Brain Imaging and Behavior

, Volume 10, Issue 4, pp 984–994 | Cite as

Morphological alterations in amygdalo-hippocampal substructures in narcolepsy patients with cataplexy

  • Hosung Kim
  • Sooyeon Suh
  • Eun Yeon JooEmail author
  • Seung Bong HongEmail author
Original Research


Although the role of hypocretin-mediated amygdalo-hippocampal dysfunction is hypothesized to be linked with narcolepsy, there have been no human MRI studies investigating the relationship between their regional volume and key symptoms of narcolepsy. To investigate the morphological changes of amygdalo-hippocampus and its relationship with clinical features in patients with narcolepsy, point-wise morphometry that allowed for measuring the regional volumes of amygdalo-hippocampus on T1-weighted MRI was applied. Participants were 33 drug-naïve patients and 35 age-/gender-matched controls (mean ± SD: 27 ± 6 years). We compared hippocampal and amygdalar subfields volumes between patients and controls and correlated between volume and clinical and neuropsychological features in patients. Bilateral hippocampal atrophy (183 vertices) was identified mainly located within the CA1 subfield (FDR < 0.05). Significant amygdalar volume reduction was found in the areas of the centromedial (102 vertices) and laterobasal nuclear groups (LB, 35 vertices). There was no volume increase in patients relative to controls (FDR >0.2). After controlling depressive mood, sleep quality, age, and gender, hippocampal CA1 atrophy and amygdalar centromedial atrophy were associated with longer duration of daytime sleepiness and shorter mean REM sleep latency (|r| >0.44, p < 0.01). The amygdalar centromedial atrophy was associated with longer duration of cataplexy (|r| >0.47, p < 0.005). Subfields atrophy of amygdalo-hippocampus in untreated patients with narcolepsy that was found relative to controls suggests that CA1 of the hippocampus and centromedial area of amygdala are closely related to the severity of narcolepsy and play a crucial role in the circuitry of cataplexy.


Narcolepsy Amygdale Hippocampus Surface analysis MRI volumetry 



This study was funded by Basic Science Research Program through the National Research Foundation of Korea of the Ministry of Science, ICT & Future Planning, Republic of Korea (No. 2014R1A1A3049510) and by Samsung Biomedical Research Institute grant (#OTX0002111).

Conflict of interest

All authors (Kim H, Suh S, Joo EY, and Hong SB) declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42.CrossRefPubMedGoogle Scholar
  2. Amunts, K., Kedo, O., Kindler, M., Pieperhoff, P., Mohlberg, H., Shah, N. J., et al. (2005). Cytoarchitectonic mapping of the human amygdala, hippocampal region and entorhinal cortex: intersubject variability and probability maps. Anatomy and Embryology, 210(5–6), 343–352.CrossRefPubMedGoogle Scholar
  3. Barbarotto, R., Laiacona, M., Frosio, R., Vecchio, M., Farinato, A., & Capitani, E. (1998). A normative study on visual reaction times and two Stroop colour-word tests. Italian Journal of Neurological Sciences, 19(3), 161–170.CrossRefPubMedGoogle Scholar
  4. Bayard, S., Abril, B., Yu, H., Scholz, S., Carlander, B., & Dauvilliers, Y. (2011). Decision making in narcolepsy with cataplexy. Sleep, 34(1), 99–104.PubMedPubMedCentralGoogle Scholar
  5. Beck, A. T., Brown, G., Steer, R. A., Eidelson, J. I., & Riskind, J. H. (1987). Differentiating anxiety and depression: a test of the cognitive content-specificity hypothesis. Journal of Abnormal Psychology, 96(3), 179–183.CrossRefPubMedGoogle Scholar
  6. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B Methodological, 57(1), 289–300.Google Scholar
  7. Bernhardt, B. C., Kim, H., & Bernasconi, N. (2013). Patterns of subregional mesiotemporal disease progression in temporal lobe epilepsy. Neurology, 81(21), 1840–1847.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Beyer, M. K., Bronnick, K. S., Hwang, K. S., Bergsland, N., Tysnes, O. B., Larsen, J. P., et al. (2013). Verbal memory is associated with structural hippocampal changes in newly diagnosed Parkinson’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 84(1), 23–28.CrossRefPubMedGoogle Scholar
  9. Bisetti, A., Cvetkovic, V., Serafin, M., Bayer, L., Machard, D., Jones, B. E., et al. (2006). Excitatory action of hypocretin/orexin on neurons of the central medial amygdala. Neuroscience, 142(4), 999–1004.CrossRefPubMedGoogle Scholar
  10. Boyes, R. G., Gunter, J. L., Frost, C., Janke, A. L., Yeatman, T., Hill, D. L., et al. (2008). Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. NeuroImage, 39(4), 1752–1762.CrossRefPubMedGoogle Scholar
  11. Brabec, J., Rulseh, A., Horinek, D., Pala, A., Guerreiro, H., Buskova, J., et al. (2011). Volume of the amygdala is reduced in patients with narcolepsy - a structural MRI study. Neuro Endocrinology Letters, 32(5), 652–656.PubMedGoogle Scholar
  12. Brown, R. E., Fedorov, N. B., Haas, H. L., & Reymann, K. G. (1995). Histaminergic modulation of synaptic plasticity in area CA1 of rat hippocampal slices. Neuropharmacology, 34(2), 181–190.CrossRefPubMedGoogle Scholar
  13. Buysse, D. J., Reynolds, C. F., 3rd, Monk, T. H., Berman, S. R., & Kupfer, D. J. (1989). The Pittsburgh sleep quality index: a new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193–213.CrossRefPubMedGoogle Scholar
  14. Carpenter, G. A., & Grossberg, S. (1993). Normal and amnesic learning, recognition and memory by a neural model of cortico-hippocampal interactions. Trends in Neurosciences, 16(4), 131–137.CrossRefPubMedGoogle Scholar
  15. Chabas, D., Taheri, S., Renier, C., & Mignot, E. (2003). The genetics of narcolepsy. Annual Review of Genomics and Human Genetics, 4, 459–483.CrossRefPubMedGoogle Scholar
  16. Cho, S., Joh, T. H., Baik, H. H., Dibinis, C., & Volpe, B. T. (1997). Melatonin administration protects CA1 hippocampal neurons after transient forebrain ischemia in rats. Brain Research, 755(2), 335–338.CrossRefPubMedGoogle Scholar
  17. Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic subjects with hippocampal damage. Nature Neuroscience, 2(9), 844–847.CrossRefPubMedGoogle Scholar
  18. Chung, M. K., Worsley, K. J., Nacewicz, B. M., Dalton, K. M., & Davidson, R. J. (2010). General multivariate linear modeling of surface shapes using SurfStat. NeuroImage, 53(2), 491–505.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.CrossRefPubMedGoogle Scholar
  20. Dang-Vu, T. T. (2013). Neuroimaging findings in narcolepsy with cataplexy. Current Neurology and Neuroscience Reports, 13(5), 349.CrossRefPubMedGoogle Scholar
  21. Davis, M., & Whalen, P. J. (2001). The amygdala: vigilance and emotion. Molecular Psychiatry, 6(1), 13–34.CrossRefPubMedGoogle Scholar
  22. Delazer, M., Hogl, B., Zamarian, L., Wenter, J., Gschliesser, V., Ehrmann, L., et al. (2011). Executive functions, information sampling, and decision making in narcolepsy with cataplexy. Neuropsychology, 25(4), 477–487.CrossRefPubMedGoogle Scholar
  23. Doherty, D. G., Penzotti, J. E., Koelle, D. M., Kwok, W. W., Lybrand, T. P., Masewicz, S., et al. (1998). Structural basis of specificity and degeneracy of T cell recognition: pluriallelic restriction of T cell responses to a peptide antigen involves both specific and promiscuous interactions between the T cell receptor, peptide, and HLA-DR. Journal of Immunology (Baltimore, Md. : 1950), 161(7), 3527–3535.Google Scholar
  24. Donjacour, C. E., Kalsbeek, A., Overeem, S., Lammers, G. J., Pevet, P., Bothorel, B., et al. (2012). Altered circadian rhythm of melatonin concentrations in hypocretin-deficient men. Chronobiology International, 29(3), 356–362.CrossRefPubMedGoogle Scholar
  25. Duvernoy, H. M. (2005). The human hippocampus: An atlas of applied anatomy (3rd ed.). New York: Springer Verlag.Google Scholar
  26. Floresco, S. B., Seamans, J. K., & Phillips, A. G. (1996). Differential effects of lidocaine infusions into the ventral CA1/subiculum or the nucleus accumbens on the acquisition and retention of spatial information. Behavioural Brain Research, 81(1–2), 163–171.CrossRefPubMedGoogle Scholar
  27. Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., & Collins, D. L. (2011). Unbiased average age-appropriate atlases for pediatric studies. NeuroImage, 54(1), 313–327.CrossRefPubMedGoogle Scholar
  28. Fortuyn, H. A., Lappenschaar, M. A., Furer, J. W., Hodiamont, P. P., Rijnders, C. A., Renier, W. O., et al. (2010). Anxiety and mood disorders in narcolepsy: a case–control study. General Hospital Psychiatry, 32(1), 49–56.CrossRefPubMedGoogle Scholar
  29. Fukuda, M., Ono, T., & Nakamura, K. (1987). Functional relations among inferotemporal cortex, amygdala, and lateral hypothalamus in monkey operant feeding behavior. Journal of Neurophysiology, 57(4), 1060–1077.PubMedGoogle Scholar
  30. Gaudreau, H., & Pare, D. (1996). Projection neurons of the lateral amygdaloid nucleus are virtually silent throughout the sleep--waking cycle. Journal of Neurophysiology, 75(3), 1301–1305.PubMedGoogle Scholar
  31. Gerig, G., Styner, M., Jones, D., Weinberger, D., & Lieberman, J. (2001). Shape analysis of brain ventricles using SPHARM. Mathematical Methods in Biomedical Image Analysis. IEEE Workshop on Kauai, HI (pp. 171–178).Google Scholar
  32. Grosmark, A. D., Mizuseki, K., Pastalkova, E., Diba, K., & Buzsaki, G. (2012). REM sleep reorganizes hippocampal excitability. Neuron, 75(6), 1001–1007.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Guilleminault, C., & Dement, W. C. (1977). 235 cases of excessive daytime sleepiness. Diagnosis and tentative classification. Journal of the Neurological Sciences, 31(1), 13–27.CrossRefPubMedGoogle Scholar
  34. Gulyani, S., Wu, M. F., Nienhuis, R., John, J., & Siegel, J. M. (2002). Cataplexy-related neurons in the amygdala of the narcoleptic dog. Neuroscience, 112(2), 355–365.CrossRefPubMedGoogle Scholar
  35. Hood, B., & Bruck, D. (1997). Metamemory in narcolepsy. Journal of Sleep Research, 6(3), 205–210.CrossRefPubMedGoogle Scholar
  36. Joo, E. Y., Jeon, S., Lee, M., Kim, S. T., Yoon, U., Koo, D. L., et al. (2011). Analysis of cortical thickness in narcolepsy patients with cataplexy. Sleep, 34(10), 1357–1364.PubMedPubMedCentralGoogle Scholar
  37. Joo, E. Y., Kim, S. H., Kim, S. T., & Hong, S. B. (2012). Hippocampal volume and memory in narcoleptics with cataplexy. Sleep Medicine, 13(4), 396–401.CrossRefPubMedGoogle Scholar
  38. Joo, E. Y., Kim, H., Suh, S., & Hong, S. B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: magnetic resonance imaging morphometry. Sleep, 37(7), 1189–1198.PubMedPubMedCentralGoogle Scholar
  39. Kanbayashi, T., Kodama, T., Kondo, H., Satoh, S., Inoue, Y., Chiba, S., et al. (2009). CSF histamine contents in narcolepsy, idiopathic hypersomnia and obstructive sleep apnea syndrome. Sleep, 32(2), 181–187.PubMedPubMedCentralGoogle Scholar
  40. Khatami, R., Birkmann, S., & Bassetti, C. L. (2007). Amygdala dysfunction in narcolepsy-cataplexy. Journal of Sleep Research, 16(2), 226–229.CrossRefPubMedGoogle Scholar
  41. Kim, H., Besson, P., Colliot, O., Bernasconi, A., & Bernasconi, N. (2008). Surface-based vector analysis using heat equation interpolation: a new approach to quantify local hippocampal volume changes. Medical Image Computing and Computer-Assisted Intervention, 11(Pt 1), 1008–1015.PubMedGoogle Scholar
  42. Kim, H., Chupin, M., Colliot, O., Bernhardt, B. C., Bernasconi, N., & Bernasconi, A. (2012). Automatic hippocampal segmentation in temporal lobe epilepsy: impact of developmental abnormalities. NeuroImage, 59(4), 3178–3186.CrossRefPubMedGoogle Scholar
  43. Kim, H., Mansi, T., & Bernasconi, N. (2013). Disentangling hippocampal shape anomalies in epilepsy. Frontiers in Neurology, 4, 131.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Mizumori, S. J., McNaughton, B. L., Barnes, C. A., & Fox, K. B. (1989). Preserved spatial coding in hippocampal CA1 pyramidal cells during reversible suppression of CA3c output: evidence for pattern completion in hippocampus. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 9(11), 3915–3928.Google Scholar
  45. Moraes, M., Rossini, S., & Reimao, R. (2012). Executive attention and working memory in narcoleptic outpatients. Arquivos de Neuro-Psiquiatria, 70(5), 335–340.CrossRefPubMedGoogle Scholar
  46. Nagata, T., Shinagawa, S., Ochiai, Y., Aoki, R., Kasahara, H., Nukariya, K., et al. (2011). Association between executive dysfunction and hippocampal volume in Alzheimer’s disease. International Psychogeriatrics, 23(5), 764–771.CrossRefPubMedGoogle Scholar
  47. Naumann, A., Bellebaum, C., & Daum, I. (2006). Cognitive deficits in narcolepsy. Journal of Sleep Research, 15(3), 329–338.CrossRefPubMedGoogle Scholar
  48. Noh, H. J., Joo, E. Y., Kim, S. T., Yoon, S. M., Koo, D. L., Kim, D., et al. (2012). The relationship between hippocampal volume and cognition in patients with chronic primary insomnia. Journal of Clinical Neurology (Seoul, Korea), 8(2), 130–138.CrossRefGoogle Scholar
  49. Rieger, M., Mayer, G., & Gauggel, S. (2003). Attention deficits in patients with narcolepsy. Sleep, 26(1), 36–43.PubMedGoogle Scholar
  50. Sakurai, T., Nagata, R., Yamanaka, A., Kawamura, H., Tsujino, N., Muraki, Y., et al. (2005). Input of orexin/hypocretin neurons revealed by a genetically encoded tracer in mice. Neuron, 46(2), 297–308.CrossRefPubMedGoogle Scholar
  51. Schwartz, S., Ponz, A., Poryazova, R., Werth, E., Boesiger, P., Khatami, R., et al. (2008). Abnormal activity in hypothalamus and amygdala during humour processing in human narcolepsy with cataplexy. Brain, 131(Pt 2), 514–522.CrossRefPubMedGoogle Scholar
  52. Selbach, O., Bohla, C., Barbara, A., Doreulee, N., Eriksson, K. S., Sergeeva, O. A., et al. (2010). Orexins/hypocretins control bistability of hippocampal long-term synaptic plasticity through co-activation of multiple kinases. Acta Physiologica (Oxford, England), 198(3), 277–285.CrossRefGoogle Scholar
  53. Siegel, J. M. (1999). Narcolepsy: a key role for hypocretins (orexins). Cell, 98(4), 409–412.CrossRefPubMedGoogle Scholar
  54. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1), 87–97.CrossRefPubMedGoogle Scholar
  55. Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., & Gerig, G. (2006a). Statistical shape analysis of brain structures using SPHARM-PDM. The Insight Journal, 2006, 1–7.Google Scholar
  56. Styner, M., Oguz, I., Xu, S., Brechbuhler, C., Pantazis, D., Levitt, J. J., et al. (2006b). Framework for the statistical shape analysis of brain structures using SPHARM-PDM. The Insight Journal, 2006, 242–250.Google Scholar
  57. Sundvik, M., & Panula, P. (2015). Interactions of the orexin/hypocretin neurones and the histaminergic system. Acta Physiologica (Oxford, England), 213(2), 321–333.CrossRefGoogle Scholar
  58. Takahashi, H., Kato, M., Hayashi, M., Okubo, Y., Takano, A., Ito, H., et al. (2007). Memory and frontal lobe functions; possible relations with dopamine D2 receptors in the hippocampus. NeuroImage, 34(4), 1643–1649.CrossRefPubMedGoogle Scholar
  59. Takahashi, H., Kato, M., Takano, H., Arakawa, R., Okumura, M., Otsuka, T., et al. (2008). Differential contributions of prefrontal and hippocampal dopamine D (1) and D (2) receptors in human cognitive functions. Journal of Neuroscience, 28(46), 12032–12038.CrossRefPubMedGoogle Scholar
  60. Tierney, P. L., Dégenètais, E., Thierry, A. M., Glowinski, J., & Gioanni, Y. (2004). Influence of the hippocampus on interneurons of the rat prefrontal cortex. European Journal of Neuroscience, 20(2), 514–524.CrossRefPubMedGoogle Scholar
  61. Wang, Y., Zhang, J., Gutman, B., Chan, T. F., Becker, J. T., Aizenstein, H. J., et al. (2010). Multivariate tensor-based morphometry on surfaces: application to mapping ventricular abnormalities in HIV/AIDS. NeuroImage, 49(3), 2141–2157.CrossRefPubMedGoogle Scholar
  62. Wang, Y., Song, Y., Rajagopalan, P., An, T., Liu, K., Chou, Y. Y., et al. (2011). Surface-based TBM boosts power to detect disease effects on the brain: an N = 804 ADNI study. NeuroImage, 56(4), 1993–2010.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Watson, C., Andermann, F., Gloor, P., Jones-Gotman, M., Peters, T., Evans, A., et al. (1992). Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology, 42(9), 1743–1750.CrossRefPubMedGoogle Scholar
  64. Watson, C., Jack, C. R., Jr., & Cendes, F. (1997). Volumetric magnetic resonance imaging. Clinical applications and contributions to the understanding of temporal lobe epilepsy. Archives of Neurology, 54(12), 1521–1531.CrossRefPubMedGoogle Scholar
  65. Wu, M., Zhang, Z., Leranth, C., Xu, C., van den Pol, A. N., & Alreja, M. (2002). Hypocretin increases impulse flow in the septohippocampal GABAergic pathway: implications for arousal via a mechanism of hippocampal disinhibition. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 22(17), 7754–7765.Google Scholar
  66. Zheng, W., Chee, M. W., & Zagorodnov, V. (2009). Improvement of brain segmentation accuracy by optimizing non-uniformity correction using N3. NeuroImage, 48(1), 73–83.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Neurology, Neuroscience Center, Samsung Medical Center, Samsung Biomedical Research InstituteSungkyunkwan University School of MedicineSeoulKorea
  2. 2.Department of Radiology and Biomedical ImagingUniversity of California, San FranciscoSan FranciscoUSA
  3. 3.Department of PsychologySungshin Women’s UniversitySeoulKorea
  4. 4.Department of PsychiatryStanford UniversityRedwood CityUSA

Personalised recommendations