Brain Imaging and Behavior

, Volume 10, Issue 4, pp 1029–1037 | Cite as

A lateralized top-down network for visuospatial attention and neglect

Original Research

Abstract

The lateralization of visuospatial attention has been well investigated and demonstrated to be primarily resulting from unbalanced interaction between interhemispheric fronto-parietal networks in previous studies. Many recent studies of top-down attention have reported the neural signatures of its effects within visual cortex and identified its causal basis. However, the relationship between top-down networks and asymmetric visuospatial attention has not been well studied. In the current study, we aimed to explore the relationship between top-down connectivity and asymmetric visuospatial ability by using repetitive transcranial magnetic stimulation (rTMS) and resting-state functional connectivity (RSFC) analyses. We used rTMS and RSFC to model the virtual lesion to assess the behavioral performances in visuospatial attention shifting and to identify the behavior-related top-down functional connectivities, respectively. Furthermore, we also investigated the top-down connectivity in neglect patients to validate the RSFC findings. RSFC analyses in healthy subjects and neglect patients consistently revealed that asymmetric visuospatial ability and visuospatial neglect were closely related to the bias of top-down functional connectivity between posterior superior parietal lobule (SPL) and V1. Our findings indicate that stronger top-down connectivity has stronger dominance on its corresponding visual field. We argue that an asymmetric top-down network may represent a possible neurophysiological substrate for the ongoing functional asymmetry of visuospatial attention, and its interhemispheric unbalanced interaction could contribute to the clinical manifestations of visuospatial neglect.

Keywords

Visuospatial attention Neglect Superior parietal lobule Visual cortex TMS 

Notes

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program; 2011CB707801), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB02030300), and the Natural Science Foundation of China (31500867, 91132301, 81100806).

Compliance with ethical standards

Conflict of interest

Jiaojian Wang, Yanghua Tian, Mengzhu Wang, Long Cao, Huawang Wu, Kai Wang, and Tianzi Jiang declare that they have no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Ashbridge, E., Walsh, V., & Cowey, A. (1997). Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia, 35(8), 1121–1131.CrossRefPubMedGoogle Scholar
  2. Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210–224.CrossRefPubMedGoogle Scholar
  3. Bartolomeo, P., Thiebaut de Schotten, M., & Chica, A. B. (2012). Brain networks of visuospatial attention and their disruption in visual neglect. Frontiers in Human Neuroscience, 6, 110.PubMedPubMedCentralGoogle Scholar
  4. Boroojerdi, B., Prager, A., Muellbacher, W., & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology, 54(7), 1529–1531.CrossRefPubMedGoogle Scholar
  5. Boynton, G. M. (2011). Spikes, BOLD, attention, and awareness: a comparison of electrophysiological and fMRI signals in V1. Journal of Vision, 11(5), 12.CrossRefPubMedCentralGoogle Scholar
  6. Buffalo, E. A., Fries, P., Landman, R., Liang, H., & Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 361–365.CrossRefPubMedGoogle Scholar
  7. Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48(5), 1398–1403.CrossRefPubMedGoogle Scholar
  8. Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.CrossRefPubMedGoogle Scholar
  9. Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–599.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13(3), 1202–1226.PubMedGoogle Scholar
  11. Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270(5237), 802–805.CrossRefPubMedGoogle Scholar
  12. Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience, 8(11), 1603–1610.CrossRefPubMedGoogle Scholar
  13. Cutrell, E. B., & Marrocco, R. T. (2002). Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Experimental Brain Research, 144(1), 103–113.CrossRefPubMedGoogle Scholar
  14. Driver, J., & Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature Neuroscience, 1(1), 17–22.CrossRefPubMedGoogle Scholar
  15. Du, X., Chen, L., & Zhou, K. (2012). The role of the left posterior parietal lobule in top-down modulation on space-based attention: a transcranial magnetic stimulation study. Human Brain Mapping, 33(10), 2477–2486.CrossRefPubMedGoogle Scholar
  16. Eickhoff, S. B., & Grefkes, C. (2011). Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clinical EEG and Neuroscience, 42(2), 107–121.CrossRefPubMedGoogle Scholar
  17. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335.CrossRefPubMedGoogle Scholar
  18. Fang, F., Boyaci, H., Kersten, D., & Murray, S. O. (2008). Attention-dependent representation of a size illusion in human V1. Current Biology, 18(21), 1707–1712.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.CrossRefPubMedGoogle Scholar
  20. Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350–363.CrossRefPubMedGoogle Scholar
  21. Gregoriou, G. G., Rossi, A. F., Ungerleider, L. G., & Desimone, R. (2014). Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nature Neuroscience, 17(7), 1003–1011.CrossRefPubMedPubMedCentralGoogle Scholar
  22. He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.CrossRefPubMedGoogle Scholar
  23. Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.CrossRefPubMedGoogle Scholar
  24. Hilgetag, C. C., Theoret, H., & Pascual-Leone, A. (2001). Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nature Neuroscience, 4(9), 953–957.CrossRefPubMedGoogle Scholar
  25. Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.CrossRefPubMedGoogle Scholar
  26. Jin, Y., & Hilgetag, C. C. (2008). Perturbation of visuospatial attention by high-frequency offline rTMS. Experimental Brain Research, 189(1), 121–128.CrossRefPubMedGoogle Scholar
  27. Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.CrossRefPubMedGoogle Scholar
  28. Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282(5386), 108–111.CrossRefPubMedGoogle Scholar
  29. Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761.CrossRefPubMedGoogle Scholar
  30. Kelley, T. A., Serences, J. T., Giesbrecht, B., & Yantis, S. (2008). Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex, 18(1), 114–125.CrossRefPubMedGoogle Scholar
  31. Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. Advances in Neurology, 18, 41–49.PubMedGoogle Scholar
  32. Kinsbourne M (1993) Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace. Unilateral neglect: Clinical and experimental studies 63–86Google Scholar
  33. Koch, G., Oliveri, M., Cheeran, B., Ruge, D., Lo Gerfo, E., Salerno, S., Torriero, S., Marconi, B., Mori, F., Driver, J., Rothwell, J. C., & Caltagirone, C. (2008). Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain, 131(Pt 12), 3147–3155.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Koch, G., Cercignani, M., Bonni, S., Giacobbe, V., Bucchi, G., Versace, V., Caltagirone, C., & Bozzali, M. (2011). Asymmetry of parietal interhemispheric connections in humans. Journal of Neuroscience, 31(24), 8967–8975.CrossRefPubMedGoogle Scholar
  35. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42.PubMedGoogle Scholar
  36. Lunven, M., Thiebaut De Schotten, M., Bourlon, C., Duret, C., Migliaccio, R., Rode, G., & Bartolomeo, P. (2015). White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain, 138(Pt 3), 746–760.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Mars, R. B., Jbabdi, S., Sallet, J., O’Reilly, J. X., Croxson, P. L., Olivier, E., Noonan, M. P., Bergmann, C., Mitchell, A. S., Baxter, M. G., Behrens, T. E., Johansen-Berg, H., Tomassini, V., Miller, K. L., & Rushworth, M. F. (2011). Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. Journal of Neuroscience, 31(11), 4087–4100.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.CrossRefPubMedGoogle Scholar
  39. Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.CrossRefPubMedGoogle Scholar
  40. Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370–373.CrossRefPubMedGoogle Scholar
  41. Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.CrossRefPubMedGoogle Scholar
  42. Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.PubMedGoogle Scholar
  43. Noudoost, B., Chang, M. H., Steinmetz, N. A., & Moore, T. (2010). Top-down control of visual attention. Current Opinion in Neurobiology, 20(2), 183–190.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: from modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10), 3990–3998.PubMedGoogle Scholar
  45. Ptak, R., & Schnider, A. (2010). The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. Journal of Neuroscience, 30(38), 12557–12565.CrossRefPubMedGoogle Scholar
  46. Ramalingam, N., McManus, J. N., Li, W., & Gilbert, C. D. (2013). Top-down modulation of lateral interactions in visual cortex. Journal of Neuroscience, 33(5), 1773–1789.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.CrossRefPubMedGoogle Scholar
  48. Rossi, A. F., Bichot, N. P., Desimone, R., & Ungerleider, L. G. (2007). Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. Journal of Neuroscience, 27(42), 11306–11314.CrossRefPubMedGoogle Scholar
  49. Rushworth, M. F., Paus, T., & Sipila, P. K. (2001). Attention systems and the organization of the human parietal cortex. Journal of Neuroscience, 21(14), 5262–5271.PubMedGoogle Scholar
  50. Schluppeck, D., Curtis, C. E., Glimcher, P. W., & Heeger, D. J. (2006). Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. Journal of Neuroscience, 26(19), 5098–5108.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Science, 10(1), 38–45.CrossRefGoogle Scholar
  52. Silver, M. A., Ress, D., & Heeger, D. J. (2007). Neural correlates of sustained spatial attention in human early visual cortex. Journal of Neurophysiology, 97(1), 229–237.CrossRefPubMedGoogle Scholar
  53. Steinmetz, H. (1996). Structure, functional and cerebral asymmetry: in vivo morphometry of the planum temporale. Neuroscience and Biobehavioral Reviews, 20(4), 587–591.CrossRefPubMedGoogle Scholar
  54. Stone, S. P., Halligan, P. W., & Greenwood, R. J. (1993). The incidence of neglect phenomena and related disorders in patients with an acute right or left hemisphere stroke. Age and Ageing, 22(1), 46–52.CrossRefPubMedGoogle Scholar
  55. Szczepanski, S. M., Konen, C. S., & Kastner, S. (2010). Mechanisms of spatial attention control in frontal and parietal cortex. Journal of Neuroscience, 30(1), 148–160.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Thiebaut de Schotten, M., Urbanski, M., Duffau, H., Volle, E., Levy, R., Dubois, B., & Bartolomeo, P. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 309(5744), 2226–2228.CrossRefPubMedGoogle Scholar
  57. Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245–1246.CrossRefPubMedGoogle Scholar
  58. Tomasi, D., & Volkow, N. D. (2012). Laterality patterns of brain functional connectivity: gender effects. Cerebral Cortex, 22(6), 1455–1462.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Umarova, R. M., Reisert, M., Beier, T. U., Kiselev, V. G., Kloppel, S., Kaller, C. P., Glauche, V., Mader, I., Beume, L., Hennig, J., & Weiller, C. (2014). Attention-network specific alterations of structural connectivity in the undamaged white matter in acute neglect. Human Brain Mapping, 35(9), 4678–4692.CrossRefPubMedGoogle Scholar
  60. Vallar, G., Bottini, G., & Paulesu, E. (2003). Neglect syndromes: the role of the parietal cortex. Advances in Neurology, 93, 293–319.PubMedGoogle Scholar
  61. Vandenberghe, R., Duncan, J., Dupont, P., Ward, R., Poline, J. B., Bormans, G., Michiels, J., Mortelmans, L., & Orban, G. A. (1997). Attention to one or two features in left or right visual field: a positron emission tomography study. Journal of Neuroscience, 17(10), 3739–3750.PubMedGoogle Scholar
  62. Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2001). Functional specificity of superior parietal mediation of spatial shifting. NeuroImage, 14(3), 661–673.CrossRefPubMedGoogle Scholar
  63. Verdon, V., Schwartz, S., Lovblad, K. O., Hauert, C. A., & Vuilleumier, P. (2010). Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain, 133(Pt 3), 880–894.CrossRefPubMedGoogle Scholar
  64. Wang, J., Yang, Y., Fan, L., Xu, J., Li, C., Liu, Y., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2015). Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Human Brain Mapping, 36, 238–257.CrossRefPubMedGoogle Scholar
  65. Wardak, C., Olivier, E., & Duhamel, J. R. (2004). A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron, 42(3), 501–508.CrossRefPubMedGoogle Scholar
  66. Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Current Opinion in Neurobiology, 13(2), 187–193.CrossRefPubMedGoogle Scholar
  67. Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995–1002.CrossRefPubMedGoogle Scholar
  68. Zhang, X., Zhaoping, L., Zhou, T., & Fang, F. (2012). Neural activities in v1 create a bottom-up saliency map. Neuron, 73(1), 183–192.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jiaojian Wang
    • 1
  • Yanghua Tian
    • 4
  • Mengzhu Wang
    • 1
  • Long Cao
    • 1
  • Huawang Wu
    • 1
  • Yun Zhang
    • 1
  • Kai Wang
    • 4
  • Tianzi Jiang
    • 1
    • 2
    • 3
    • 5
  1. 1.Key Laboratory for NeuroInformation of the Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Brainnetome Center, Institute of AutomationChinese Academy of SciencesBeijingChina
  3. 3.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
  4. 4.Department of Neurologythe First Hospital of Anhui Medical UniversityHefeiChina
  5. 5.The Queensland Brain InstituteUniversity of QueenslandBrisbaneAustralia

Personalised recommendations