Brain Imaging and Behavior

, Volume 10, Issue 3, pp 719–729 | Cite as

Abnormal prefrontal cortex resting state functional connectivity and severity of internet gaming disorder

Original Research

Abstract

Internet Gaming Disorder (IGD) among adolescents has become an important public concern and gained more and more attention internationally. Recent studies focused on IGD and revealed brain abnormalities in the IGD group, especially the prefrontal cortex (PFC). However, the role of PFC-striatal circuits in pathology of IGD remains unknown. Twenty-five adolescents with IGD and 21 age- and gender-matched healthy controls were recruited in our study. Voxel-based morphometric (VBM) and functional connectivity analysis were employed to investigate the abnormal structural and resting-state properties of several frontal regions in individuals with online gaming addiction. Relative to healthy comparison subjects, IGD subjects showed significant decreased gray matter volume in PFC regions including the bilateral dorsolateral prefrontal cortex (DLPFC), orbitofrontal cortex (OFC), anterior cingulate cortex (ACC) and the right supplementary motor area (SMA) after controlling for age and gender effects. We chose these regions as the seeding areas for the resting-state analysis and found that IGD subjects showed decreased functional connectivity between several cortical regions and our seeds, including the insula, and temporal and occipital cortices. Moreover, significant decreased functional connectivity between some important subcortical regions, i.e., dorsal striatum, pallidum, and thalamus, and our seeds were found in the IGD group and some of those changes were associated with the severity of IGD. Our results revealed the involvement of several PFC regions and related PFC-striatal circuits in the process of IGD and suggested IGD may share similar neural mechanisms with substance dependence at the circuit level.

Keywords

Gray matter volume Functional connectivity Internet gaming disorder Prefrontal cortex-striatal circuits 

References

  1. Barke, A., Nyenhuis, N., & Kröner-Herwig, B. (2012). The German version of the internet addiction test: a validation study. Cyberpsychology, Behavior and Social Networking, 15(10), 534–542.CrossRefPubMedGoogle Scholar
  2. Blasi, G., Goldberg, T. E., Weickert, T., Das, S., Kohn, P., Zoltick, B., et al. (2006). Brain regions underlying response inhibition and interference monitoring and suppression. European Journal of Neuroscience, 23(6), 1658–1664.CrossRefPubMedGoogle Scholar
  3. Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences, 109(12), 4690–4695.CrossRefGoogle Scholar
  4. Bremer, J. (2005). The internet and children: advantages and disadvantages. Child and Adolescent Psychiatric Clinics of North America, 14(3), 405.CrossRefPubMedGoogle Scholar
  5. Brier, M. R., Thomas, J. B., Snyder, A. Z., Benzinger, T. L., Zhang, D., Raichle, M. E., et al. (2012). Loss of intranetwork and internetwork resting state functional connections with Alzheimer’s disease progression. The Journal of Neuroscience, 32(26), 8890–8899.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(10), 2074–2086.CrossRefPubMedGoogle Scholar
  7. Cao, H., Sun, Y., Wan, Y., Hao, J., & Tao, F. (2011). Problematic internet use in Chinese adolescents and its relation to psychosomatic symptoms and life satisfaction. BMC Public Health, 11(1), 802.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crockford, D. N., Goodyear, B., Edwards, J., Quickfall, J., & El-Guebaly, N. (2005). Cue-induced brain activity in pathological gamblers. Biological Psychiatry, 58(10), 787–795.CrossRefPubMedGoogle Scholar
  9. Dimitri, C., Megan, M., Lauren, J., Mon, M., & Chuan, Z. (2011) Problematic internet usage in US college students: a pilot study. BMC Medicine, 9.Google Scholar
  10. Dong, G., Lu, Q., Zhou, H., & Zhao, X. (2010). Impulse inhibition in people with Internet addiction disorder: electrophysiological evidence from a Go/NoGo study. Neuroscience Letters, 485(2), 138–142.CrossRefPubMedGoogle Scholar
  11. Durkee, T., Kaess, M., Carli, V., Parzer, P., Wasserman, C., Floderus, B., et al. (2012). Prevalence of pathological internet use among adolescents in Europe: demographic and social factors. Addiction, 107(12), 2210–2222.CrossRefPubMedGoogle Scholar
  12. Everitt, B. J., & Robbins, T. W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nature Neuroscience, 8(11), 1481–1489.CrossRefPubMedGoogle Scholar
  13. Feil, J., Sheppard, D., Fitzgerald, P. B., Yücel, M., Lubman, D. I., & Bradshaw, J. L. (2010). Addiction, compulsive drug seeking, and the role of frontostriatal mechanisms in regulating inhibitory control. Neuroscience & Biobehavioral Reviews, 35(2), 248–275.CrossRefGoogle Scholar
  14. Forman, S. D., Dougherty, G. G., Casey, B., Siegle, G. J., Braver, T. S., Barch, D. M., et al. (2004). Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biological Psychiatry, 55(5), 531–537.CrossRefPubMedGoogle Scholar
  15. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.CrossRefPubMedGoogle Scholar
  16. Goldstein, R. Z., & Volkow, N. D. (2002). Drug addiction and its underlying neurobiological basis: neuroimaging evidence for the involvement of the frontal cortex. American Journal of Psychiatry, 159(10), 1642–1652.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Goldstein, R. Z., & Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12(11), 652–669.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Grant, J. E., Potenza, M. N., Weinstein, A., & Gorelick, D. A. (2010). Introduction to behavioral addictions. The American Journal of Drug and Alcohol Abuse, 36(5), 233–241.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Hanlon, C. A., Wesley, M. J., Stapleton, J. R., Laurienti, P. J., & Porrino, L. J. (2011). The association between frontal–striatal connectivity and sensorimotor control in cocaine users. Drug and Alcohol Dependence, 115(3), 240–243.CrossRefPubMedGoogle Scholar
  20. Hong, L. E., Gu, H., Yang, Y., Ross, T. J., Salmeron, B. J., Buchholz, B., et al. (2009). Association of nicotine addiction and nicotine’s actions with separate cingulate cortex functional circuits. Archives of General Psychiatry, 66(4), 431–441.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Hong, S.-B., Zalesky, A., Cocchi, L., Fornito, A., Choi, E.-J., Kim, H.-H., et al. (2013). Decreased functional brain connectivity in adolescents with internet addiction. PLoS ONE, 8(2), e57831.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Horn, N., Dolan, M., Elliott, R., Deakin, J., & Woodruff, P. (2003). Response inhibition and impulsivity: an fMRI study. Neuropsychologia, 41(14), 1959–1966.CrossRefPubMedGoogle Scholar
  23. Jelenchick, L. A., Becker, T., & Moreno, M. A. (2012). Assessing the psychometric properties of the Internet Addiction Test (IAT) in US college students. Psychiatry Research, 196(2–3), 296–301.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Jin, C., Yuan, K., Zhao, L., Zhao, L., Yu, D., Deneen, K. M., et al. (2013). Structural and functional abnormalities in migraine patients without aura. NMR in Biomedicine, 26(1), 58–64.CrossRefPubMedGoogle Scholar
  25. Kalivas, P. W., & Volkow, N. D. (2005). The neural basis of addiction: a pathology of motivation and choice. American Journal of Psychiatry, 162(8), 1403–1413.CrossRefPubMedGoogle Scholar
  26. Kim, S. H., Baik, S.-H., Park, C. S., Kim, S. J., Choi, S. W., & Kim, S. E. (2011). Reduced striatal dopamine D2 receptors in people with Internet addiction. NeuroReport, 22(8), 407.CrossRefPubMedGoogle Scholar
  27. Ko, C. H., Liu, G. C., Yen, J. Y., Chen, C. Y., Yen, C. F., & Chen, C. S. (2011). Brain correlates of craving for online gaming under cue exposure in subjects with Internet gaming addiction and in remitted subjects. Addiction Biology, 18(3), 559–569.Google Scholar
  28. Ko, C.-H., Liu, G.-C., Yen, J.-Y., Yen, C.-F., Chen, C.-S., & Lin, W.-C. (2012). The brain activations for both cue-induced gaming urge and smoking craving among subjects comorbid with Internet gaming addiction and nicotine dependence. Journal of Psychiatric Research, 47(4), 486–493.Google Scholar
  29. Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., et al. (2010). Prefrontal–striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences, 107(33), 14811–14816.CrossRefGoogle Scholar
  30. Lin, F., Zhou, Y., Du, Y., Qin, L., Zhao, Z., Xu, J., et al. (2012). Abnormal white matter integrity in adolescents with Internet Addiction Disorder: a tract-based spatial statistics study. PLoS ONE, 7(1), e30253.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liston, C., Watts, R., Tottenham, N., Davidson, M. C., Niogi, S., Ulug, A. M., et al. (2006). Frontostriatal microstructure modulates efficient recruitment of cognitive control. Cerebral Cortex, 16(4), 553–560.CrossRefPubMedGoogle Scholar
  32. Meda, S. A., Gill, A., Stevens, M. C., Lorenzoni, R. P., Glahn, D. C., Calhoun, V. D., et al. (2012). Differences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives. Biological Psychiatry, 71(10), 881–889.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pine, D., Cohen, P., & Brook, J. (2001). Emotional reactivity and risk for psychopathology among adolescents. CNS Spectrums, 6(1), 27.CrossRefPubMedGoogle Scholar
  34. Romano, M., Osborne, L. A., Truzoli, R., & Reed, P. (2013). Differential psychological impact of internet exposure on internet addicts. PLoS ONE, 8(2), e55162.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Schoenbaum, G., Roesch, M. R., & Stalnaker, T. A. (2006). Orbitofrontal cortex, decision-making and drug addiction. Trends in Neurosciences, 29(2), 116–124.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Silveri, M. M., Tzilos, G. K., Pimentel, P. J., & Yurgelun‐Todd, D. A. (2004). Trajectories of adolescent emotional and cognitive development: effects of sex and risk for drug use. Annals of the New York Academy of Sciences, 1021(1), 363–370.CrossRefPubMedGoogle Scholar
  38. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, S208.CrossRefPubMedGoogle Scholar
  39. Steinberg, L. (2005). Cognitive and affective development in adolescence. Trends in Cognitive Sciences, 9(2), 69–74.CrossRefPubMedGoogle Scholar
  40. Tanabe, J., Tregellas, J. R., Dalwani, M., Thompson, L., Owens, E., Crowley, T., et al. (2009). Medial orbitofrontal cortex gray matter is reduced in abstinent substance-dependent individuals. Biological Psychiatry, 65(2), 160–164.CrossRefPubMedGoogle Scholar
  41. Volkow, N. D., Fowler, J. S., Wang, G. J., Hitzemann, R., Logan, J., Schlyer, D. J., et al. (1993). Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse, 14(2), 169–177.CrossRefPubMedGoogle Scholar
  42. Volkow, N. D., Wang, G.-J., Begleiter, H., Porjesz, B., Fowler, J. S., Telang, F., et al. (2006). High levels of dopamine D2 receptors in unaffected members of alcoholic families: possible protective factors. Archives of General Psychiatry, 63(9), 999.CrossRefPubMedGoogle Scholar
  43. Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Thanos, P. K., Logan, J., et al. (2008). Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. NeuroImage, 42(4), 1537–1543.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Volkow, N., Fowler, J., Wang, G., Baler, R., & Telang, F. (2009). Imaging dopamine’s role in drug abuse and addiction. Neuropharmacology, 56, 3–8.CrossRefPubMedGoogle Scholar
  45. Volkow, N. D., Wang, G.-J., Tomasi, D., & Baler, R. D. (2013). Unbalanced neuronal circuits in addiction. Current Opinion in Neurobiology, 23(4), 639–648.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Winkler, A., Dörsing, B., Rief, W., Shen, Y., & Glombiewski, J. A. (2013). Treatment of internet addiction: a meta-analysis. Clinical Psychology Review, 33(2), 317–329.CrossRefPubMedGoogle Scholar
  47. Xing, L., Yuan, K., Bi, Y., Yin, J., Cai, C., Feng, D., et al. (2014). Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Research, 1586, 109–117.CrossRefPubMedGoogle Scholar
  48. Xue, T., Yuan, K., Zhao, L., Yu, D., Zhao, L., Dong, T., et al. (2012). Intrinsic brain network abnormalities in migraines without aura revealed in resting-state fMRI. PLoS ONE, 7(12), e52927.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Young, K. S. (1998a). Caught in the net: How to recognize the signs of internet addiction--and a winning strategy for recovery. New York: Wiley.Google Scholar
  50. Young, K. S. (1998b). Internet addiction: the emergence of a new clinical disorder. CyberPsychology & Behavior, 1(3), 237–244.CrossRefGoogle Scholar
  51. Yu, D., Yuan, K., Zhao, L., Zhao, L., Dong, M., Liu, P., et al. (2012). Regional homogeneity abnormalities in patients with interictal migraine without aura: a resting‐state study. NMR in Biomedicine, 25(5), 806–812.CrossRefPubMedGoogle Scholar
  52. Yuan, K., Qin, W., Dong, M., Liu, J., Sun, J., Liu, P., et al. (2010a). Gray matter deficits and resting-state abnormalities in abstinent heroin-dependent individuals. Neuroscience Letters, 482(2), 101–105.CrossRefPubMedGoogle Scholar
  53. Yuan, K., Qin, W., Liu, J., Guo, Q., Dong, M., Sun, J., et al. (2010b). Altered small-world brain functional networks and duration of heroin use in male abstinent heroin-dependent individuals. Neuroscience Letters, 477(1), 37–42.CrossRefPubMedGoogle Scholar
  54. Yuan, K., Qin, W., Wang, G., Zeng, F., Zhao, L., Yang, X., et al. (2011). Microstructure abnormalities in adolescents with internet addiction disorder. PLoS ONE, 6(6), e20708.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Yuan, K., Cheng, P., Dong, T., Bi, Y., Xing, L., Yu, D., et al. (2013a). Cortical thickness abnormalities in late adolescence with online gaming addiction. PLoS ONE, 8(1), e53055.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Yuan, K., Jin, C., Cheng, P., Yang, X., Dong, T., Bi, Y., et al. (2013b). Amplitude of low frequency fluctuation abnormalities in adolescents with online gaming addiction. PLoS ONE, 8(11), e78708.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Yuan, K., Qin, W., Yu, D., Bi, Y., Xing, L., Jin, C., et al. (2015). Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Structure and Function. doi:10.1007/s00429-014-0982-7.
  58. Zhang, X., Salmeron, B. J., Ross, T. J., Gu, H., Geng, X., Yang, Y., et al. (2011). Anatomical differences and network characteristics underlying smoking cue reactivity. NeuroImage, 54(1), 131–141.CrossRefPubMedGoogle Scholar
  59. Zhou, Z., Yuan, G., & Yao, J. (2012). Cognitive biases toward internet game-related pictures and executive deficits in individuals with an internet game addiction. PLoS ONE, 7(11), e48961.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Medical Imaging, the First Affiliated Hospital of Medical CollegeXi’an Jiaotong UniversityXi’anChina
  2. 2.College of TourismGuilin Technology of UniversityGuilinChina
  3. 3.School of Humanities and Social SciencesXi’an Jiaotong UniversityXi’anChina
  4. 4.Life Sciences Research Center, School of Life Sciences and TechnologyXidian UniversityXi’anChina
  5. 5.Information Processing Laboratory, School of Information EngineeringInner Mongolia University of Science and TechnologyBaotouChina

Personalised recommendations