Brain Imaging and Behavior

, Volume 10, Issue 4, pp 960–969 | Cite as

Action observation and imitation in autism spectrum disorders: an ALE meta-analysis of fMRI studies

  • Jie Yang
  • Jessica Hofmann
Original Research


Previous studies have shown that the mirror neuron system (MNS) plays an important role in action understanding. However, whether and how the MNS activity is different in individuals with autism spectrum disorders (ASD) and typically developed (TD) individuals are still unclear. The current study used activation likelihood estimation to conduct a meta-analysis of functional magnetic resonance imaging studies that investigated action observation and imitation in ASD and TD individuals. Thirteen studies were selected, and the contrasts focused on the brain effects in ASD and TD participants and the differences between the two groups. The results showed that compared with TD individuals, ASD individuals exhibited stronger effects in the anterior inferior parietal lobule, a part of the putative human MNS. In addition, the ASD group demonstrated altered effects in the occipital cortex, dorsolateral prefrontal cortex, cingulate cortex, and insula. These results suggest that ASD individuals demonstrate dysfunction of the MNS during action observation and imitation. Furthermore, brain regions involved in visual processing, executive function, and social cognitive function might also show dysfunction during action task performance.


Autism spectrum disorders The mirror neuron system Action observation Action imitation Activation likelihood estimation Functional magnetic resonance imaging 



This study was funded by Macquarie University (grant number 9201401500).

Compliance with ethical standards

Conflict of interest

Author Jie Yang declares that she has no conflict of interest. Author Jessica Hofmann declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11682_2015_9456_Fig2_ESM.gif (34 kb)
Supplementary Figure 1

The paper selection procedure of the current meta-analysis. (GIF 33 kb)

11682_2015_9456_MOESM1_ESM.tiff (5.2 mb)
(TIFF 5313 kb)


  1. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington: American Psychiatric Association.CrossRefGoogle Scholar
  2. Annaz, D., Remington, A., Milne, E., Coleman, M., Campbell, R., Thomas, M. S., et al. (2010). Development of motion processing in children with autism. Developmental Science, 13(6), 826–838.CrossRefPubMedGoogle Scholar
  3. Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral prefrontal contributions to human working memory. Cortex, 49(5), 1195–1205.CrossRefPubMedGoogle Scholar
  4. Chan, R. C. K., Shum, D., Toulopoulou, T., Chen, E. Y. H., Shum, D., Toulopoulou, T., et al. (2008). Assessment of executive functions: review of instruments and identification of critical issues. Archives of Clinical Neuropsychology, 23(2), 201–216.CrossRefPubMedGoogle Scholar
  5. Clery, H., Andersson, F., Bonnet-Brilhault, F., Philippe, A., Wicker, B., & Gomot, M. (2013). fMRI investigation of visual change detection in adults with autism. Neuroimage Clinical, 2, 303–12.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cook, J., & Bird, G. (2012). Atypical social modulation of imitation in autism spectrum conditions. Journal of Autism and Developmental Disorders, 42(6), 1045–1051.CrossRefPubMedGoogle Scholar
  7. Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Review Neuroscience, 3, 655–666.CrossRefGoogle Scholar
  8. Critchley, H. D. (2005). Neural mechanisms of autonomic, affective, and cognitive integration. Journal of Computational Neurology, 493, 154–166.CrossRefGoogle Scholar
  9. Crone, E. A., & Dahl, R. E. (2012). Understanding adolescence as a period of social-affective engagement and goal flexibility. Nature Review Neuroscience, 13, 636–650.CrossRefGoogle Scholar
  10. Di Martino, A., Yan, C. G., Li, Q., Denio, E., Castellanos, F. X., Alaerts, K., et al. (2013). The autism brain imaging data exchange: towards large-scale evaluation of the intrinsic brain architecture in autism. Molecular Psychiatry, 19, 659–667.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dickstein, D. P., Pescosolido, M. F., Reidy, B. L., Galvan, T., Kim, K. L., & Seymour, K. E. (2013). Developmental meta-analysis of the functional neural correlates of autism spectrum disorders. Journal of American Academy of Child and Adolescent Psychiatry, 52(3), 279–289.CrossRefGoogle Scholar
  12. Ebisch, S. J., Gallese, V., Willems, R. M., Mantini, D., Groen, W. B., Romani, G. L., et al. (2011). Altered intrinsic functional connectivity of anterior and posterior insula regions in high-functioning participants with autism spectrum disorder. Human Brain Mapping, 32(7), 1013–1028.CrossRefPubMedGoogle Scholar
  13. Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Fecteau, S., Lepage, J. F., & Theoret, H. (2006). Autism spectrum disorder: seeing is not understanding. Current Biology, 16, R131–R133.CrossRefPubMedGoogle Scholar
  15. Fishman, I., Keown, C. L., Lincoln, A. J., Pineda, J. A., Müller, R. A. (2014). Atypical cross talk between mentalizing and mirror neuron networks in autism spectrum disorder. JAMA Psychiatry, 71, 751–760.Google Scholar
  16. Fletcher, P. C., Happe, F., Frith, U., Baker, S. C., Dolan, R. J., Frackowiak, R. S., & Frith, C. D. (1995). Other minds in the brain: a functional imaging study of “theory of mind” in story comprehension. Cognition, 57, 109–128.CrossRefPubMedGoogle Scholar
  17. Fogassi, L., Ferrari, P. F., Gesierich, B., Rozzi, S., Chersi, F., & Rizzolatti, G. (2005). Parietal lobe: from action organization to intention understanding. Science, 308, 662–667.CrossRefPubMedGoogle Scholar
  18. Freitag, C. M., Konrad, C., Häberlen, M., Kleser, C., von Gontard, A., Reith, W., et al. (2008). Perception of biological motion in autism spectrum disorders. Neuropsychologia, 46, 1480–1494.CrossRefPubMedGoogle Scholar
  19. Gallese, V., & Goldman, A. (1998). Mirror neurons and the simulation theory of mind-reading. Trends in Cognitive Sciences, 2, 493–501.CrossRefPubMedGoogle Scholar
  20. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.CrossRefPubMedGoogle Scholar
  21. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Sciences, 8, 396–403.CrossRefPubMedGoogle Scholar
  22. Gallese, V., Rochat, M., Cossu, G., & Sinigaglia, C. (2009). Motor cognition and its role in the phylogeny and ontogeny of action understanding. Developmental Psychology, 45(1), 103–113.CrossRefPubMedGoogle Scholar
  23. Grecucci, A., Brambilla, P., Siugzdaite, R., Londero, D., Fabbro, F., & Rumiati, R. I. (2012). Emotional resonance deficits in autistic children. Journal of Autism and Developmental Disorders, 43(3), 616–628.CrossRefGoogle Scholar
  24. Greene, J. D., Sommerville, R. B., Nystrom, L. E., Darley, J. M., & Cohen, J. D. (2001). An fMRI investigation of emotional engagement in moral judgment. Science, 293(5537), 2105–2108.CrossRefPubMedGoogle Scholar
  25. Grèzes, J., Wicker, B., Berthoz, S., de Gelder, B., & Grezes, J. (2009). A failure to grasp the affective meaning of actions in autism spec- trum disorder subjects. Neuropsychologia, 47, 1816–1825.CrossRefPubMedGoogle Scholar
  26. Hamilton, A. F. (2013). Reflecting on the mirror neuron system in autism: a systematic review of current theories. Developmental Cognitive Neuroscience, 3, 91–105.CrossRefPubMedGoogle Scholar
  27. Hubbard, A. L., McNealy, K., Scott-Van Zeeland, A. A., Callan, D. E., Bookheimer, S. Y., Dapretto, M. (2012). Altered integration of speech and gesture in children with autism spectrum disorders. Brain and Behavior, 2, 606–619.Google Scholar
  28. Iacoboni, M. (2005). Neural mechanisms of imitation. Current Opinion in Neurobiology, 15, 632–637.CrossRefPubMedGoogle Scholar
  29. Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60, 653–670.CrossRefPubMedGoogle Scholar
  30. Iacoboni, M., & Dapretto, M. (2006). The mirror neuron system and the consequences of its dysfunction. Nature Review of Neuroscience, 7, 942–951.CrossRefGoogle Scholar
  31. Ingersoll, B. (2007). The effect of context on imitation skills in children with autism. Research in Autism Spectrum Disorders, 2(2), 332–340.CrossRefGoogle Scholar
  32. Ingersoll, B., Schreibman, L., & Tran, Q. H. (2003). Effect of sensory feedback on immediate object imitation in children with autism. Journal of Autism and Developmental Disorders, 33(6), 673–683.CrossRefPubMedGoogle Scholar
  33. Jack, A., & Morris, J. P. (2014). Neocerebellar contributions to social perception in adolescents with autism spectrum disorder. Developmental Cognitive Neuroscience, 10, 77–92.CrossRefPubMedGoogle Scholar
  34. Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature Review Neuroscience, 11, 417–428.CrossRefGoogle Scholar
  35. Koldewyn, K., Whitney, D., & Rivera, S. M. (2010). The psychophysics of visual motion and global form processing in autism. Brain, 133(Pt 2), 599–610.CrossRefPubMedGoogle Scholar
  36. Laird, A. R., Fox, M., Price, C. J., Glahn, D. C., Uecker, A. M., Lancaster, J. L., et al. (2005). ALE meta-analysis: controlling the false discov- ery rate and performing statistical contrasts. Human Brain Mapping, 25, 155–164.CrossRefPubMedGoogle Scholar
  37. Lancaster, J. L., Tordesillas-Gutiérrez, D., Martinez, M., Salinas, F., Evans, A., Zilles, K., et al. (2007). Bias between MNI and Talairach coordinates analyzed using the ICBM-152 brain template. Human Brain Mapping, 28, 1194–1205.CrossRefPubMedGoogle Scholar
  38. Libero, L. E., Maximo, J. O., Deshpande, H. D., Klinger, L. G., Klinger, M. R., & Kana, R. K. (2014a). The role of mirroring and mentalizing networks in mediating action intentions in autism. Molecular Autism, 5, 50.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Libero, L. E., Stevens, C. E., Jr., & Kana, R. K. (2014b). Attribution of emotions to body postures: an independent component analysis study of functional connectivity in autism. Human Brain Mapping, 35, 5204–5218.CrossRefPubMedGoogle Scholar
  40. Mansouri, F. A., Buckley, M. J., & Tanaka, K. (2007). Mnemonic function of the dorsolateral prefrontal cortex in conflict-induced behavioral adjustment. Science, 318(5852), 987–990.CrossRefPubMedGoogle Scholar
  41. Marsh, L., & Hamilton, A. F. C. (2011). Dissociation of mirroring and mentalising systems in autism. NeuroImage, 56(3), 1511–1519.CrossRefPubMedGoogle Scholar
  42. Martineau, J., Andersson, F., Barthélémy, C., Cottier, J.-P. P., & Destrieux, C. (2010). Atypical activation of the mirror neuron system dur- ing perception of hand motion in autism. Brain Research, 1320, 168–175.CrossRefPubMedGoogle Scholar
  43. McKay, L. S., Simmons, D. R., McAleer, P., Marjoram, D., Piggot, J., & Pollick, F. E. (2012). Do distinct atypical cortical networks process biological motion information in adults with autism spectrum disorders? NeuroImage, 59, 1524–1533.CrossRefPubMedGoogle Scholar
  44. Milne, E., Swettenham, J., Hansen, P., Campbell, R., Jeffries, H., & Plaisted, K. (2002). High motion coherence thresholds in children with autism. Journal of Child Psychology and Psychiatry, 43(2), 255–263.CrossRefPubMedGoogle Scholar
  45. Monsell, S. (2003). Task switching. Trends in Cognitive Sciences, 7(3), 134–140.CrossRefPubMedGoogle Scholar
  46. Oberman, L. M., & Ramachandran, V. S. (2007). The simulating social mind: the role of the mirror neuron system and simulation in the social and communicative deficits of autism spectrum disorders. Psychological Bulletin, 133, 310–327.CrossRefPubMedGoogle Scholar
  47. Okamoto, Y., Kitada, R., Tanabe, H. C., Hayashi, M. J., Kochiyama, T., Munesue, T., et al. (2014). Attenuation of the contingency detection effect in the extrastriate body area in autism spectrum disorder. Neuroscience Research, 87, 66–76.Google Scholar
  48. Penny, W. D., & Holmes, A. P. (2004). Random effects analysis. In R. S. J. Frackowiak, K. J. Friston, R. Frith, K. J. Dolan, C. J. Price, S. Zeki, J. Ashburner, & W. D. Penny (Eds.), Human brain function (pp. 843–850). San Diego: Academic.Google Scholar
  49. Perkins, T. J., Bittar, R. G., McGillivray, J. A., Cox, I. I., & Stokes, M. A. (2015). Increased premotor cortex activation in high functioning autism during action observation. Journal of Clinical Neuroscience, 22(4), 664–669.CrossRefPubMedGoogle Scholar
  50. Poulin-Lord, M. P., Barbeau, E. B., Soulières, I., Monchi, O., Doyon, J., Benali, H., et al. (2014). Increased topographical variability of task-related activation in perceptive and motor associative regions in adult autistics. Neuroimage Clinical, 4, 444–453.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Priori, A., Mameli, F., Cogiamanian, F., Marceglia, S., Tiriticco, M., Mrakic-Sposta, S., et al. (2008). Lie-specific involvement of dorsolateral prefrontal cortex in deception. Cerebral Cortex, 18, 451–455.CrossRefPubMedGoogle Scholar
  52. Ramsey, R., & Hamilton, A. F. (2012). How does your own knowledge influence the perception of another person’s action in the human brain? Social Cognitive and Affective Neuroscience, 7, 242–251.CrossRefPubMedGoogle Scholar
  53. Rizzolatti, G. (2005). The mirror neuron system and its function in humans. Anatomy and Embryology, 210, 419–421.CrossRefPubMedGoogle Scholar
  54. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.CrossRefPubMedGoogle Scholar
  55. Rizzolatti, G., & Sinigaglia, C. (2010). The functional role of the parieto-frontal mirror circuit: interpretations and misinterpretations. Nature Review Neuroscience, 11, 264–274.CrossRefGoogle Scholar
  56. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, F. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131–141.CrossRefPubMedGoogle Scholar
  57. Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms under- lying the understanding and imitation of action. Nature Review Neuroscience, 2, 661–670.CrossRefGoogle Scholar
  58. Rizzolatti, G., Fabbri-Destro, M., & Cattaneo, L. (2009). Mirror neurons and their clinical relevance. Nature Clinical Practice Neurology, 5, 24–34.CrossRefPubMedGoogle Scholar
  59. Rozzi, S., Ferrari, P. F., Bonini, L., Rizzolatti, G., & Fogassi, L. (2008). Functional organization of inferior parietal lobule convexity in the macaque monkey: electrophysiological characterization of motor, sensory and mirror responses and their correlation with cytoarchitectonic areas. European Journal of Neuroscience, 28, 1569–1588.CrossRefPubMedGoogle Scholar
  60. Saxe, R., & Kanwisher, N. (2003). People thinking about thinking people: the role of the temporo-parietal junction in “theory of mind. NeuroImage, 19, 1835–1842.CrossRefPubMedGoogle Scholar
  61. Seminowicz, D. A., & Davis, K. D. (2007). Interactions of pain intensity and cognitive load: the brain stays on task. Cerebral Cortex, 17, 1412–1422.CrossRefPubMedGoogle Scholar
  62. Shmuelof, L., & Zohary, E. (2007). Watching others’ actions: mirror representations in the parietal cortex. The Neuroscientist, 13, 667–672.CrossRefPubMedGoogle Scholar
  63. Spunt, R. P., Satpute, A. B., & Lieberman, M. D. (2011). Identifying the what, why, and how of an observed action: an fMRI study of mentalizing and mechanizing during action observation. Journal of Cognitive Neuroscience, 23, 63–74.CrossRefPubMedGoogle Scholar
  64. Takarae, Y., Minshew, N. J., Luna, B., Krisky, C. M., & Sweeney, J. A. (2004). Pursuit eye movement deficits in autism. Brain, 127(Pt 12), 2584–2594.CrossRefPubMedGoogle Scholar
  65. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: An approach to cerebral imaging. Stuttgart: G. Thieme.Google Scholar
  66. Taylor, K. S., Seminowicz, D. A., & Davis, K. D. (2008). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping, 30, 2731–2745.CrossRefGoogle Scholar
  67. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. NeuroImage, 16, 765–780.CrossRefPubMedGoogle Scholar
  68. Ubaldi, S., Barchiesi, G., & Cattaneo, L. (2015). Bottom-up and top-down visuomotor responses to action observation. Cerebral Cortex, 25(4), 1032–41.CrossRefPubMedGoogle Scholar
  69. Uddin, L. Q., Supekar, K., & Menon, V. (2013). Reconceptualizing functional brain connectivity in autism from a developmental perspective. Frontiers in Human Neuroscience, 7, 458.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Williams, J. H., Whiten, A., Suddendorf, T., & Perrett, D. I. (2001). Imitation, mirror neurons and autism. Neuroscience and Biobehavioral Reviews, 25, 287–295.CrossRefPubMedGoogle Scholar
  71. Williams, J. H. G., Whiten, A., & Singh, T. (2004). A systematic review of action imitation in autistic spectrum disorder. Journal of Autism and Developmental Disorders, 34(3), 285–299.CrossRefPubMedGoogle Scholar
  72. Williams, J. H. G., Waiter, G. D., Gilchrist, A., Perrett, D. I., Murray, A. D., & Whiten, A. (2006). Neural mechanisms of imitation and mirror neuron functioning in autistic spectrum disorder. Neuropsychologia, 44(4), 610–621.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.ARC Center of Excellence in Cognition and its Disorders, Department of Cognitive SciencesMacquarie UniversitySydneyAustralia

Personalised recommendations