Advertisement

Brain Imaging and Behavior

, Volume 9, Issue 3, pp 367–402 | Cite as

Advanced neuroimaging applied to veterans and service personnel with traumatic brain injury: state of the art and potential benefits

  • Elisabeth A. WildeEmail author
  • Sylvain Bouix
  • David F. Tate
  • Alexander P. Lin
  • Mary R. Newsome
  • Brian A. Taylor
  • James R. Stone
  • James Montier
  • Samuel E. Gandy
  • Brian Biekman
  • Martha E. Shenton
  • Gerald York
Military\\/Veteran TBI

Abstract

Traumatic brain injury (TBI) remains one of the most prevalent forms of morbidity among Veterans and Service Members, particularly for those engaged in the conflicts in Iraq and Afghanistan. Neuroimaging has been considered a potentially useful diagnostic and prognostic tool across the spectrum of TBI generally, but may have particular importance in military populations where the diagnosis of mild TBI is particularly challenging, given the frequent lack of documentation on the nature of the injuries and mixed etiologies, and highly comorbid with other disorders such as post-traumatic stress disorder, depression, and substance misuse. Imaging has also been employed in attempts to understand better the potential late effects of trauma and to evaluate the effects of promising therapeutic interventions. This review surveys the use of structural and functional neuroimaging techniques utilized in military studies published to date, including the utilization of quantitative fluid attenuated inversion recovery (FLAIR), susceptibility weighted imaging (SWI), volumetric analysis, diffusion tensor imaging (DTI), magnetization transfer imaging (MTI), positron emission tomography (PET), magnetoencephalography (MEG), task-based and resting state functional MRI (fMRI), arterial spin labeling (ASL), and magnetic resonance spectroscopy (MRS). The importance of quality assurance testing in current and future research is also highlighted. Current challenges and limitations of each technique are outlined, and future directions are discussed.

Keywords

Traumatic brain injury Magnetic resonance imaging Diffusion tensor imaging fMRI Positron emission tomography Magnetic resonance spectroscopy Veteran 

Notes

Acknowledgments

The authors recognize the support of the US Department of Veterans Affairs (EAW, BAT, SG, MRN, MES, SG), the VA MERIT review grant program (1I01RX000684-01A2: SG, 1I01RX001062-01A1: EAW, MRN, and 1 I01 RX000928: MES, SB), and VA SPIRE program (VA 1 I21RX001565 BAT, and VA 1 I21RX001608 MRN); the Department of Defense Office of the Congressionally Directed Medical Research Programs (CDMRP) (W81XWH-10-1-0835: APL; X81XWH-07-CC-CSDoD: MES, SB), the National Institutes of Health (R01-NS078337: APL, MES, SB), Telemedicine and Advanced Technology Research Center (TATRC) at the U.S. Army Medical Research and Material Command (USAMRMC; W81XWH-13-2-0025: DFT), United States Army Medical Research Acquisition Activity (USAMRAA; W81XWH-09-2-0160: JRS, SG), the Chronic Effects Neurotrauma Consortium (CENC; PT108802-SC106187 and 1W81XWH-13-2-0095), and the Alzheimer’s Drug Discovery Foundation (SG). We also wish to thank Rhonda O’Donovan for her assistance in manuscript preparation.

Conflict of interest

The authors declare that they have no competing interests.

References

  1. Allen, E. A., Erhardt, E. B., Damaraju, E., Gruner, W., Segall, J. M., Silva, R. F., et al. (2011). A baseline for the multivariate comparison of resting-state networks. Frontiers in Systems Neuroscience, 5, 2. doi: 10.3389/fnsys.2011.00002.PubMedCentralPubMedGoogle Scholar
  2. Alsop, D. C., Detre, J. A., Golay, X., Gunther, M., Hendrikse, J., Hernandez-Garcia, L., et al. (2014). Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magnetic Resonance in Medicine. doi: 10.1002/mrm.25197.PubMedCentralGoogle Scholar
  3. Amann, M., Sprenger, T., Naegelin, Y., Reinhardt, J., Kuster, P., Hirsch, J. G., et al. (2015). Comparison between balanced steady-state free precession and standard spoiled gradient echo magnetization transfer ratio imaging in multiple sclerosis: methodical and clinical considerations. NeuroImage, 108, 87–94. doi: 10.1016/j.neuroimage.2014.12.045.PubMedCrossRefGoogle Scholar
  4. Aoki, Y., Inokuchi, R., Gunshin, M., Yahagi, N., & Suwa, H. (2012). Diffusion tensor imaging studies of mild traumatic brain injury: a meta-analysis. [Meta-Analysis]. Journal of Neurology, Neurosurgery, and Psychiatry, 83(9), 870–876. doi: 10.1136/jnnp-2012-302742.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aron, A. R., Fletcher, P. C., Bullmore, E. T., Sahakian, B. J., & Robbins, T. W. (2003). Stop-signal inhibition disrupted by damage to right inferior frontal gyrus in humans. [Research Support, Non-U.S. Gov’t]. Nature Neuroscience, 6(2), 115–116. doi: 10.1038/nn1003.PubMedCrossRefGoogle Scholar
  6. Ashwal, S., Holshouser, B., Tong, K., Serna, T., Osterdock, R., Gross, M., et al. (2004). Proton spectroscopy detected myoinositol in children with traumatic brain injury. Pediatric Research, 56(4), 630–638. doi: 10.1203/01.PDR.0000139928.60530.7D.PubMedCrossRefGoogle Scholar
  7. Ashwal, S., Babikian, T., Gardner-Nichols, J., Freier, M. C., Tong, K. A., & Holshouser, B. A. (2006). Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. [Review]. Archives of Physical Medicine and Rehabilitation, 87(12 Suppl 2), S50–S58. doi: 10.1016/j.apmr.2006.07.275.PubMedCrossRefGoogle Scholar
  8. Bagley, L. J., McGowan, J. C., Grossman, R. I., Sinson, G., Kotapka, M., Lexa, F. J., et al. (2000). Magnetization transfer imaging of traumatic brain injury. [Research Support, U.S. Gov’t, P.H.S.]. Journal of Magnetic Resonance Imaging, 11(1), 1–8.PubMedCrossRefGoogle Scholar
  9. Barker, J. W., Han, P. K., Choi, S. H., Bae, K. T., & Park, S. H. (2015). Investigation of inter-slice magnetization transfer effects as a new method for MTR imaging of the human brain. PloS One, 10(2), e0117101. doi: 10.1371/journal.pone.0117101.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance. Series B, 111(3), 209–219.PubMedCrossRefGoogle Scholar
  11. Bauman, R. A., Ling, G., Tong, L., Januszkiewicz, A., Agoston, D., Delanerolle, N., et al. (2009). An introductory characterization of a combat-casualty-care relevant swine model of closed head injury resulting from exposure to explosive blast. Journal of Neurotrauma, 26(6), 841–860. doi: 10.1089/neu.2009-0898.PubMedCrossRefGoogle Scholar
  12. Bazarian, J. J., Donnelly, K., Peterson, D. R., Warner, G. C., Zhu, T., & Zhong, J. (2013). The relation between posttraumatic stress disorder and mild traumatic brain injury acquired during Operations Enduring Freedom and Iraqi Freedom. [Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 28(1), 1–12. doi: 10.1097/HTR.0b013e318256d3d3.PubMedCrossRefGoogle Scholar
  13. Beauchamp, M. H., Beare, R., Ditchfield, M., Coleman, L., Babl, F. E., Kean, M., et al. (2013). Susceptibility weighted imaging and its relationship to outcome after pediatric traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Cortex, 49(2), 591–598. doi: 10.1016/j.cortex.2012.08.015.PubMedCrossRefGoogle Scholar
  14. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. [Comparative Study Research Support, Non-U.S. Gov’t]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. doi: 10.1098/rstb.2005.1634.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Bendlin, B. B., Ries, M. L., Lazar, M., Alexander, A. L., Dempsey, R. J., Rowley, H. A., et al. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 42(2), 503–514. doi: 10.1016/j.neuroimage.2008.04.254.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Bigler, E. D. (2001). Distinguished Neuropsychologist Award Lecture 1999. The lesion(s) in traumatic brain injury: implications for clinical neuropsychology. Archives of Clinical Neuropsychology, 16(2), 95–131.PubMedCrossRefGoogle Scholar
  17. Bigler, E. D., Anderson, C. V., & Blatter, D. D. (2002). Temporal lobe morphology in normal aging and traumatic brain injury. [Research Support, Non-U.S. Gov’t]. AJNR. American Journal of Neuroradiology, 23(2), 255–266.PubMedGoogle Scholar
  18. Bigler, E. D., Abildskov, T. J., Petrie, J., Farrer, T. J., Dennis, M., Simic, N., et al. (2013). Heterogeneity of brain lesions in pediatric traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuropsychology, 27(4), 438–451. doi: 10.1037/a0032837.PubMedCrossRefGoogle Scholar
  19. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. [Research Support, U.S. Gov’t, P.H.S.]. Magnetic Resonance in Medicine, 34(4), 537–541.PubMedCrossRefGoogle Scholar
  20. Bouix, S., Pasternak, O., Rathi, Y., Pelavin, P. E., Zafonte, R., & Shenton, M. E. (2013). Increased gray matter diffusion anisotropy in patients with persistent post-concussive symptoms following mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. PloS One, 8(6), e66205. doi: 10.1371/journal.pone.0066205.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Brown, S., Freeman, T., Kimbrell, T., Cardwell, D., & Komoroski, R. (2003). In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of former prisoners of war with and without posttraumatic stress disorder. [Comparative Study]. The Journal of Neuropsychiatry and Clinical Neurosciences, 15(3), 367–370.PubMedCrossRefGoogle Scholar
  22. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011.PubMedCrossRefGoogle Scholar
  23. Budde, M. D., Janes, L., Gold, E., Turtzo, L. C., & Frank, J. A. (2011). The contribution of gliosis to diffusion tensor anisotropy and tractography following traumatic brain injury: validation in the rat using Fourier analysis of stained tissue sections. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Brain, 134(Pt 8), 2248–2260. doi: 10.1093/brain/awr161.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Budde, M. D., Shah, A., McCrea, M., Cullinan, W. E., Pintar, F. A., & Stemper, B. D. (2013). Primary blast traumatic brain injury in the rat: relating diffusion tensor imaging and behavior. Frontiers in Neurology, 4, 154. doi: 10.3389/fneur.2013.00154.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Byrnes, K. R., Wilson, C. M., Brabazon, F., von Leden, R., Jurgens, J. S., Oakes, T. R., et al. (2014). FDG-PET imaging in mild traumatic brain injury: a critical review. [Review]. Frontiers in Neuroenergetics, 5, 13. doi: 10.3389/fnene.2013.00013.PubMedCentralPubMedCrossRefGoogle Scholar
  26. Calabrese, E., Du, F., Garman, R. H., Johnson, G. A., Riccio, C., Tong, L. C., et al. (2014). Diffusion tensor imaging reveals white matter injury in a rat model of repetitive blast-induced traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 31(10), 938–950. doi: 10.1089/neu.2013.3144.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Callaghan, M. F., Freund, P., Draganski, B., Anderson, E., Cappelletti, M., Chowdhury, R., et al. (2014). Widespread age-related differences in the human brain microstructure revealed by quantitative magnetic resonance imaging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neurobiology of Aging, 35(8), 1862–1872. doi: 10.1016/j.neurobiolaging.2014.02.008.PubMedCentralPubMedCrossRefGoogle Scholar
  28. Castellanos, N. P., Leyva, I., Buldu, J. M., Bajo, R., Paul, N., Cuesta, P., et al. (2011). Principles of recovery from traumatic brain injury: reorganization of functional networks. [Research Support, Non-U.S. Gov’t]. NeuroImage, 55(3), 1189–1199. doi: 10.1016/j.neuroimage.2010.12.046.PubMedCrossRefGoogle Scholar
  29. Cecil, K. M., Hills, E. C., Sandel, M. E., Smith, D. H., McIntosh, T. K., Mannon, L. J., et al. (1998). Proton magnetic resonance spectroscopy for detection of axonal injury in the splenium of the corpus callosum of brain-injured patients. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Journal of Neurosurgery, 88(5), 795–801. doi: 10.3171/jns.1998.88.5.0795.PubMedCrossRefGoogle Scholar
  30. Cernak, I., & Noble-Haeusslein, L. J. (2010). Traumatic brain injury: an overview of pathobiology with emphasis on military populations. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Journal of Cerebral Blood Flow and Metabolism, 30(2), 255–266. doi: 10.1038/jcbfm.2009.203.PubMedCentralPubMedCrossRefGoogle Scholar
  31. Chamard, E., Theoret, H., Skopelja, E. N., Forwell, L. A., Johnson, A. M., & Echlin, P. S. (2012). A prospective study of physician-observed concussion during a varsity university hockey season: metabolic changes in ice hockey players. Part 4 of 4. [Research Support, Non-U.S. Gov’t]. Neurosurgical Focus, 33(6), E4. doi: 10.3171/2012.10.FOCUS12305. 1–7.PubMedCrossRefGoogle Scholar
  32. Chamard, E., Lassonde, M., Henry, L., Tremblay, J., Boulanger, Y., De Beaumont, L., et al. (2013). Neurometabolic and microstructural alterations following a sports-related concussion in female athletes. Brain Injury, 27(9), 1038–1046. doi: 10.3109/02699052.2013.794968.PubMedCrossRefGoogle Scholar
  33. Choe, A. S., Belegu, V., Yoshida, S., Joel, S., Sadowsky, C. L., Smith, S. A., et al. (2013). Extensive neurological recovery from a complete spinal cord injury: a case report and hypothesis on the role of cortical plasticity. Frontiers in Human Neuroscience, 7, 290. doi: 10.3389/fnhum.2013.00290.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Cohen, B. A., Inglese, M., Rusinek, H., Babb, J. S., Grossman, R. I., & Gonen, O. (2007). Proton MR spectroscopy and MRI-volumetry in mild traumatic brain injury. [Controlled Clinical Trial Research Support, N.I.H., Extramural]. AJNR. American Journal of Neuroradiology, 28(5), 907–913.PubMedGoogle Scholar
  35. Corbo, V., Salat, D. H., Amick, M. M., Leritz, E. C., Milberg, W. P., & McGlinchey, R. E. (2014). Reduced cortical thickness in veterans exposed to early life trauma. [Research Support, U.S. Gov’t, Non-P.H.S.]. Psychiatry Research, 223(2), 53–60. doi: 10.1016/j.pscychresns.2014.04.013.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Coughlin, J. M., Wang, Y., Munro, C. A., Ma, S., Yue, C., Chen, S., et al. (2015). Neuroinflammation and brain atrophy in former NFL players: an in vivo multimodal imaging pilot study. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neurobiology of Disease, 74, 58–65. doi: 10.1016/j.nbd.2014.10.019.PubMedCrossRefGoogle Scholar
  37. Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., et al. (2014). Primary age-related tauopathy (PART): a common pathology associated with human aging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Acta Neuropathologica, 128(6), 755–766. doi: 10.1007/s00401-014-1349-0.PubMedPubMedCentralCrossRefGoogle Scholar
  38. da Costa, L., Robertson, A., Bethune, A., MacDonald, M. J., Shek, P. N., Taylor, M. J., et al. (2014). Delayed and disorganised brain activation detected with magnetoencephalography after mild traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry. doi: 10.1136/jnnp-2014-308571.PubMedCentralGoogle Scholar
  39. Davenport, N. D., Lim, K. O., Armstrong, M. T., & Sponheim, S. R. (2012). Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 59(3), 2017–2024. doi: 10.1016/j.neuroimage.2011.10.050.PubMedCrossRefGoogle Scholar
  40. Davenport, N. D., Lim, K. O., & Sponheim, S. R. (2015). White matter abnormalities associated with military PTSD in the context of blast TBI. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 36(3), 1053–1064. doi: 10.1002/hbm.22685.PubMedCrossRefGoogle Scholar
  41. Descoteaux, M., Deriche, R., Le Bihan, D., Mangin, J. F., & Poupon, C. (2011). Multiple q-shell diffusion propagator imaging. [Research Support, Non-U.S. Gov’t]. Medical Image Analysis, 15(4), 603–621. doi: 10.1016/j.media.2010.07.001.PubMedCrossRefGoogle Scholar
  42. Detre, J. A., Leigh, J. S., Williams, D. S., & Koretsky, A. P. (1992). Perfusion imaging. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Magnetic Resonance in Medicine, 23(1), 37–45.PubMedCrossRefGoogle Scholar
  43. Ding, K., Marquez de la Plata, C., Wang, J. Y., Mumphrey, M., Moore, C., Harper, C., et al. (2008). Cerebral atrophy after traumatic white matter injury: correlation with acute neuroimaging and outcome. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 25(12), 1433–1440. doi: 10.1089/neu.2008.0683.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Dortch, R. D., Moore, J., Li, K., Jankiewicz, M., Gochberg, D. F., Hirtle, J. A., et al. (2013). Quantitative magnetization transfer imaging of human brain at 7 T. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 64, 640–649. doi: 10.1016/j.neuroimage.2012.08.047.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Doshi, H., Wiseman, N., Liu, J., Wang, W., Welch, R. D., O’Neil, B. J., et al. (2015). Cerebral hemodynamic changes of mild traumatic brain injury at the acute stage. PloS One, 10(2), e0118061. doi: 10.1371/journal.pone.0118061.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Ennis, D. B., & Kindlmann, G. (2006). Orthogonal tensor invariants and the analysis of diffusion tensor magnetic resonance images. [Research Support, N.I.H., Extramural]. Magnetic Resonance in Medicine, 55(1), 136–146. doi: 10.1002/mrm.20741.PubMedCrossRefGoogle Scholar
  47. Farbota, K. D., Sodhi, A., Bendlin, B. B., McLaren, D. G., Xu, G., Rowley, H. A., et al. (2012). Longitudinal volumetric changes following traumatic brain injury: a tensor-based morphometry study. [Research Support, N.I.H., Extramural]. Journal of the International Neuropsychological Society, 18(6), 1006–1018. doi: 10.1017/S1355617712000835.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Fischer, B. L., Parsons, M., Durgerian, S., Reece, C., Mourany, L., Lowe, M. J., et al. (2014). Neural activation during response inhibition differentiates blast from mechanical causes of mild to moderate traumatic brain injury. [Comparative Study Randomized Controlled Trial]. Journal of Neurotrauma, 31(2), 169–179. doi: 10.1089/neu.2013.2877.PubMedCentralPubMedCrossRefGoogle Scholar
  49. Folkersma, H., Boellaard, R., Vandertop, W. P., Kloet, R. W., Lubberink, M., Lammertsma, A. A., et al. (2009). Reference tissue models and blood–brain barrier disruption: lessons from (R)-[11C]PK11195 in traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Journal of Nuclear Medicine, 50(12), 1975–1979. doi: 10.2967/jnumed.109.067512.PubMedCrossRefGoogle Scholar
  50. Folkersma, H., Boellaard, R., Yaqub, M., Kloet, R. W., Windhorst, A. D., Lammertsma, A. A., et al. (2011). Widespread and prolonged increase in (R)-(11)C-PK11195 binding after traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Journal of Nuclear Medicine, 52(8), 1235–1239. doi: 10.2967/jnumed.110.084061.PubMedCrossRefGoogle Scholar
  51. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. doi: 10.1073/pnas.0504136102.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Franklin, T. R., Shin, J., Jagannathan, K., Suh, J. J., Detre, J. A., O’Brien, C. P., et al. (2012). Acute baclofen diminishes resting baseline blood flow to limbic structures: a perfusion fMRI study. [Research Support, N.I.H., Extramural]. Drug and Alcohol Dependence, 125(1–2), 60–66. doi: 10.1016/j.drugalcdep.2012.03.016.PubMedCentralPubMedCrossRefGoogle Scholar
  53. Freeman, T. W., Cardwell, D., Karson, C. N., & Komoroski, R. A. (1998). In vivo proton magnetic resonance spectroscopy of the medial temporal lobes of subjects with combat-related posttraumatic stress disorder. [Clinical Trial Controlled Clinical Trial]. Magnetic Resonance in Medicine, 40(1), 66–71.PubMedCrossRefGoogle Scholar
  54. Friedman, L., & Glover, G. H. (2006). Report on a multicenter fMRI quality assurance protocol. [Research Support, N.I.H., Extramural Review]. Journal of Magnetic Resonance Imaging, 23(6), 827–839. doi: 10.1002/jmri.20583.PubMedCrossRefGoogle Scholar
  55. Gandy, S. E., Snow, R. B., Zimmerman, R. D., & Deck, M. D. (1984). Cranial nuclear magnetic resonance imaging in head trauma. [Case Reports]. Annals of Neurology, 16(2), 254–257. doi: 10.1002/ana.410160217.PubMedCrossRefGoogle Scholar
  56. Garcia-Panach, J., Lull, N., Lull, J. J., Ferri, J., Martinez, C., Sopena, P., et al. (2011). A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas. Journal of Neurotrauma, 28(9), 1707–1717. doi: 10.1089/neu.2011.1851.PubMedCrossRefGoogle Scholar
  57. Gardner, A., Iverson, G. L., & Stanwell, P. (2014). A systematic review of proton magnetic resonance spectroscopy findings in sport-related concussion. [Review]. Journal of Neurotrauma, 31(1), 1–18. doi: 10.1089/neu.2013.3079.PubMedCrossRefGoogle Scholar
  58. Garnett, M. R., Blamire, A. M., Corkill, R. G., Cadoux-Hudson, T. A., Rajagopalan, B., & Styles, P. (2000). Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. [Clinical Trial Research Support, Non-U.S. Gov’t]. Brain, 123(Pt 10), 2046–2054.PubMedCrossRefGoogle Scholar
  59. Gasparovic, C., Yeo, R., Mannell, M., Ling, J., Elgie, R., Phillips, J., et al. (2009). Neurometabolite concentrations in gray and white matter in mild traumatic brain injury: an 1H-magnetic resonance spectroscopy study. Journal of Neurotrauma, 26(10), 1635–1643. doi: 10.1089/neu.2009-0896.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Gholipour, A., Kehtarnavaz, N., Scherrer, B., & Warfield, S. K. (2011). On the accuracy of unwarping techniques for the correction of susceptibility-induced geometric distortion in magnetic resonance Echo-planar images. [Research Support, N.I.H., Extramural]. Conference of the IEEE Engineering in Medicine and Biology Society, 2011, 6997–7000. doi: 10.1109/IEMBS.2011.6091769.Google Scholar
  61. Guskiewicz, K. M., & Valovich McLeod, T. C. (2011). Pediatric sports-related concussion. [Review]. PM & R, 3(4), 353–364. doi: 10.1016/j.pmrj.2010.12.006. quiz 364.CrossRefGoogle Scholar
  62. Haacke, E. M., Raza, W., Wu, B., & Kou, Z. (2013). The presence of venous damage and microbleeds in traumatic brain injury and the potential future role of angiographic and perfusion magnetic resonance imaging. In C. W. Kreipke & J. A. Rafols (Eds.), Cerebral blood flow, metabolism, and head trauma (pp. 75–94). New York: Springer.CrossRefGoogle Scholar
  63. Han, K., Mac Donald, C. L., Johnson, A. M., Barnes, Y., Wierzechowski, L., Zonies, D., et al. (2014). Disrupted modular organization of resting-state cortical functional connectivity in U.S. military personnel following concussive ‘mild’ blast-related traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 84, 76–96. doi: 10.1016/j.neuroimage.2013.08.017.PubMedCrossRefGoogle Scholar
  64. Hariri, A. R., Tessitore, A., Mattay, V. S., Fera, F., & Weinberger, D. R. (2002). The amygdala response to emotional stimuli: a comparison of faces and scenes. [Clinical Trial Comparative Study Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 17(1), 317–323.PubMedCrossRefGoogle Scholar
  65. Harrison, N. A., Cooper, E., Dowell, N. G., Keramida, G., Voon, V., Critchley, H. D., et al. (2014). Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biological Psychiatry. doi: 10.1016/j.biopsych.2014.09.023.Google Scholar
  66. Hartkamp, N. S., van Osch, M. J., Kappelle, J., & Bokkers, R. P. (2014). Arterial spin labeling magnetic resonance perfusion imaging in cerebral ischemia. [Research Support, Non-U.S. Gov’t Review]. Current Opinion in Neurology, 27(1), 42–53. doi: 10.1097/WCO.0000000000000051.PubMedCrossRefGoogle Scholar
  67. Haseler, L. J., Arcinue, E., Danielsen, E. R., Bluml, S., & Ross, B. D. (1997). Evidence from proton magnetic resonance spectroscopy for a metabolic cascade of neuronal damage in shaken baby syndrome. [Research Support, Non-U.S. Gov’t]. Pediatrics, 99(1), 4–14.PubMedCrossRefGoogle Scholar
  68. Helmick, K. M., Spells, C. A., Malik, S. Z., Davies, C. A., Marion, D. W., Hinds, S. R. (2015). Traumatic brain injury in the US military: epidemiology and key clinical and research programs. Brain Imaging Behav. doi: 10.1007/s11682-015-9399-z.
  69. Henry, L. C., Tremblay, S., Leclerc, S., Khiat, A., Boulanger, Y., Ellemberg, D., et al. (2011). Metabolic changes in concussed American football players during the acute and chronic post-injury phases. [Research Support, Non-U.S. Gov’t]. BMC Neurology, 11, 105. doi: 10.1186/1471-2377-11-105.PubMedCentralPubMedCrossRefGoogle Scholar
  70. Hetherington, H. P., Hamid, H., Kulas, J., Ling, G., Bandak, F., de Lanerolle, N. C., et al. (2014). MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine, 71(4), 1358–1367. doi: 10.1002/mrm.24814.PubMedCentralPubMedCrossRefGoogle Scholar
  71. Holshouser, B. A., Tong, K. A., & Ashwal, S. (2005). Proton MR spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR. American Journal of Neuroradiology, 26(5), 1276–1285.PubMedGoogle Scholar
  72. Hong, Y. T., Veenith, T., Dewar, D., Outtrim, J. G., Mani, V., Williams, C., et al. (2014). Amyloid imaging with carbon 11-labeled Pittsburgh compound B for traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. JAMA Neurology, 71(1), 23–31. doi: 10.1001/jamaneurol.2013.4847.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Huang, H., Ceritoglu, C., Li, X., Qiu, A., Miller, M. I., van Zijl, P. C., et al. (2008). Correction of B0 susceptibility induced distortion in diffusion-weighted images using large-deformation diffeomorphic metric mapping. [Research Support, N.I.H., Extramural]. Magnetic Resonance Imaging, 26(9), 1294–1302. doi: 10.1016/j.mri.2008.03.005.PubMedCentralPubMedCrossRefGoogle Scholar
  74. Huang, M. X., Nichols, S., Robb, A., Angeles, A., Drake, A., Holland, M., et al. (2012). An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 61(4), 1067–1082. doi: 10.1016/j.neuroimage.2012.04.029.PubMedCrossRefGoogle Scholar
  75. Huang, M. X., Nichols, S., Baker, D. G., Robb, A., Angeles, A., Yurgil, K. A., et al. (2014). Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury. [Research Support, Non-U.S. Gov’t]. NeuroImage: Clinical, 5, 109–119. doi: 10.1016/j.nicl.2014.06.004.CrossRefGoogle Scholar
  76. Hunter, J. V., Wilde, E. A., Tong, K. A., & Holshouser, B. A. (2012). Emerging imaging tools for use with traumatic brain injury research. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Journal of Neurotrauma, 29(4), 654–671. doi: 10.1089/neu.2011.1906.PubMedCentralPubMedCrossRefGoogle Scholar
  77. Isaac, L., Main, K. L., Soman, S., Gotlib, I. H., Furst, A. J., Kinoshita, L. M., et al. (2015). The impact of depression on Veterans with PTSD and traumatic brain injury: a diffusion tensor imaging study. Biological Psychology, 105, 20–28. doi: 10.1016/j.biopsycho.2014.12.011.PubMedCrossRefGoogle Scholar
  78. Ito, R., Mori, S., & Melhem, E. R. (2002). Diffusion tensor brain imaging and tractography. Neuroimaging Clinics of North America, 12(1), 1–19.PubMedCrossRefGoogle Scholar
  79. Johnson, B., Gay, M., Zhang, K., Neuberger, T., Horovitz, S. G., Hallett, M., et al. (2012). The use of magnetic resonance spectroscopy in the subacute evaluation of athletes recovering from single and multiple mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 29(13), 2297–2304. doi: 10.1089/neu.2011.2294.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Jorge, R. E., Acion, L., White, T., Tordesillas-Gutierrez, D., Pierson, R., Crespo-Facorro, B., et al. (2012). White matter abnormalities in veterans with mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The American Journal of Psychiatry, 169(12), 1284–1291. doi: 10.1176/appi.ajp.2012.12050600.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Kawai, N., Kawanishi, M., Kudomi, N., Maeda, Y., Yamamoto, Y., Nishiyama, Y., et al. (2013). Detection of brain amyloid beta deposition in patients with neuropsychological impairment after traumatic brain injury: PET evaluation using Pittsburgh Compound-B. [Research Support, Non-U.S. Gov’t]. Brain Injury, 27(9), 1026–1031. doi: 10.3109/02699052.2013.794963.PubMedCrossRefGoogle Scholar
  82. Kim, J., Whyte, J., Patel, S., Europa, E., Slattery, J., Coslett, H. B., et al. (2012a). A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural]. Neurorehabilitation and Neural Repair, 26(7), 870–880. doi: 10.1177/1545968311434553.PubMedCrossRefGoogle Scholar
  83. Kim, J., Whyte, J., Patel, S., Europa, E., Wang, J., Coslett, H. B., et al. (2012b). Methylphenidate modulates sustained attention and cortical activation in survivors of traumatic brain injury: a perfusion fMRI study. [Randomized Controlled Trial Research Support, N.I.H., Extramural]. Psychopharmacology, 222(1), 47–57. doi: 10.1007/s00213-011-2622-8.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Kim, N., Branch, C. A., Kim, M., & Lipton, M. L. (2013). Whole brain approaches for identification of microstructural abnormalities in individual patients: comparison of techniques applied to mild traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. PloS One, 8(3), e59382. doi: 10.1371/journal.pone.0059382.PubMedCentralPubMedCrossRefGoogle Scholar
  85. Kimbrell, T., Leulf, C., Cardwell, D., Komoroski, R. A., & Freeman, T. W. (2005). Relationship of in vivo medial temporal lobe magnetic resonance spectroscopy to documented combat exposure in veterans with chronic posttraumatic stress disorder. Psychiatry Research, 140(1), 91–94. doi: 10.1016/j.pscychresns.2005.07.001.PubMedCrossRefGoogle Scholar
  86. Kirov, I., Fleysher, L., Babb, J. S., Silver, J. M., Grossman, R. I., & Gonen, O. (2007). Characterizing ‘mild’ in traumatic brain injury with proton MR spectroscopy in the thalamus: initial findings. [Research Support, N.I.H., Extramural]. Brain Injury, 21(11), 1147–1154. doi: 10.1080/02699050701630383.PubMedCrossRefGoogle Scholar
  87. Kirov, I. I., Tal, A., Babb, J. S., Lui, Y. W., Grossman, R. I., & Gonen, O. (2013a). Diffuse axonal injury in mild traumatic brain injury: a 3D multivoxel proton MR spectroscopy study. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of Neurology, 260(1), 242–252. doi: 10.1007/s00415-012-6626-z.PubMedCentralPubMedCrossRefGoogle Scholar
  88. Kirov, I. I., Tal, A., Babb, J. S., Reaume, J., Bushnik, T., Ashman, T. A., et al. (2013b). Proton MR spectroscopy correlates diffuse axonal abnormalities with post-concussive symptoms in mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 30(13), 1200–1204. doi: 10.1089/neu.2012.2696.PubMedCentralPubMedCrossRefGoogle Scholar
  89. Koerte, I. K., Lin, A. P., Muehlmann, M., Merugumala, S., Liao, H., Starr, T., et al. (2015a). Altered neurochemistry in former professional soccer players without a history of concussion. Journal of Neurotrauma. doi: 10.1089/neu.2014.3715.Google Scholar
  90. Koerte, I. K., Lin, A. P., Willems, A., Muehlmann, M., Hufschmidt, J., Coleman, M. J., et al. (2015b). A review of neuroimaging findings in repetitive brain trauma. Brain Pathology, 25(3), 318–349. doi: 10.1111/bpa.12249.PubMedCrossRefGoogle Scholar
  91. LaConte, S. M., Peltier, S. J., & Hu, X. P. (2007). Real-time fMRI using brain-state classification. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Human Brain Mapping, 28(10), 1033–1044. doi: 10.1002/hbm.20326.PubMedCrossRefGoogle Scholar
  92. Levin, H. S., Wilde, E., Troyanskaya, M., Petersen, N. J., Scheibel, R., Newsome, M., et al. (2010). Diffusion tensor imaging of mild to moderate blast-related traumatic brain injury and its sequelae. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 27(4), 683–694. doi: 10.1089/neu.2009.1073.PubMedCrossRefGoogle Scholar
  93. Lewine, J. D., Davis, J. T., Sloan, J. H., Kodituwakku, P. W., & Orrison, W. W., Jr. (1999). Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. [Comparative Study]. AJNR. American Journal of Neuroradiology, 20(5), 857–866.PubMedGoogle Scholar
  94. Lewine, J. D., Davis, J. T., Bigler, E. D., Thoma, R., Hill, D., Funke, M., et al. (2007). Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 22(3), 141–155. doi: 10.1097/01.HTR.0000271115.29954.27.PubMedCrossRefGoogle Scholar
  95. Lin, A., Ramadan, S., Box, H., Stanwell, P., & Stern, R. A. (2010). Neurochemical Changes in Athletes with Chronic Traumatic Encephalopathy. Paper presented at the 96th Scientific Assembly and Annual Meeting of the Radiological Society of North America, Chicago, IL.Google Scholar
  96. Lin, A., Tran, T., Bluml, S., Merugumala, S., Liao, H. J., & Ross, B. D. (2012a). Guidelines for acquiring and reporting clinical neurospectroscopy. [Review]. Seminars in Neurology, 32(4), 432–453. doi: 10.1055/s-0032-1331814.PubMedGoogle Scholar
  97. Lin, A. P., Liao, H. J., Merugumala, S. K., Prabhu, S. P., Meehan, W. P., 3rd, & Ross, B. D. (2012b). Metabolic imaging of mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Review]. Brain Imaging and Behavior, 6(2), 208–223. doi: 10.1007/s11682-012-9181-4.PubMedCrossRefGoogle Scholar
  98. Lin, Y., Daducci, A., Meskaldji, D. E., Thiran, J., Michel, P., Meuli, R., et al. (2014). Quantitative analysis of myelin and axonal remodeling in the uninjured motor network after stroke. Brain Connectivity. doi: 10.1089/brain.2014.0245.PubMedCentralGoogle Scholar
  99. Lin, A. P., Ramadan, S., Stern, R. A., Box, H. C., Nowinski, C. J., Ross, B. D., et al. (2015). Changes in the neurochemistry of athletes with repetitive brain trauma: preliminary results using localized correlated spectroscopy. Alzheimer's Research & Therapy, 7(1), 13. doi: 10.1186/s13195-015-0094-5.CrossRefGoogle Scholar
  100. Ling, G., Bandak, F., Armonda, R., Grant, G., & Ecklund, J. (2009). Explosive blast neurotrauma. [Review]. Journal of Neurotrauma, 26(6), 815–825. doi: 10.1089/neu.2007.0484.PubMedCrossRefGoogle Scholar
  101. Logan, G. D., Schachar, R. J., & Tannock, R. (2000). Executive control problems in childhood psychopathology: Stop-signal studies of attention deficit disorder. In S. Monsell (Ed.), Attention and performance XVIII (pp. 653–677). Cambridge, MA: MIT Press.Google Scholar
  102. Lopez-Larson, M., King, J. B., McGlade, E., Bueler, E., Stoeckel, A., Epstein, D. J., et al. (2013). Enlarged thalamic volumes and increased fractional anisotropy in the thalamic radiations in veterans with suicide behaviors. Frontiers in Psychiatry, 4, 83. doi: 10.3389/fpsyt.2013.00083.PubMedCentralPubMedCrossRefGoogle Scholar
  103. Luo, Q., Xu, D., Roskos, T., Stout, J., Kull, L., Cheng, X., et al. (2013). Complexity analysis of resting state magnetoencephalography activity in traumatic brain injury patients. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 30(20), 1702–1709. doi: 10.1089/neu.2012.2679.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Mac Donald, C. L., Johnson, A. M., Cooper, D., Nelson, E. C., Werner, N. J., Shimony, J. S., et al. (2011). Detection of blast-related traumatic brain injury in U.S. military personnel. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The New England Journal of Medicine, 364(22), 2091–2100. doi: 10.1056/NEJMoa1008069.PubMedCentralPubMedCrossRefGoogle Scholar
  105. Mac Donald, C., Johnson, A., Cooper, D., Malone, T., Sorrell, J., Shimony, J., et al. (2013). Cerebellar white matter abnormalities following primary blast injury in US military personnel. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. PloS One, 8(2), e55823. doi: 10.1371/journal.pone.0055823.PubMedCentralPubMedCrossRefGoogle Scholar
  106. Maikusa, N., Yamashita, F., Tanaka, K., Abe, O., Kawaguchi, A., Kabasawa, H., et al. (2013). Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom. [Research Support, Non-U.S. Gov’t]. Medical Physics, 40(6), 062303. doi: 10.1118/1.4801913.PubMedCrossRefGoogle Scholar
  107. Makoroff, K. L., Cecil, K. M., Care, M., & Ball, W. S., Jr. (2005). Elevated lactate as an early marker of brain injury in inflicted traumatic brain injury. Pediatric Radiology, 35(7), 668–676. doi: 10.1007/s00247-005-1441-7.PubMedCrossRefGoogle Scholar
  108. Maksimovskiy, A. L., McGlinchey, R. E., Fortier, C. B., Salat, D. H., Milberg, W. P., & Oscar-Berman, M. (2014). White matter and cognitive changes in veterans diagnosed with alcoholism and PTSD. Journal of Alcoholism & Drug Dependence, 2(1), 144. doi: 10.4172/2329-6488.1000144.Google Scholar
  109. Mamere, A. E., Saraiva, L. A., Matos, A. L., Carneiro, A. A., & Santos, A. C. (2009). Evaluation of delayed neuronal and axonal damage secondary to moderate and severe traumatic brain injury using quantitative MR imaging techniques. [Evaluation Studies]. AJNR. American Journal of Neuroradiology, 30(5), 947–952. doi: 10.3174/ajnr.A1477.PubMedCrossRefGoogle Scholar
  110. Marino, S., Ciurleo, R., Bramanti, P., Federico, A., & De Stefano, N. (2011). 1H-MR spectroscopy in traumatic brain injury. [Review]. Neurocritical Care, 14(1), 127–133. doi: 10.1007/s12028-010-9406-6.PubMedCrossRefGoogle Scholar
  111. Marquez de la Plata, C., Ardelean, A., Koovakkattu, D., Srinivasan, P., Miller, A., Phuong, V., et al. (2007). Magnetic resonance imaging of diffuse axonal injury: quantitative assessment of white matter lesion volume. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 24(4), 591–598. doi: 10.1089/neu.2006.0214.PubMedCrossRefGoogle Scholar
  112. Mascalchi, M., Toschi, N., Ginestroni, A., Giannelli, M., Nicolai, E., Aiello, M., et al. (2014). Gender, age-related, and regional differences of the magnetization transfer ratio of the cortical and subcortical brain gray matter. [Research Support, Non-U.S. Gov’t]. Journal of Magnetic Resonance Imaging, 40(2), 360–366. doi: 10.1002/jmri.24355.PubMedCrossRefGoogle Scholar
  113. Matthews, S., Simmons, A., & Strigo, I. (2011a). The effects of loss versus alteration of consciousness on inhibition-related brain activity among individuals with a history of blast-related concussion. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Psychiatry Research, 191(1), 76–79. doi: 10.1016/j.pscychresns.2010.09.013.PubMedCrossRefGoogle Scholar
  114. Matthews, S. C., Strigo, I. A., Simmons, A. N., O’Connell, R. M., Reinhardt, L. E., & Moseley, S. A. (2011b). A multimodal imaging study in U.S. veterans of Operations Iraqi and Enduring Freedom with and without major depression after blast-related concussion. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 54(Suppl 1), S69–S75. doi: 10.1016/j.neuroimage.2010.04.269.PubMedCrossRefGoogle Scholar
  115. Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Pediatrics, 129(1), 28–37. doi: 10.1542/peds.2011-2083.PubMedCentralPubMedCrossRefGoogle Scholar
  116. Mayer, A. R., Mannell, M. V., Ling, J., Gasparovic, C., & Yeo, R. A. (2011). Functional connectivity in mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 32(11), 1825–1835. doi: 10.1002/hbm.21151.PubMedCentralPubMedCrossRefGoogle Scholar
  117. Mayer, A. R., Bedrick, E. J., Ling, J. M., Toulouse, T., & Dodd, A. (2014). Methods for identifying subject-specific abnormalities in neuroimaging data. Human Brain Mapping, 35(11), 5457–5470. doi: 10.1002/hbm.22563.PubMedCrossRefGoogle Scholar
  118. McGowan, J. C., Yang, J. H., Plotkin, R. C., Grossman, R. I., Umile, E. M., Cecil, K. M., et al. (2000). Magnetization transfer imaging in the detection of injury associated with mild head trauma. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. AJNR. American Journal of Neuroradiology, 21(5), 875–880.PubMedGoogle Scholar
  119. Mendez, M. F., Owens, E. M., Reza Berenji, G., Peppers, D. C., Liang, L. J., & Licht, E. A. (2013). Mild traumatic brain injury from primary blast vs. blunt forces: post-concussion consequences and functional neuroimaging. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroRehabilitation, 32(2), 397–407. doi: 10.3233/NRE-130861.PubMedGoogle Scholar
  120. Mitsis, E. M., Riggio, S., Kostakoglu, L., Dickstein, D. L., Machac, J., Delman, B., et al. (2014). Tauopathy PET and amyloid PET in the diagnosis of chronic traumatic encephalopathies: studies of a retired NFL player and of a man with FTD and a severe head injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Translational Psychiatry, 4, e441. doi: 10.1038/tp.2014.91.PubMedCentralPubMedCrossRefGoogle Scholar
  121. Moffett, J. R., Arun, P., Ariyannur, P. S., & Namboodiri, A. M. (2013). N-Acetylaspartate reductions in brain injury: impact on post-injury neuroenergetics, lipid synthesis, and protein acetylation. [Review]. Frontiers in Neuroenergetics, 5, 11. doi: 10.3389/fnene.2013.00011.PubMedCentralPubMedCrossRefGoogle Scholar
  122. Morey, R. A., Haswell, C. C., Selgrade, E. S., Massoglia, D., Liu, C., Weiner, J., et al. (2013). Effects of chronic mild traumatic brain injury on white matter integrity in Iraq and Afghanistan war veterans. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 34(11), 2986–2999. doi: 10.1002/hbm.22117.PubMedCrossRefGoogle Scholar
  123. Mutsaerts, H. J., Steketee, R. M., Heijtel, D. F., Kuijer, J. P., van Osch, M. J., Majoie, C. B., et al. (2014). Inter-vendor reproducibility of pseudo-continuous arterial spin labeling at 3 Tesla. [Research Support, Non-U.S. Gov’t]. PloS One, 9(8), e104108. doi: 10.1371/journal.pone.0104108.PubMedCentralPubMedCrossRefGoogle Scholar
  124. Narayana, P. A., Yu, X., Hasan, K. M., Wilde, E. A., Levin, H. S., Hunter, J. V., et al. (2015). Multi-modal MRI of mild traumatic brain injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage: Clinical, 7, 87–97. doi: 10.1016/j.nicl.2014.07.010.CrossRefGoogle Scholar
  125. Nathan, D. E., Oakes, T. R., Yeh, P. H., French, L. M., Harper, J. F., Liu, W., et al. (2015). Exploring variations in functional connectivity of the resting state default mode network in mild traumatic brain injury. Brain Connectivity, 5(2), 102–114. doi: 10.1089/brain.2014.0273.PubMedCrossRefGoogle Scholar
  126. Newbould, R. D., Nicholas, R., Thomas, C. L., Quest, R., Lee, J. S., Honeyfield, L., et al. (2014). Age independently affects myelin integrity as detected by magnetization transfer magnetic resonance imaging in multiple sclerosis. NeuroImage: Clinical, 4, 641–648. doi: 10.1016/j.nicl.2014.02.004.CrossRefGoogle Scholar
  127. Newsome, M. R., Durgerian, S., Mourany, L., Scheibel, R. S., Lowe, M. J., Beall, E. B., et al. (2015). Disruption of caudate working memory activation in chronic blast-related traumatic brain injury. NeuroImage: Clinical, 8, 543–553. doi: 10.1016/j.nicl.2015.04.024.CrossRefGoogle Scholar
  128. Ng, T. S., Lin, A. P., Koerte, I. K., Pasternak, O., Liao, H., Merugumala, S., et al. (2014). Neuroimaging in repetitive brain trauma. [Review]. Alzheimer's Research & Therapy, 6(1), 10. doi: 10.1186/alzrt239.CrossRefGoogle Scholar
  129. Niedermeyer, E. (2005). Electroencephalography: Basic principles, clinical applications, and related fields (5th ed.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
  130. Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S. G., Merkle, H., et al. (1992). Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 89(13), 5951–5955.PubMedCentralPubMedCrossRefGoogle Scholar
  131. Oz, G., Alger, J. R., Barker, P. B., Bartha, R., Bizzi, A., Boesch, C., et al. (2014). Clinical proton MR spectroscopy in central nervous system disorders. [Research Support, Non-U.S. Gov’t Review]. Radiology, 270(3), 658–679. doi: 10.1148/radiol.13130531.PubMedCentralPubMedCrossRefGoogle Scholar
  132. Pagani, E., Bizzi, A., Di Salle, F., De Stefano, N., & Filippi, M. (2008). Basic concepts of advanced MRI techniques. [Review]. Neurological Sciences, 29(Suppl 3), 290–295. doi: 10.1007/s10072-008-1001-7.PubMedCrossRefGoogle Scholar
  133. Pasternak, O., Sochen, N., Gur, Y., Intrator, N., & Assaf, Y. (2009). Free water elimination and mapping from diffusion MRI. [Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine, 62(3), 717–730. doi: 10.1002/mrm.22055.PubMedCrossRefGoogle Scholar
  134. Peskind, E. R., Petrie, E. C., Cross, D. J., Pagulayan, K., McCraw, K., Hoff, D., et al. (2011). Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 54(Suppl 1), S76–S82. doi: 10.1016/j.neuroimage.2010.04.008.PubMedCentralPubMedCrossRefGoogle Scholar
  135. Petrie, E. C., Cross, D. J., Yarnykh, V. L., Richards, T., Martin, N. M., Pagulayan, K., et al. (2014). Neuroimaging, behavioral, and psychological sequelae of repetitive combined blast/impact mild traumatic brain injury in Iraq and Afghanistan war veterans. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of Neurotrauma, 31(5), 425–436. doi: 10.1089/neu.2013.2952.PubMedCentralPubMedCrossRefGoogle Scholar
  136. Poole, V. N., Abbas, K., Shenk, T. E., Breedlove, E. L., Breedlove, K. M., Robinson, M. E., et al. (2014). MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete. [Observational Study Research Support, Non-U.S. Gov’t]. Developmental Neuropsychology, 39(6), 459–473. doi: 10.1080/87565641.2014.940619.PubMedCrossRefGoogle Scholar
  137. Poole, V. N., Breedlove, E. L., Shenk, T. E., Abbas, K., Robinson, M. E., Leverenz, L. J., et al. (2015). Sub-concussive hit characteristics predict deviant brain metabolism in football athletes. [Research Support, Non-U.S. Gov’t]. Developmental Neuropsychology, 40(1), 12–17. doi: 10.1080/87565641.2014.984810.PubMedCrossRefGoogle Scholar
  138. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 98(2), 676–682. doi: 10.1073/pnas.98.2.676.PubMedCentralPubMedCrossRefGoogle Scholar
  139. Ramlackhansingh, A. F., Brooks, D. J., Greenwood, R. J., Bose, S. K., Turkheimer, F. E., Kinnunen, K. M., et al. (2011). Inflammation after trauma: microglial activation and traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Annals of Neurology, 70(3), 374–383. doi: 10.1002/ana.22455.PubMedCrossRefGoogle Scholar
  140. Raymont, V., Salazar, A. M., Lipsky, R., Goldman, D., Tasick, G., & Grafman, J. (2010). Correlates of posttraumatic epilepsy 35 years following combat brain injury. [Research Support, N.I.H., Intramural Research Support, U.S. Gov’t, Non-P.H.S.]. Neurology, 75(3), 224–229. doi: 10.1212/WNL.0b013e3181e8e6d0.PubMedCentralPubMedCrossRefGoogle Scholar
  141. Reider, G., II, Groswasser, Z., Ommaya, A. K., Schwab, K., Pridgen, A., Brown, H. R., et al. (2002). Quantitive imaging in late traumatic brain injury. Part I: late imaging parameters in closed and penetrating head injuries. [Clinical Trial]. Brain Injury, 16(6), 517–525. doi: 10.1080/02699050110119141.CrossRefGoogle Scholar
  142. Robinson, M. E., Lindemer, E. R., Fonda, J. R., Milberg, W. P., McGlinchey, R. E., & Salat, D. H. (2015). Close-range blast exposure is associated with altered functional connectivity in Veterans independent of concussion symptoms at time of exposure. [Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 36(3), 911–922. doi: 10.1002/hbm.22675.PubMedCrossRefGoogle Scholar
  143. Ross, B. D., Ernst, T., Kreis, R., Haseler, L. J., Bayer, S., Danielsen, E., et al. (1998). 1H MRS in acute traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Journal of Magnetic Resonance Imaging, 8(4), 829–840.PubMedCrossRefGoogle Scholar
  144. Rubovitch, V., Ten-Bosch, M., Zohar, O., Harrison, C. R., Tempel-Brami, C., Stein, E., et al. (2011). A mouse model of blast-induced mild traumatic brain injury. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Experimental Neurology, 232(2), 280–289. doi: 10.1016/j.expneurol.2011.09.018.PubMedCentralPubMedCrossRefGoogle Scholar
  145. Ruthotto, L., Kugel, H., Olesch, J., Fischer, B., Modersitzki, J., Burger, M., et al. (2012). Diffeomorphic susceptibility artifact correction of diffusion-weighted magnetic resonance images. [Research Support, Non-U.S. Gov’t]. Physics in Medicine and Biology, 57(18), 5715–5731. doi: 10.1088/0031-9155/57/18/5715.PubMedCrossRefGoogle Scholar
  146. Scheibel, R. S., Newsome, M. R., Steinberg, J. L., Pearson, D. A., Rauch, R. A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. [Research Support, N.I.H., Extramural]. Neurorehabilitation and Neural Repair, 21(1), 36–45. doi: 10.1177/1545968306294730.PubMedCrossRefGoogle Scholar
  147. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Steinberg, J. L., Goldstein, F. C., Mao, H., et al. (2009). Effects of severity of traumatic brain injury and brain reserve on cognitive-control related brain activation. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 26(9), 1447–1461. doi: 10.1089/neu.2008.0736.PubMedCentralPubMedCrossRefGoogle Scholar
  148. Scheibel, R. S., Newsome, M. R., Troyanskaya, M., Lin, X., Steinberg, J. L., Radaideh, M., et al. (2012). Altered brain activation in military personnel with one or more traumatic brain injuries following blast. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of the International Neuropsychological Society, 18(1), 89–100. doi: 10.1017/S1355617711001433.PubMedCrossRefGoogle Scholar
  149. Schuff, N., Neylan, T. C., Fox-Bosetti, S., Lenoci, M., Samuelson, K. W., Studholme, C., et al. (2008). Abnormal N-acetylaspartate in hippocampus and anterior cingulate in posttraumatic stress disorder. [Research Support, U.S. Gov’t, Non-P.H.S.]. Psychiatry Research, 162(2), 147–157. doi: 10.1016/j.pscychresns.2007.04.011.PubMedCentralPubMedCrossRefGoogle Scholar
  150. Selwyn, R., Hockenbury, N., Jaiswal, S., Mathur, S., Armstrong, R. C., & Byrnes, K. R. (2013). Mild traumatic brain injury results in depressed cerebral glucose uptake: an (18)FDG PET study. [Research Support, Non-U.S. Gov’t]. Journal of Neurotrauma, 30(23), 1943–1953. doi: 10.1089/neu.2013.2928.PubMedCrossRefGoogle Scholar
  151. Shenton, M. E., Hamoda, H. M., Schneiderman, J. S., Bouix, S., Pasternak, O., Rathi, Y., et al. (2012). A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Brain Imaging and Behavior, 6(2), 137–192. doi: 10.1007/s11682-012-9156-5.PubMedCentralPubMedCrossRefGoogle Scholar
  152. Shutter, L., Tong, K. A., & Holshouser, B. A. (2004). Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. [Research Support, Non-U.S. Gov’t]. Journal of Neurotrauma, 21(12), 1693–1705. doi: 10.1089/neu.2004.21.1693.PubMedCrossRefGoogle Scholar
  153. Signoretti, S., Marmarou, A., Tavazzi, B., Lazzarino, G., Beaumont, A., & Vagnozzi, R. (2001). N-Acetylaspartate reduction as a measure of injury severity and mitochondrial dysfunction following diffuse traumatic brain injury. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of Neurotrauma, 18(10), 977–991. doi: 10.1089/08977150152693683.PubMedCrossRefGoogle Scholar
  154. Sinson, G., Bagley, L. J., Cecil, K. M., Torchia, M., McGowan, J. C., Lenkinski, R. E., et al. (2001). Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: correlation with clinical outcome after traumatic brain injury. [Research Support, U.S. Gov’t, P.H.S.]. AJNR. American Journal of Neuroradiology, 22(1), 143–151.PubMedGoogle Scholar
  155. Sokunbi, M. O., Linden, D. E., Habes, I., Johnston, S., & Ihssen, N. (2014). Real-time fMRI brain-computer interface: development of a “motivational feedback” subsystem for the regulation of visual cue reactivity. Frontiers in Behavioral Neuroscience, 8, 392. doi: 10.3389/fnbeh.2014.00392.PubMedCentralPubMedCrossRefGoogle Scholar
  156. Song, S. K., Sun, S. W., Ramsbottom, M. J., Chang, C., Russell, J., & Cross, A. H. (2002). Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 17(3), 1429–1436.PubMedCrossRefGoogle Scholar
  157. Song, S. K., Sun, S. W., Ju, W. K., Lin, S. J., Cross, A. H., & Neufeld, A. H. (2003). Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 20(3), 1714–1722.PubMedCrossRefGoogle Scholar
  158. Song, S. K., Yoshino, J., Le, T. Q., Lin, S. J., Sun, S. W., Cross, A. H., et al. (2005). Demyelination increases radial diffusivity in corpus callosum of mouse brain. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 26(1), 132–140. doi: 10.1016/j.neuroimage.2005.01.028.PubMedCrossRefGoogle Scholar
  159. Spielberg, J. M., McGlinchey, R. E., Milberg, W. P., & Salat, D. H. (2015). Brain network disturbance related to posttraumatic stress and traumatic brain injury in veterans. Biological Psychiatry, 78(3), 210–216. doi: 10.1016/j.biopsych.2015.02.013.PubMedCrossRefGoogle Scholar
  160. Sponheim, S. R., McGuire, K. A., Kang, S. S., Davenport, N. D., Aviyente, S., Bernat, E. M., et al. (2011). Evidence of disrupted functional connectivity in the brain after combat-related blast injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 54(Suppl 1), S21–S29. doi: 10.1016/j.neuroimage.2010.09.007.PubMedCrossRefGoogle Scholar
  161. Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S. Review]. Trends in Cognitive Sciences, 8(9), 418–425. doi: 10.1016/j.tics.2004.07.008.PubMedCrossRefGoogle Scholar
  162. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.PubMedCrossRefGoogle Scholar
  163. Stevens, M. C., Lovejoy, D., Kim, J., Oakes, H., Kureshi, I., & Witt, S. T. (2012). Multiple resting state network functional connectivity abnormalities in mild traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 6(2), 293–318. doi: 10.1007/s11682-012-9157-4.PubMedCrossRefGoogle Scholar
  164. Stocker, R. P., Cieply, M. A., Paul, B., Khan, H., Henry, L., Kontos, A. P., et al. (2014). Combat-related blast exposure and traumatic brain injury influence brain glucose metabolism during REM sleep in military veterans. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 99, 207–214. doi: 10.1016/j.neuroimage.2014.05.067.PubMedCrossRefGoogle Scholar
  165. Symms, M., Jager, H. R., Schmierer, K., & Yousry, T. A. (2004). A review of structural magnetic resonance neuroimaging. [Review]. Journal of Neurology, Neurosurgery, and Psychiatry, 75(9), 1235–1244. doi: 10.1136/jnnp.2003.032714.PubMedCentralPubMedCrossRefGoogle Scholar
  166. Taber, K. H., Hurley, R. A., Haswell, C. C., Rowland, J. A., Hurt, S. D., Lamar, C. D., et al. (2015). White matter compromise in veterans exposed to primary blast forces. [Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 30(1), E15–E25. doi: 10.1097/HTR.0000000000000030.PubMedCentralPubMedCrossRefGoogle Scholar
  167. Tarapore, P. E., Findlay, A. M., Lahue, S. C., Lee, H., Honma, S. M., Mizuiri, D., et al. (2013). Resting state magnetoencephalography functional connectivity in traumatic brain injury. [Case Reports Research Support, N.I.H., Extramural]. Journal of Neurosurgery, 118(6), 1306–1316. doi: 10.3171/2013.3.JNS12398.PubMedCentralPubMedCrossRefGoogle Scholar
  168. Tate, D. F., York, G. E., Reid, M. W., Cooper, D. B., Jones, L., Robin, D. A., et al. (2014). Preliminary findings of cortical thickness abnormalities in blast injured service members and their relationship to clinical findings. [Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 8(1), 102–109. doi: 10.1007/s11682-013-9257-9.PubMedCrossRefGoogle Scholar
  169. Tompkins, P., Tesiram, Y., Lerner, M., Gonzalez, L. P., Lightfoot, S., Rabb, C. H., et al. (2013). Brain injury: neuro-inflammation, cognitive deficit, and magnetic resonance imaging in a model of blast induced traumatic brain injury. Journal of Neurotrauma, 30(22), 1888–1897. doi: 10.1089/neu.2012.2674.PubMedCrossRefGoogle Scholar
  170. Tong, K. A., Ashwal, S., Holshouser, B. A., Shutter, L. A., Herigault, G., Haacke, E. M., et al. (2003). Hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. [Comparative Study]. Radiology, 227(2), 332–339. doi: 10.1148/radiol.2272020176.PubMedCrossRefGoogle Scholar
  171. Tormenti, M., Krieger, D., Puccio, A. M., McNeil, M. R., Schneider, W., & Okonkwo, D. O. (2012). Magnetoencephalographic virtual recording: a novel diagnostic tool for concussion. [Controlled Clinical Trial Research Support, Non-U.S. Gov’t Validation Studies]. Neurosurgical Focus, 33(6), E9. doi: 10.3171/2012.10.FOCUS12282. 1–7.PubMedCrossRefGoogle Scholar
  172. Vagnozzi, R., Signoretti, S., Tavazzi, B., Floris, R., Ludovici, A., Marziali, S., et al. (2008). Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes--part III. [Controlled Clinical Trial]. Neurosurgery, 62(6), 1286–1295. doi: 10.1227/01.neu.0000333300.34189.74. discussion 1295–1286.PubMedCrossRefGoogle Scholar
  173. Vakhtin, A. A., Calhoun, V. D., Jung, R. E., Prestopnik, J. L., Taylor, P. A., & Ford, C. C. (2013). Changes in intrinsic functional brain networks following blast-induced mild traumatic brain injury. [Research Support, U.S. Gov’t, Non-P.H.S.]. Brain Injury, 27(11), 1304–1310. doi: 10.3109/02699052.2013.823561.PubMedCrossRefGoogle Scholar
  174. Wang, Z. (2014). Support vector machine learning-based cerebral blood flow quantification for arterial spin labeling MRI. [Research Support, N.I.H., Extramural]. Human Brain Mapping, 35(7), 2869–2875. doi: 10.1002/hbm.22445.PubMedCentralPubMedCrossRefGoogle Scholar
  175. Wang, D. J., Alger, J. R., Qiao, J. X., Gunther, M., Pope, W. B., Saver, J. L., et al. (2013). Multi-delay multi-parametric arterial spin-labeled perfusion MRI in acute ischemic stroke - comparison with dynamic susceptibility contrast enhanced perfusion imaging. NeuroImage: Clinical, 3, 1–7. doi: 10.1016/j.nicl.2013.06.017.CrossRefGoogle Scholar
  176. Wang, X., Cusick, M. F., Wang, Y., Sun, P., Libbey, J. E., Trinkaus, K., et al. (2014). Diffusion basis spectrum imaging detects and distinguishes coexisting subclinical inflammation, demyelination and axonal injury in experimental autoimmune encephalomyelitis mice. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NMR in Biomedicine, 27(7), 843–852. doi: 10.1002/nbm.3129.PubMedCentralPubMedCrossRefGoogle Scholar
  177. Wang, Y., Sun, P., Wang, Q., Trinkaus, K., Schmidt, R. E., Naismith, R. T., et al. (2015a). Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain, 138(Pt 5), 1223–1238. doi: 10.1093/brain/awv046.PubMedCrossRefGoogle Scholar
  178. Wang, Y., Sun, P., Wang, Q., Trinkaus, K., Schmidt, R. E., Naismith, R. T., et al. (2015b). Differentiation and quantification of inflammation, demyelination and axon injury or loss in multiple sclerosis. Brain. doi: 10.1093/brain/awv046.PubMedCentralGoogle Scholar
  179. Wang, Y., West, J. D., Bailey, J. N., Westfall, D. R., Xiao, H., Arnold, T. W., et al. (2015c). Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study. [Research Support, N.I.H., Extramural]. Developmental Neuropsychology, 40(1), 40–44. doi: 10.1080/87565641.2014.979927.PubMedPubMedCentralCrossRefGoogle Scholar
  180. Wedeen, V. J., Wang, R. P., Schmahmann, J. D., Benner, T., Tseng, W. Y., Dai, G., et al. (2008). Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 41(4), 1267–1277. doi: 10.1016/j.neuroimage.2008.03.036.PubMedCrossRefGoogle Scholar
  181. Wilde, E. A., Hunter, J. V., Newsome, M. R., Scheibel, R. S., Bigler, E. D., Johnson, J. L., et al. (2005). Frontal and temporal morphometric findings on MRI in children after moderate to severe traumatic brain injury. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of Neurotrauma, 22(3), 333–344. doi: 10.1089/neu.2005.22.333.PubMedCrossRefGoogle Scholar
  182. Wolf, M. E., Layer, V., Gregori, J., Griebe, M., Szabo, K., Gass, A., et al. (2014). Assessment of perfusion deficits in ischemic stroke using 3D-GRASE arterial spin labeling magnetic resonance imaging with multiple inflow times. [Research Support, Non-U.S. Gov’t]. Journal of Neuroimaging, 24(5), 453–459.PubMedCrossRefGoogle Scholar
  183. Yeo, R. A., Gasparovic, C., Merideth, F., Ruhl, D., Doezema, D., & Mayer, A. R. (2011). A longitudinal proton magnetic resonance spectroscopy study of mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Journal of Neurotrauma, 28(1), 1–11. doi: 10.1089/neu.2010.1578.PubMedCentralPubMedCrossRefGoogle Scholar
  184. Yoo, R. E., Yun, T. J., Rhim, J. H., Yoon, B. W., Kang, K. M., Choi, S. H., et al. (2015). Bright vessel appearance on arterial spin labeling MRI for localizing arterial occlusion in acute ischemic stroke. [Research Support, Non-U.S. Gov’t]. Stroke, 46(2), 564–567. doi: 10.1161/STROKEAHA.114.007797.PubMedCrossRefGoogle Scholar
  185. Yuan, H., Young, K. D., Phillips, R., Zotev, V., Misaki, M., & Bodurka, J. (2014). Resting-state functional connectivity modulation and sustained changes after real-time functional magnetic resonance imaging neurofeedback training in depression. [Research Support, Non-U.S. Gov’t]. Brain Connectivity, 4(9), 690–701. doi: 10.1089/brain.2014.0262.PubMedPubMedCentralCrossRefGoogle Scholar
  186. Yurgelun-Todd, D. A., Bueler, C. E., McGlade, E. C., Churchwell, J. C., Brenner, L. A., & Lopez-Larson, M. P. (2011). Neuroimaging correlates of traumatic brain injury and suicidal behavior. [Comparative Study Research Support, Non-U.S. Gov’t]. The Journal of Head Trauma Rehabilitation, 26(4), 276–289. doi: 10.1097/HTR.0b013e31822251dc.PubMedCrossRefGoogle Scholar
  187. Zaharchuk, G., Straka, M., Marks, M. P., Albers, G. W., Moseley, M. E., & Bammer, R. (2010). Combined arterial spin label and dynamic susceptibility contrast measurement of cerebral blood flow. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine, 63(6), 1548–1556. doi: 10.1002/mrm.22329.PubMedCentralPubMedCrossRefGoogle Scholar
  188. Zhang, S., & Li, C. S. (2012). Functional networks for cognitive control in a stop signal task: independent component analysis. [Research Support, N.I.H., Extramural]. Human Brain Mapping, 33(1), 89–104. doi: 10.1002/hbm.21197.PubMedCentralPubMedCrossRefGoogle Scholar
  189. Zhang, J., Mitsis, E. M., Chu, K., Newmark, R. E., Hazlett, E. A., & Buchsbaum, M. S. (2010). Statistical parametric mapping and cluster counting analysis of [18F] FDG-PET imaging in traumatic brain injury. Journal of Neurotrauma, 27(1), 35–49. doi: 10.1089/neu.2009.1049.PubMedCrossRefGoogle Scholar
  190. Zhang, H., Schneider, T., Wheeler-Kingshott, C. A., & Alexander, D. C. (2012). NODDI: practical in vivo neurite orientation dispersion and density imaging of the human brain. [Research Support, Non-U.S. Gov’t]. NeuroImage, 61(4), 1000–1016. doi: 10.1016/j.neuroimage.2012.03.072.PubMedCrossRefGoogle Scholar
  191. Zhang, K., Herzog, H., Mauler, J., Filss, C., Okell, T. W., Kops, E. R., et al. (2014). Comparison of cerebral blood flow acquired by simultaneous [15O]water positron emission tomography and arterial spin labeling magnetic resonance imaging. [Comparative Study Research Support, Non-U.S. Gov’t]. Journal of Cerebral Blood Flow and Metabolism, 34(8), 1373–1380. doi: 10.1038/jcbfm.2014.92.PubMedCentralPubMedCrossRefGoogle Scholar
  192. Zivadinov, R., Dwyer, M. G., Markovic-Plese, S., Kennedy, C., Bergsland, N., Ramasamy, D. P., et al. (2014). Effect of treatment with interferon beta-1a on changes in voxel-wise magnetization transfer ratio in normal appearing brain tissue and lesions of patients with relapsing-remitting multiple sclerosis: a 24-week, controlled pilot study. [Research Support, Non-U.S. Gov’t]. PloS One, 9(3), e91098. doi: 10.1371/journal.pone.0091098.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Elisabeth A. Wilde
    • 1
    • 2
    • 3
    • 4
    Email author
  • Sylvain Bouix
    • 5
  • David F. Tate
    • 6
  • Alexander P. Lin
    • 7
    • 8
  • Mary R. Newsome
    • 1
    • 4
  • Brian A. Taylor
    • 1
    • 3
    • 4
  • James R. Stone
    • 9
  • James Montier
    • 4
  • Samuel E. Gandy
    • 10
  • Brian Biekman
    • 4
  • Martha E. Shenton
    • 5
    • 8
    • 11
  • Gerald York
    • 12
  1. 1.Michael E. DeBakey VA Medical CenterHoustonUSA
  2. 2.Department of NeurologyBaylor College of MedicineHoustonUSA
  3. 3.Department of RadiologyBaylor College of MedicineHoustonUSA
  4. 4.Department of Physical Medicine and RehabilitationBaylor College of MedicineHoustonUSA
  5. 5.Department of Psychiatry, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  6. 6.Missouri Institute of Mental HealthUniversity of Missouri St. LouisBerkeleyUSA
  7. 7.Center for Clinical Spectroscopy, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  8. 8.Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  9. 9.Department of Radiology and Medical Imaging, Department of Neurological SurgeryUniversity of Virginia Health SystemCharlottesvilleUSA
  10. 10.Center for Cognitive Health and NFL Neurological Center, Icahn School of Medicine, and Division of NeurologyJames J Peters VA Medical CenterNew YorkUSA
  11. 11.Department of Psychiatry, Veterans Affairs Boston Healthcare SystemBrockton DivisionBrocktonUSA
  12. 12.Defense Veterans Brain Injury CenterSan Antonio Military Medical CenterFort Sam HoustonUSA

Personalised recommendations