Brain Imaging and Behavior

, Volume 10, Issue 3, pp 772–780 | Cite as

Body position alters human resting-state: Insights from multi-postural magnetoencephalography

  • Robert T. Thibault
  • Michael Lifshitz
  • Amir RazEmail author
Original Research


Neuroimaging researchers tacitly assume that body-position scantily affects neural activity. However, whereas participants in most psychological experiments sit upright, many modern neuroimaging techniques (e.g., fMRI) require participants to lie supine. Sparse findings from electroencephalography and positron emission tomography suggest that body position influences cognitive processes and neural activity. Here we leverage multi-postural magnetoencephalography (MEG) to further unravel how physical stance alters baseline brain activity. We present resting-state MEG data from 12 healthy participants in three orthostatic conditions (i.e., lying supine, reclined at 45°, and sitting upright). Our findings demonstrate that upright, compared to reclined or supine, posture increases left-hemisphere high-frequency oscillatory activity over common speech areas. This proof-of-concept experiment establishes the feasibility of using MEG to examine the influence of posture on brain dynamics. We highlight the advantages and methodological challenges inherent to this approach and lay the foundation for future studies to further investigate this important, albeit little-acknowledged, procedural caveat.


MEG Neuroimaging Posture Supine position Upright position 



Dr. Amir Raz acknowledges funding from the Canada Research Chair program, Discovery and Discovery Acceleration Supplement grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), Canadian Institutes of Health Research, and the BIAL Foundation. Robert T. Thibault acknowledges a Fonds de recherche du Québec - Nature et technologies (FRQNT) graduate scholarship and an Alexander Graham Bell Canada Graduate Scholarship from NSERC. Michael Lifshitz acknowledges a Francisco J. Varela Research Award from the Mind and Life Institute and a Vanier Canada Graduate Scholarship from NSERC.

Conflict of interest

Robert T. Thibault, Michael Lifshitz, and Amir Raz declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all participants included in the study.


  1. Agam, Y., Hämäläinen, M. S., Lee, A. K. C., Dyckman, K. a, Friedman, J. S., Isom, M., et al. (2011). Multimodal neuroimaging dissociates hemodynamic and electrophysiological correlates of error processing. Proceedings of the National Academy of Sciences of the United States of America, 108(42), 17556–17561. doi: 10.1073/pnas.1103475108
  2. Alperin, N., Hushek, S. G., Lee, S. H., Sivaramakrishnan, A., & Lichtor, T. (2005). MRI study of cerebral blood flow and CSF flow dynamics in an upright posture: the effect of posture on the intracranial compliance and pressure. Acta Neurochirurgica. Supplement, 95, 177–181 Scholar
  3. Bastiaansen, M. C. M., & Knösche, T. R. (2000). Tangential derivative mapping of axial MEG applied to event-related desynchronization research. Clinical Neurophysiology, 111, 1300–1305. doi: 10.1016/S1388-2457(00)00272-8.CrossRefPubMedGoogle Scholar
  4. Berridge, C. W., & Waterhouse, B. D. (2003). The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain research. Brain Research Reviews, 42(1), 33–84 Scholar
  5. Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage, 40(2), 644–654. doi: 10.1016/j.neuroimage.2007.11.059.CrossRefPubMedGoogle Scholar
  6. Brookes, M., Woolrich, M., Luckhoo, H., Price, D., Hale, Stephenson, M., et al. (2011). Investigating the electrophysiological basis of resting state networks using magnetoencephalography. Proceedings of the National Academy of Sciences of the United States of America, 108(40), 16783–16788. doi: 10.1073/pnas.1112685108.
  7. Chang, L.-J., Lin, J.-F., Lin, C.-F., Wu, K.-T., Wang, Y.-M., & Kuo, C.-D. (2011). Effect of body position on bilateral EEG alterations and their relationship with autonomic nervous modulation in normal subjects. Neuroscience Letters, 490(2), 96–100. doi: 10.1016/j.neulet.2010.12.034.CrossRefPubMedGoogle Scholar
  8. Cole, R. J. (1989). Postural baroreflex stimuli may affect EEG arousal and sleep in humans. Journal of Applied Physiology, 67(6), 2369–2375 Scholar
  9. De Pasquale, F., Della Penna, S., Snyder, A. Z., Lewis, C., Mantini, D., Marzetti, L., et al. (2010). Temporal dynamics of spontaneous MEG activity in brain networks. Proceedings of the National Academy of Sciences of the United States of America, 107(13), 6040–6045. doi: 10.1073/pnas.0913863107.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Deco, G., Jirsa, V. K., & McIntosh, A. R. (2011). Emerging concepts for the dynamical organization of resting-state activity in the brain. Nature reviews. Neuroscience, 12(1), 43–56. doi: 10.1038/nrn2961.PubMedGoogle Scholar
  11. Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003). EMG contamination of EEG: Spectral and topographical characteristics. Clinical Neurophysiology, 114(9), 1580–1593. doi: 10.1016/S1388-2457(03)00093-2.CrossRefPubMedGoogle Scholar
  12. Gross, J., Baillet, S., Barnes, G. R., Henson, R. N., Hillebrand, A., Jensen, O., et al. (2013). Good practice for conducting and reporting MEG research. NeuroImage, 65, 349–363. doi: 10.1016/j.neuroimage.2012.10.001.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hillebrand, A., & Barnes, G. R. (2002). A quantitative assessment of the sensitivity of whole-head MEG to activity in the adult human cortex. NeuroImage, 16(3 Pt 1), 638–650. doi: 10.1006/nimg.2002.1102.CrossRefPubMedGoogle Scholar
  14. Jensen, O., Kaiser, J., & Lachaux, J.-P. (2007). Human gamma-frequency oscillations associated with attention and memory. Trends in Neurosciences, 30(7), 317–324. doi: 10.1016/j.tins.2007.05.001.CrossRefPubMedGoogle Scholar
  15. Johnson, B. W., Crain, S., Thornton, R., Tesan, G., & Reid, M. (2010). Measurement of brain function in pre-school children using a custom sized whole-head MEG sensor array. Clinical Neurophysiology, 121(3), 340–349. doi: 10.1016/j.clinph.2009.10.017.CrossRefPubMedGoogle Scholar
  16. Jones, D. T., Vemuri, P., Murphy, M. C., Gunter, J. L., Senjem, M. L., Machulda, M. M., et al. (2012). Non-stationarity in the “resting brain’s” modular architecture. PloS one, 7(6), e39731. doi: 10.1371/journal.pone.0039731.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lei, X., Xu, P., Luo, C., Zhao, J., Zhou, D., & Yao, D. (2011). fMRI functional networks for EEG source imaging. Human Brain Mapping, 32(7), 1141–1160. doi: 10.1002/hbm.21098.CrossRefPubMedGoogle Scholar
  18. Lei, X., Hu, J., & Yao, D. (2012). Incorporating FMRI functional networks in EEG source imaging: a Bayesian model comparison approach. Brain Topography, 25(1), 27–38. doi: 10.1007/s10548-011-0187-9.CrossRefPubMedGoogle Scholar
  19. Lipnicki, D. M., & Byrne, D. G. (2005). Thinking on your back: solving anagrams faster when supine than when standing. Brain research. Cognitive Brain Research, 24(3), 719–722. doi: 10.1016/j.cogbrainres.2005.03.003.CrossRefPubMedGoogle Scholar
  20. Lipnicki, D. M., & Byrne, D. G. (2008). An effect of posture on anticipatory anxiety. The International Journal of Neuroscience, 118(2), 227–237. doi: 10.1080/00207450701750463.CrossRefPubMedGoogle Scholar
  21. Lundström, J. N., Boyle, J. A., & Jones-Gotman, M. (2008). Body position-dependent shift in odor percept present only for perithreshold odors. Chemical Senses, 33(1), 23–33. doi: 10.1093/chemse/bjm059.CrossRefPubMedGoogle Scholar
  22. Mohrman, D. E., & Heller, L. J. (2003). Cardiovascular Physiology. New York: Lange Medical Books/McGraw-Hill.Google Scholar
  23. Moradi, F., Liu, L. C., Cheng, K., Waggoner, R. A., Tanaka, K., & Ioannides, A. A. (2003). Consistent and precise localization of brain activity in human primary visual cortex by MEG and fMRI. NeuroImage, 18(3), 595–609. doi: 10.1016/S1053-8119(02)00053-8.CrossRefPubMedGoogle Scholar
  24. Muthukumaraswamy, S. D. (2013). High-frequency brain activity and muscle artifacts in MEG/EEG: a review and recommendations. Frontiers in Human Neuroscience, 7(April), 138. doi: 10.3389/fnhum.2013.00138.PubMedPubMedCentralGoogle Scholar
  25. Niessing, J., Ebisch, B., Schmidt, K. E., Niessing, M., Singer, W., & Galuske, R. A. W. (2005). Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science (New York, N.Y.), 309(5736), 948–951. doi: 10.1126/science.1110948.CrossRefGoogle Scholar
  26. Nir, Y., Fisch, L., Mukamel, R., Gelbard-Sagiv, H., Arieli, A., Fried, I., & Malach, R. (2007). Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI Is Related to Interneuronal Correlations. Current Biology, 17, 1275–1285. doi: 10.1016/j.cub.2007.06.066.CrossRefPubMedGoogle Scholar
  27. Okada, Y. C., Wu, J., & Kyuhou, S. (1997). Genesis of MEG signals in a mammalan CNS sructure. Electroencephalography and Clinical Neurophysiology, 103, 474–485.CrossRefPubMedGoogle Scholar
  28. Okamoto, M., Dan, H., Sakamoto, K., Takeo, K., Shimizu, K., Kohno, S., et al. (2004). Three-dimensional probabilistic anatomical cranio-cerebral correlation via the international 10-20 system oriented for transcranial functional brain mapping. NeuroImage, 21(1), 99–111. doi: 10.1016/j.neuroimage.2003.08.026.CrossRefPubMedGoogle Scholar
  29. Ouchi, Y., Okada, H., Yoshikawa, E., Futatsubashi, M., & Nobezawa, S. (2001). Absolute Changes in Regional Cerebral Blood Flow in Association with Upright Posture in. Journal of Nuclear Medicine, 42(5), 707–712.PubMedGoogle Scholar
  30. Ouchi, Y., Yoshikawa, E., Kanno, T., Futatsubashi, M., Sekine, Y., Okada, H., et al. (2005). Orthostatic posture affects brain hemodynamics and metabolism in cerebrovascular disease patients with and without coronary artery disease: a positron emission tomography study. NeuroImage, 24(1), 70–81. doi: 10.1016/j.neuroimage.2004.07.044.CrossRefPubMedGoogle Scholar
  31. Poghosyan, V., & Ioannides, A. A. (2007). Precise mapping of early visual responses in space and time. NeuroImage, 35(2), 759–770. doi: 10.1016/j.neuroimage.2006.11.052.CrossRefPubMedGoogle Scholar
  32. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.CrossRefPubMedGoogle Scholar
  33. Ramon, C., Schimpf, P., Haueisen, J., Holmes, M., & Ishimaru, A. (2004). Role of soft bone, CSF and gray matter in EEG simulations. Brain Topography, 16(4), 245–248 Scholar
  34. Rau, H., & Elbert, T. (2001). Psychophysiology of arterial baroreceptors and the etiology of hypertension. Biological Psychology, 57(1-3), 179–201 Scholar
  35. Raz, A., Lieber, B., Soliman, F., Buhle, J., Posner, J., Peterson, B. S., & Posner, M. I. (2005). Ecological nuances in functional magnetic resonance imaging (fMRI): psychological stressors, posture, and hydrostatics. NeuroImage, 25(1), 1–7. doi: 10.1016/j.neuroimage.2004.11.015.
  36. Rehder, K. (1998). Postural changes in respiratory function. Acta Anaesthesiologica Scandinavica. Supplementum, 113, 13–16 Scholar
  37. Rice, J. K., Rorden, C., Little, J. S., & Parra, L. C. (2013). Subject position affects EEG magnitudes. NeuroImage, 64, 476–484. doi: 10.1016/j.neuroimage.2012.09.041.CrossRefPubMedGoogle Scholar
  38. Shmuel, A., & Leopold, D. A. (2008). Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: Implications for functional connectivity at rest. Human Brain Mapping, 29(7), 751–761. doi: 10.1002/hbm.20580.CrossRefPubMedGoogle Scholar
  39. Spironelli, C., & Angrilli, A. (2011). Influence of body position on cortical pain-related somatosensory processing: an ERP study. PloS one, 6(9), e24932. doi: 10.1371/journal.pone.0024932.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Stolk, A., Todorovic, A., Schoffelen, J. M., & Oostenveld, R. (2013). Online and offline tools for head movement compensation in MEG. NeuroImage, 68, 39–48. doi: 10.1016/j.neuroimage.2012.11.047.CrossRefPubMedGoogle Scholar
  41. Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64(3), 479–498. doi: 10.1111/1467-9868.00346.CrossRefGoogle Scholar
  42. Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: a user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 879716. doi: 10.1155/2011/879716.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Thibault, R. T., Lifshitz, M., Jones, J. M., & Raz, A. (2014). Posture alters human resting-state. Cortex, 58, 199–205. doi: 10.1016/j.cortex.2014.06.014.CrossRefPubMedGoogle Scholar
  44. Vorwerk, J., Cho, J.-H., Rampp, S., Hamer, H., Knösche, T. R., & Wolters, C. H. (2014). A guideline for head volume conductor modeling in EEG and MEG. NeuroImage, 100, 590–607. doi: 10.1016/j.neuroimage.2014.06.040.CrossRefPubMedGoogle Scholar
  45. Wendel, K., Narra, N. G., Hannula, M., Kauppinen, P., & Malmivuo, J. (2008). The influence of CSF on EEG sensitivity distributions of multilayered head models. IEEE Transactions on Bio-medical Engineering, 55(4), 1454–1456. doi: 10.1109/TBME.2007.912427.CrossRefPubMedGoogle Scholar
  46. Westfall, P., & Tobias, R. (1999). Advances in multiple comparison and multiple test using the SAS System. In Proceedings of the 24th Annual SAS Users Group International Conference.Google Scholar
  47. Wolters, C. H., Anwander, A., Tricoche, X., Weinstein, D., Koch, M. A., & MacLeod, R. S. (2006). Influence of tissue conductivity anisotropy on EEG/MEG field and return current computation in a realistic head model: A simulation and visualization study using high-resolution finite element modeling. NeuroImage, 30, 813–826. doi: 10.1016/j.neuroimage.2005.10.014.CrossRefPubMedGoogle Scholar
  48. Xiang, J., Luo, Q., Kotecha, R., Korman, A., Zhang, F., Luo, H., et al. (2014). Accumulated source imaging of brain activity with both low and high-frequency neuromagnetic signals. Frontiers in Neuroinformatics, 8(May), 57. doi: 10.3389/fninf.2014.00057.PubMedPubMedCentralGoogle Scholar
  49. Xu, P., Huang, R., Wang, J., Van Dam, N. T., Xie, T., Dong, Z., et al. (2014). Different topological organization of human brain functional networks with eyes open versus eyes closed. NeuroImage, 90, 246–255. doi: 10.1016/j.neuroimage.2013.12.060.CrossRefPubMedGoogle Scholar
  50. Yan, C., Liu, D., He, Y., Zou, Q., Zhu, C., Zuo, X., et al. (2009). Spontaneous brain activity in the default mode network is sensitive to different resting-state conditions with limited cognitive load. PloS one, 4(5), e5743. doi: 10.1371/journal.pone.0005743.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Robert T. Thibault
    • 1
  • Michael Lifshitz
    • 1
  • Amir Raz
    • 1
    • 2
    Email author
  1. 1.McGill UniversityMontrealCanada
  2. 2.The Lady Davis Institute for Medical Research & Institute for Family and Community PsychiatryJewish General HospitalMontrealCanada

Personalised recommendations