), 761–791.CrossRefPubMedGoogle Scholar
  88. Zink, C. F., Pagnoni, G., Martin-Skurski, M. E., Chappelow, J. C., & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509–517.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Víctor Costumero
    • 1
    Email author
  • Alfonso Barrós-Loscertales
    • 1
  • Paola Fuentes
    • 1
  • Patricia Rosell-Negre
    • 1
  • Juan Carlos Bustamante
    • 1
  • César Ávila
    • 1
  1. 1.Departamento de Psicología Básica, Clínica y PsicobiologíaUniversitat Jaume ICastellón de la PlanaSpain

Personalised recommendations