Brain Imaging and Behavior

, Volume 10, Issue 3, pp 799–817 | Cite as

Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer’s disease

  • Ali Khazaee
  • Ata Ebrahimzadeh
  • Abbas Babajani-Feremi
Original Research

Abstract

The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer’s disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.

Keywords

Resting-state functional magnetic resonance imaging (rs-fMRI) Alzheimer’s disease (AD) Mild cognitive impairment (MCI) Graph theory Machine learning Support vector machine (SVM) 

Notes

Acknowledgments

Data used in this paper were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (http://ADNI.loni. usc.edu). The investigators within the ADNI, who can be found at http://ADNI.loni.usc.edu/study-design/ongoing-investigations, contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this article. This study was supported by the Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN.

Data collection and sharing for this project was funded by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: AbbVie, Alzheimer’s Association; Alzheimer’s Drug Discovery Foundation; Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Company; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated company Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer Immunotherapy Research & Development, LLC.; Johnson & Johnson Pharmaceutical Research & Development LLC.; Lumosity; Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC.; NeuroRx Research; Neurotrack Technologies; Novartis Pharmaceuticals Corporation; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical Company; and Transition Therapeutics. The Canadian Institutes of Health Research is providing funds to support ADNI clinical sites in Canada. Private sector contributions are facilitated by the Foundation for the National Institutes of Health (www.fnih.org). The grantee organization is the Northern California Institute for Research and Education, and the study is coordinated by the Alzheimer’s Disease Cooperative Study at the University of California, San Diego. ADNI data are disseminated by the Laboratory for Neuro Imaging at the University of Southern California.

We thank Dr. Amanda Preston for her assistance with manuscript preparation.

Compliance with Ethical Standards

Funding

This study was funded by the Children’s Foundation Research Institute, Le Bonheur Children’s Hospital, Memphis, TN.

Conflict of Interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Anderson, A., & Cohen, M.S. (2013). Decreased small-world functional network connectivity and clustering across resting state networks in schizophrenia: an fMRI classification tutorial. Frontiers in Human Neuroscience, 7.Google Scholar
  2. Bai, F., Zhang, Z., Yu, H., Shi, Y., Yuan, Y., Zhu, W., & Qian, Y. (2008). Default-mode network activity distinguishes amnestic type mild cognitive impairment from healthy aging: a combined structural and resting-state functional MRI study. Neuroscience Letters, 438(1), 111–115.CrossRefPubMedGoogle Scholar
  3. Bai, F., Liao, W., Watson, D. R., Shi, Y., Wang, Y., Yue, C., & Jia, J. (2011). Abnormal whole-brain functional connection in amnestic mild cognitive impairment patients. Behavioural Brain Research, 216(2), 666–672.CrossRefPubMedGoogle Scholar
  4. Bassett, D. S., Bullmore, E., Verchinski, B. A., Mattay, V. S., Weinberger, D. R., & Meyer-Lindenberg, A. (2008). Hierarchical organization of human cortical networks in health and schizophrenia. The Journal of Neuroscience, 28(37), 9239–9248. doi:10.1523/JNEUROSCI.1929-08.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bassett, D. S., Bullmore, E. T., Meyer-Lindenberg, A., Apud, J. A., Weinberger, D. R., & Coppola, R. (2009). Cognitive fitness of cost-efficient brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 106(28), 11747–11752. doi:10.1073/pnas.0903641106.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Binnewijzend, M. A., Adriaanse, S. M., Van der Flier, W. M., Teunissen, C. E., de Munck, J. C., Stam, C. J., & Wink, A. M. (2014). Brain network alterations in Alzheimer’s disease measured by eigenvector centrality in fMRI are related to cognition and CSF biomarkers. Human Brain Mapping, 35(5), 2383–2393. doi:10.1002/hbm.22335.CrossRefPubMedGoogle Scholar
  7. Boldi, P., Santini, M., & Vigna, S. (2009). PageRank: functional dependencies. ACM Transactions on Information Systems (TOIS), 27(4), 19.CrossRefGoogle Scholar
  8. Brandes, U. (2001). A faster algorithm for betweenness centrality*. Journal of Mathematical Sociology, 25(2), 163–177.CrossRefGoogle Scholar
  9. Brier, M. R., Thomas, J. B., Fagan, A. M., Hassenstab, J., Holtzman, D. M., Benzinger, T. L., & Ances, B. M. (2014). Functional connectivity and graph theory in preclinical Alzheimer’s disease. Neurobiology of Aging, 35(4), 757–768.CrossRefPubMedGoogle Scholar
  10. Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.CrossRefPubMedGoogle Scholar
  11. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., & Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. The Journal of Neuroscience, 29(6), 1860–1873.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.CrossRefPubMedGoogle Scholar
  13. Celone, K. A., Calhoun, V. D., Dickerson, B. C., Atri, A., Chua, E. F., Miller, S. L., & Blacker, D. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. The Journal of Neuroscience, 26(40), 10222–10231.CrossRefPubMedGoogle Scholar
  14. Challis, E., Hurley, P., Serra, L., Bozzali, M., Oliver, S., & Cercignani, M. (2015). Gaussian process classification of Alzheimer’s disease and mild cognitive impairment from resting-state fMRI. NeuroImage, 112, 232–243.CrossRefPubMedGoogle Scholar
  15. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13. doi:10.3389/fnsys.2010.00013.PubMedPubMedCentralGoogle Scholar
  16. Cheng, B., Liu, M., Zhang, D., Munsell, B. C., & Shen, D. (2015). Domain transfer learning for MCI conversion prediction. Biomedical Engineering, IEEE Transactions on, 62(7), 1805–1817. doi:10.1109/TBME.2015.2404809.CrossRefGoogle Scholar
  17. Cohen, A. L., Fair, D. A., Dosenbach, N. U., Miezin, F. M., Dierker, D., Van Essen, D. C., & Petersen, S. E. (2008). Defining functional areas in individual human brains using resting functional connectivity MRI. NeuroImage, 41(1), 45–57.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Daselaar, S., Prince, S., & Cabeza, R. (2004). When less means more: deactivations during encoding that predict subsequent memory. NeuroImage, 23(3), 921–927.CrossRefPubMedGoogle Scholar
  19. Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32(12), 2322 e2319–2327. doi:10.1016/j.neurobiolaging.2010.05.023.CrossRefGoogle Scholar
  20. Dey, S., Rao, A.R., & Shah, M. (2012). Exploiting the brain’s network structure in identifying ADHD subjects. Frontiers in Systems Neuroscience, 6.Google Scholar
  21. dos Santos Siqueira, A., Biazoli Junior, C.E., Comfort, W.E., Rohde, L.A., & Sato, J.R. (2014). Abnormal functional resting-state networks in ADHD: graph theory and pattern recognition analysis of fMRI Data. BioMed Research International, 2014.Google Scholar
  22. Drzezga, A., Becker, J. A., Van Dijk, K. R., Sreenivasan, A., Talukdar, T., Sullivan, C., & Greve, D. (2011). Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain, 134(6), 1635–1646.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Duda, R.O., Hart, P.E., & Stork, D.G. (2012). Pattern classification. Wiley.Google Scholar
  24. Estrada, E., & Higham, D. J. (2010). Network properties revealed through matrix functions. SIAM Review, 52(4), 696–714.CrossRefGoogle Scholar
  25. Fekete, T., Wilf, M., Rubin, D., Edelman, S., Malach, R., & Mujica-Parodi, L. R. (2013). Combining classification with fMRI-derived complex network measures for potential neurodiagnostics. PloS One, 8(5), e62867.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Foster, J. G., Foster, D. V., Grassberger, P., & Paczuski, M. (2010). Edge direction and the structure of networks. Proceedings of the National Academy of Sciences, 107(24), 10815–10820.CrossRefGoogle Scholar
  27. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Fransson, P. (2005). Spontaneous low‐frequency BOLD signal fluctuations: an fMRI investigation of the resting‐state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.CrossRefPubMedGoogle Scholar
  29. Friston, K. J., Frith, C. D., Frackowiak, R. S., & Turner, R. (1995). Characterizing dynamic brain responses with fMRI: a multivariate approach. NeuroImage, 2(2PA), 166–172.CrossRefPubMedGoogle Scholar
  30. Grady, C., Springer, M., Hongwanishkul, D., McIntosh, A., & Winocur, G. (2006). Age-related changes in brain activity across the adult lifespan. Journal of Cognitive Neuroscience, 18(2), 227–241.CrossRefPubMedGoogle Scholar
  31. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences, 100(1), 253–258.CrossRefGoogle Scholar
  32. Guimera, R., Sales-Pardo, M., & Amaral, L. A. (2007). Classes of complex networks defined by role-to-role connectivity profiles. Nature Physics, 3(1), 63–69.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C. J., Wedeen, V. J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biology, 6(7), e159.CrossRefPubMedPubMedCentralGoogle Scholar
  34. He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 28(18), 4756–4766.CrossRefPubMedGoogle Scholar
  35. Humphries, M. D., & Gurney, K. (2008). Network ‘small-world-ness’: a quantitative method for determining canonical network equivalence. PloS One, 3(4), e0002051.CrossRefPubMedGoogle Scholar
  36. Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., & Ward, C. (2008). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Jie, B., Zhang, D., Suk, H.-I., Wee, C.-Y., & Shen, D. (2013). Integrating Multiple Network Properties for MCI Identification. In G. Wu, D. Zhang, D. Shen, P. Yan, K. Suzuki & F. Wang (Eds.), Machine Learning in Medical Imaging (Vol. 8184, pp. 9–16). Springer International Publishing.Google Scholar
  38. Jie, B., Zhang, D., Wee, C. Y., & Shen, D. (2014). Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Human Brain Mapping, 35(7), 2876–2897. doi:10.1002/hbm.22353.CrossRefPubMedGoogle Scholar
  39. Kelly, A., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. NeuroImage, 39(1), 527–537.CrossRefPubMedGoogle Scholar
  40. Khazaee, A., Ebrahimzadeh, A., & Babajani-Feremi, A. (2015). Identifying patients with Alzheimer’s disease using resting-state fMRI and graph theory. Clinical Neurophysiology. doi:10.1016/j.clinph.2015.02.060.PubMedGoogle Scholar
  41. Koch, W., Teipel, S., Mueller, S., Benninghoff, J., Wagner, M., Bokde, A. L., & Meindl, T. (2012). Diagnostic power of default mode network resting state fMRI in the detection of Alzheimer’s disease. Neurobiology of Aging, 33(3), 466–478.CrossRefPubMedGoogle Scholar
  42. Kohavi, R., & John, G. H. (1997). Wrappers for feature subset selection. Artificial Intelligence, 97(1), 273–324.CrossRefGoogle Scholar
  43. Koivunen, J., Scheinin, N., Virta, J., Aalto, S., Vahlberg, T., Någren, K., & Rinne, J. (2011). Amyloid PET imaging in patients with mild cognitive impairment A 2-year follow-up study. Neurology, 76(12), 1085–1090.CrossRefPubMedGoogle Scholar
  44. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.CrossRefPubMedGoogle Scholar
  45. Li, Y., Qin, Y., Chen, X., & Li, W. (2013). Exploring the functional brain network of Alzheimer’s disease: based on the computational experiment. PloS One, 8(9), e73186. doi:10.1371/journal.pone.0073186.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lo, C.-Y., Wang, P.-N., Chou, K.-H., Wang, J., He, Y., & Lin, C.-P. (2010). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 30(50), 16876–16885.CrossRefPubMedGoogle Scholar
  47. Madsen, S. K., Ho, A. J., Hua, X., Saharan, P. S., Toga, A. W., Jack, C. R., Jr., & Initiative, A. s. D. N. (2010). 3D maps localize caudate nucleus atrophy in 400 Alzheimer’s disease, mild cognitive impairment, and healthy elderly subjects. Neurobiology of Aging, 31(8), 1312–1325.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mccarthy, P., Benuskova, L., & Franz, E.A. (2014). The age-related posterior-anterior shift as revealed by voxelwise analysis of functional brain networks. Frontiers in Aging Neuroscience, 6. doi: 10.3389/fnagi.2014.00301.
  49. Mesrob, L., Magnin, B., Colliot, O., Sarazin, M., Hahn-Barma, V., Dubois, B., & Benali, H. (2008). Identification of atrophy patterns in Alzheimer’s disease based on SVM feature selection and anatomical parcellation. In T. Dohi, I. Sakuma, & H. Liao (Eds.), Medical imaging and augmented reality (Vol. 5128, pp. 124–132). Berlin Heidelberg: Springer.Google Scholar
  50. Miller, S. L., Celone, K., DePeau, K., Diamond, E., Dickerson, B. C., Rentz, D., & Sperling, R. A. (2008). Age-related memory impairment associated with loss of parietal deactivation but preserved hippocampal activation. Proceedings of the National Academy of Sciences, 105(6), 2181–2186.CrossRefGoogle Scholar
  51. Mintun, M., Larossa, G., Sheline, Y., Dence, C., Lee, S. Y., Mach, R., & Morris, J. (2006). [11C] PIB in a nondemented population potential antecedent marker of Alzheimer disease. Neurology, 67(3), 446–452.CrossRefPubMedGoogle Scholar
  52. Nelson, S. M., Cohen, A. L., Power, J. D., Wig, G. S., Miezin, F. M., Wheeler, M. E., & Schlaggar, B. L. (2010). A parcellation scheme for human left lateral parietal cortex. Neuron, 67(1), 156–170.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Newman, M. E. J. (2008). mathematics of networks. In S. N. Durlauf & L. E. Blume (Eds.), The new palgrave dictionary of economics. Palgrave Macmillan: Basingstoke.Google Scholar
  54. Noble, W. S. (2006). What is a support vector machine? Nature Biotechnology, 24(12), 1565–1567.CrossRefPubMedGoogle Scholar
  55. Ota, K., Oishi, N., Ito, K., Fukuyama, H., & Group, S.-J. S. (2014). A comparison of three brain atlases for MCI prediction. Journal of Neuroscience Methods, 221, 139–150.CrossRefPubMedGoogle Scholar
  56. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56(3), 303–308.CrossRefPubMedGoogle Scholar
  57. Petersen, R. C., Doody, R., Kurz, A., Mohs, R. C., Morris, J. C., Rabins, P. V., & Winblad, B. (2001). Current concepts in mild cognitive impairment. Archives of Neurology, 58(12), 1985–1992.CrossRefPubMedGoogle Scholar
  58. Pihlajamäki, M., DePeau, K. M., Blacker, D., & Sperling, R. A. (2008). Impaired medial temporal repetition suppression is related to failure of parietal deactivation in Alzheimer disease. The American Journal of Geriatric Psychiatry, 16(4), 283–292.CrossRefPubMedGoogle Scholar
  59. Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521.CrossRefPubMedGoogle Scholar
  60. Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., & Schlaggar, B. L. (2011). Functional network organization of the human brain. Neuron, 72(4), 665–678.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.CrossRefGoogle Scholar
  62. Reitz, C., Brayne, C., & Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Reviews Neurology, 7(3), 137–152.CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rish, I., Cecchi, G.A., & Heuton, K. (2012). Schizophrenia classification using functional network features. Paper presented at the SPIE Medical Imaging.Google Scholar
  64. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069.CrossRefPubMedGoogle Scholar
  65. Rubinov, M., & Sporns, O. (2011). Weight-conserving characterization of complex functional brain networks. NeuroImage, 56(4), 2068–2079.CrossRefPubMedGoogle Scholar
  66. Sanz-Arigita, E. J., Schoonheim, M. M., Damoiseaux, J. S., Rombouts, S. A. R. B., Maris, E., Barkhof, F., & Stam, C. J. (2010). Loss of ‘small-world’ networks in Alzheimer's disease: graph analysis of fMRI resting-state functional connectivity. PloS One, 5(11), e13788. doi:10.1371/journal.pone.0013788.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Sheline, Y. I., & Raichle, M. E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biological Psychiatry, 74(5), 340–347.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cerebral Cortex, 22(1), 158–165.CrossRefPubMedGoogle Scholar
  69. Sperling, R. A., LaViolette, P. S., O’Keefe, K., O’Brien, J., Rentz, D. M., Pihlajamaki, M., & Hedden, T. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178–188.CrossRefPubMedPubMedCentralGoogle Scholar
  70. Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., & Selkoe, D. J. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12(1), 27–43.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-world networks and functional connectivity in Alzheimer’s disease. Cerebral Cortex, 17(1), 92–99. doi:10.1093/cercor/bhj127.CrossRefPubMedGoogle Scholar
  72. Suk, H.-I., Lee, S.-W., & Shen, D. (2015a). Deep sparse multi-task learning for feature selection in Alzheimer’s disease diagnosis. Brain Structure and Function, 1–19. doi: 10.1007/s00429-015-1059-y.Google Scholar
  73. Suk, H.-I., Lee, S.-W., & Shen, D. (2015b). Latent feature representation with stacked auto-encoder for AD/MCI diagnosis. Brain Structure and Function, 220(2), 841–859. doi:10.1007/s00429-013-0687-3.CrossRefPubMedGoogle Scholar
  74. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100. doi:10.1371/journal.pcbi.1000100.CrossRefPubMedPubMedCentralGoogle Scholar
  75. Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J., Scheltens, P., & Barkhof, F. (2013). Alzheimer’s disease: connecting findings from graph theoretical studies of brain networks. Neurobiology of Aging, 34(8), 2023–2036.CrossRefPubMedGoogle Scholar
  76. Toussaint, P.-J., Maiz, S., Coynel, D., Doyon, J., Messé, A., de Souza, L. C., & Benali, H. (2014). Characteristics of the default mode functional connectivity in normal ageing and Alzheimer’s disease using resting state fMRI with a combined approach of entropy-based and graph theoretical measurements. NeuroImage, 101, 778–786. doi:10.1016/j.neuroimage.2014.08.003.CrossRefPubMedGoogle Scholar
  77. van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends in Cognitive Sciences, 17(12), 683–696. doi:10.1016/j.tics.2013.09.012.CrossRefPubMedGoogle Scholar
  78. Vapnik, V. (1998). Statistical learning theory. New York: Wiley.Google Scholar
  79. Wang, Z., Jia, X., Liang, P., Qi, Z., Yang, Y., Zhou, W., & Li, K. (2012). Changes in thalamus connectivity in mild cognitive impairment: evidence from resting state fMRI. European Journal of Radiology, 81(2), 277–285.CrossRefPubMedGoogle Scholar
  80. Wang, J., Zuo, X., Dai, Z., Xia, M., Zhao, Z., Zhao, X., & He, Y. (2013). Disrupted functional brain connectome in individuals at risk for Alzheimer’s disease. Biological Psychiatry, 73(5), 472–481.CrossRefPubMedGoogle Scholar
  81. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’networks. Nature, 393(6684), 440–442.CrossRefPubMedGoogle Scholar
  82. Wee, C.-Y., Yap, P.-T., Denny, K., Browndyke, J. N., Potter, G. G., Welsh-Bohmer, K. A., & Shen, D. (2012a). Resting-state multi-spectrum functional connectivity networks for identification of MCI patients. PloS One, 7(5), e37828.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., & Shen, D. (2012b). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59(3), 2045–2056.CrossRefPubMedGoogle Scholar
  84. Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying differences in brain networks. NeuroImage, 53(4), 1197–1207.CrossRefPubMedGoogle Scholar
  85. Zhang, Z., Liu, Y., Jiang, T., Zhou, B., An, N., Dai, H., & Zhang, X. (2012). Altered spontaneous activity in Alzheimer’s disease and mild cognitive impairment revealed by Regional Homogeneity. NeuroImage, 59(2), 1429–1440. doi:10.1016/j.neuroimage.2011.08.049.CrossRefPubMedGoogle Scholar
  86. Zhao, X., Liu, Y., Wang, X., Liu, B., Xi, Q., Guo, Q., & Wang, P. (2012). Disrupted small-world brain networks in moderate Alzheimer’s disease: a resting-state fMRI study. PloS One, 7(3), e33540. doi:10.1371/journal.pone.0033540.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ali Khazaee
    • 1
  • Ata Ebrahimzadeh
    • 1
  • Abbas Babajani-Feremi
    • 2
    • 3
    • 4
  1. 1.Department of Electrical and Computer EngineeringBabol University of TechnologyBabolIran
  2. 2.Department of PediatricsUniversity of Tennessee Health Science CenterMemphisUSA
  3. 3.Department of Anatomy and NeurobiologyUniversity of Tennessee Health Science CenterMemphisUSA
  4. 4.Neuroscience InstituteLe Bonheur Children’s HospitalMemphisUSA

Personalised recommendations