Brain Imaging and Behavior

, Volume 10, Issue 3, pp 781–791 | Cite as

Mathematical abilities in dyslexic children: a diffusion tensor imaging study

  • Inga K. Koerte
  • Anna Willems
  • Marc Muehlmann
  • Kristina Moll
  • Sonia Cornell
  • Silvia Pixner
  • Denise Steffinger
  • Daniel Keeser
  • Florian Heinen
  • Marek Kubicki
  • Martha E. Shenton
  • Birgit Ertl-Wagner
  • Gerd Schulte-Körne
Original Research

Abstract

Dyslexia is characterized by a deficit in language processing which mainly affects word decoding and spelling skills. In addition, children with dyslexia also show problems in mathematics. However, for the latter, the underlying structural correlates have not been investigated. Sixteen children with dyslexia (mean age 9.8 years [0.39]) and 24 typically developing children (mean age 9.9 years [0.29]) group matched for age, gender, IQ, and handedness underwent 3 T MR diffusion tensor imaging as well as cognitive testing. Tract-Based Spatial Statistics were performed to correlate behavioral data with diffusion data. Children with dyslexia performed worse than controls in standardized verbal number tasks, such as arithmetic efficiency tests (addition, subtraction, multiplication, division). In contrast, the two groups did not differ in the nonverbal number line task. Arithmetic efficiency, representing the total score of the four arithmetic tasks, multiplication, and division, correlated with diffusion measures in widespread areas of the white matter, including bilateral superior and inferior longitudinal fasciculi in children with dyslexia compared to controls. Children with dyslexia demonstrated lower performance in verbal number tasks but performed similarly to controls in a nonverbal number task. Further, an association between verbal arithmetic efficiency and diffusion measures was demonstrated in widespread areas of the white matter suggesting compensatory mechanisms in children with dyslexia compared to controls. Taken together, poor fact retrieval in children with dyslexia is likely a consequence of deficits in the language system, which not only affects literacy skills but also impacts on arithmetic skills.

Keywords

Dyslexia Diffusion tensor imaging Mathematical ability Mathematics disorder Learning disorder 

References

  1. Achenbach, T. M., Howell, C. T., Quay, H. C., Conners, C. K., & Bates, J. E. (1991). National survey of problems and competencies among four- to sixteen-year-olds: parents’ reports for normative and clinical samples. Monographs of the Society for Research in Child Development, 56(3), 1–130. doi:10.2307/1166156.CrossRefPubMedGoogle Scholar
  2. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders. 5th ed.Google Scholar
  3. Ashkenazi, S., Rosenberg-Lee, M., Tenison, C., & Menon, V. (2012). Weak task-related modulation and stimulus representations during arithmetic problem solving in children with developmental dyscalculia. Developmental Cognitive Neuroscience, 2(Suppl 1), S152–S166. doi:10.1016/j.dcn.2011.09.006.CrossRefPubMedGoogle Scholar
  4. Basser, P. J., & Pierpaoli, C. (2011). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. 1996. Journal of Magnetic Resonance, 213(2), 560–570. doi:10.1016/j.jmr.2011.09.022.CrossRefPubMedGoogle Scholar
  5. Boets, B., & De Smedt, B. (2010). Single-digit arithmetic in children with dyslexia. Dyslexia, 16(2), 183–191. doi:10.1002/dys.403.PubMedGoogle Scholar
  6. Boets, B., Op de Beeck, H. P., Vandermosten, M., Scott, S. K., Gillebert, C. R., Mantini, D., Bulthé, J., Sunaert, S., Wouters, J., & Ghesquiere, P. (2013). Intact but less accessible phonetic representations in adults with dyslexia. Science, 342(6163), 1251–1254. doi:10.1126/science.1244333.CrossRefPubMedPubMedCentralGoogle Scholar
  7. De Smedt, B., & Boets, B. (2010). Phonological processing and arithmetic fact retrieval: evidence from developmental dyslexia. Neuropsychologia, 48(14), 3973–3981. doi:10.1016/j.neuropsychologia.2010.10.018.CrossRefPubMedGoogle Scholar
  8. Denckla, M. B., & Rudel, R. G. (1976). Rapid automatized naming (R.A.N): dyslexia differentiated from other learning disabilities. Neuropsychologia, 14, 471.CrossRefPubMedGoogle Scholar
  9. Dirks, E., Spyer, G., van Lieshout, E. C., & de Sonneville, L. (2008). Prevalence of combined reading and arithmetic disabilities. Journal of Learning Disabilities, 41(5), 460–473. doi:10.1177/0022219408321128.CrossRefPubMedGoogle Scholar
  10. Evans, T. M., Flowers, D. L., Napoliello, E. M., Olulade, O. A., & Eden, G. F. (2014). The functional anatomy of single-digit arithmetic in children with developmental dyslexia. NeuroImage, 101, 644–652. doi:10.1016/j.neuroimage.2014.07.028.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Grabner, R. H., Ansari, D., Koschutnig, K., Reishofer, G., & Ebner, F. (2013). The function of the left angular gyrus in mental arithmetic: evidence from the associative confusion effect. Human Brain Mapping, 34(5), 1013–1024. doi:10.1002/hbm.21489.CrossRefPubMedGoogle Scholar
  12. Haffner, J., Baro, K., Parzer, P., & Resch, F. (2005). HRT 1-4 - Heidelberger Rechentest—Erfassung mathematischer Basiskompetenzen im Grundschulalter. Hogreffe.Google Scholar
  13. Hanggi, J., Koeneke, S., Bezzola, L., & Jancke, L. (2010). Structural neuroplasticity in the sensorimotor network of professional female ballet dancers. Human Brain Mapping, 31(8), 1196–1206. doi:10.1002/hbm.20928.PubMedGoogle Scholar
  14. Helmreich, I., Zuber, J., Pixner, S., Kaufmann, L., Nuerk, H. C., & Moeller, K. (2011). Language effects on children’s nonverbal number line estimations. Journal of Cross-Cultural Psychology, 42(4), 598–613. doi:10.1177/0022022111406026.CrossRefGoogle Scholar
  15. Jacobs, C. (2007). Testinformation: Grundintelligenz CFT 20—R von Hermann Weiß. Diagnostica, 53(2), 5.Google Scholar
  16. Kucian, K., Loenneker, T., Dietrich, T., Dosch, M., Martin, E., & von Aster, M. (2006). Impaired neural networks for approximate calculation in dyscalculic children: a functional MRI study. Behavioral and Brain Functions, 2, 31. doi:10.1186/1744-9081-2-31.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lebel, C., Shaywitz, B., Holahan, J., Shaywitz, S., Marchione, K., & Beaulieu, C. (2013). Diffusion tensor imaging correlates of reading ability in dysfluent and non-impaired readers. Brain and Language, 125(2), 215–222. doi:10.1016/j.bandl.2012.10.009.CrossRefPubMedGoogle Scholar
  18. Lenhard, W., & Schneider, W. (2006). Ein Leseverständnistest für Erst- bis Sechstklässler (ELFE 1-6). Hogrefe.Google Scholar
  19. Ling, J., Merideth, F., Caprihan, A., Pena, A., Teshiba, T., & Mayer, A. R. (2012). Head injury or head motion? Assessment and quantification of motion artifacts in diffusion tensor imaging studies. Human Brain Mapping, 33(1), 50–62. doi:10.1002/hbm.21192.CrossRefPubMedGoogle Scholar
  20. Matejko, A. A., & Ansari, D. (2015). Drawing connections between white matter and numerical and mathematical cognition: a literature review. Neuroscience and Biobehavioral Reviews, 48c, 35–52. doi:10.1016/j.neubiorev.2014.11.006.CrossRefGoogle Scholar
  21. Moeller, K., Pixner, S., Kaufmann, L., & Nuerk, H. C. (2009). Children’s early mental number line: logarithmic or decomposed linear? Journal of Experimental Child Psychology, 103(4), 503–515. doi:10.1016/j.jecp.2009.02.006.CrossRefPubMedGoogle Scholar
  22. Moll, K., & Landerl, K. (2010). Lese- und Rechtschreibtest (SLRT-II). Weiterentwicklung des Salzburger Lese- und Rechtschreibtests. Verlag Hans Huber.Google Scholar
  23. Moll, K., Göbel, S. M., & Snowling, M. J. (2014a). Basic number processing in children with specific learning disorders: comorbidity of reading and mathematics disorders. Child Neuropsychology. doi:10.1080/09297049.2014.899570.PubMedGoogle Scholar
  24. Moll, K., Kunze, S., Neuhoff, N., Bruder, J., & Schulte-Korne, G. (2014b). Specific learning disorder: prevalence and gender differences. PLoS One, 9(7), e103537. doi:10.1371/journal.pone.0103537.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Norton, E. S., Beach, S. D., & Gabrieli, J. D. (2014). Neurobiology of dyslexia. Current Opinion in Neurobiology, 30C, 73–78. doi:10.1016/j.conb.2014.09.007.Google Scholar
  26. Odegard, T. N., Farris, E. A., Ring, J., McColl, R., & Black, J. (2009). Brain connectivity in non-reading impaired children and children diagnosed with developmental dyslexia. Neuropsychologia, 47(8–9), 1972–1977. doi:10.1016/j.neuropsychologia.2009.03.009.CrossRefPubMedGoogle Scholar
  27. Petermann, F., & Petermann, U. (2010). HAWIK-IV. Bern: Huber.Google Scholar
  28. Pierpaoli, C., Jezzard, P., Basser, P. J., Barnett, A., & Di Chiro, G. (1996). Diffusion tensor MR imaging of the human brain. Radiology, 201(3), 637–648.CrossRefPubMedGoogle Scholar
  29. Prado, J., Mutreja, R., & Booth, J. R. (2014). Developmental dissociation in the neural responses to simple multiplication and subtraction problems. Developmental Science, 17(4), 537–552.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Richlan, F., Kronbichler, M., & Wimmer, H. (2009). Functional abnormalities in the dyslexic brain: a quantitative meta-analysis of neuroimaging studies. Human Brain Mapping, 30(10), 3299–3308. doi:10.1002/hbm.20752.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Rotzer, S., Kucian, K., Martin, E., von Aster, M., Klaver, P., & Loenneker, T. (2008). Optimized voxel-based morphometry in children with developmental dyscalculia. NeuroImage, 39(1), 417–422. doi:10.1016/j.neuroimage.2007.08.045.CrossRefPubMedGoogle Scholar
  32. Rykhlevskaia, E., Uddin, L. Q., Kondos, L., & Menon, V. (2009). Neuroanatomical correlates of developmental dyscalculia: combined evidence from morphometry and tractography. Frontiers in Human Neuroscience, 3, 51. doi:10.3389/neuro.09.051.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Saygin, Z. M., Norton, E. S., Osher, D. E., Beach, S. D., Cyr, A. B., Ozernov-Palchik, O., Yendiki, A., Fischl, B., Gaab, N., & Gabrieli, J. D. (2013). Tracking the roots of reading ability: white matter volume and integrity correlate with phonological awareness in prereading and early-reading kindergarten children. Journal of Neuroscience, 33(33), 13251–13258. doi:10.1523/JNEUROSCI.4383-12.2013.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Schmithorst, V. J., & Wilke, M. (2002). Differences in white matter architecture between musicians and non-musicians: a diffusion tensor imaging study. Neuroscience Letters, 321(1–2), 57–60.CrossRefPubMedGoogle Scholar
  35. Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371. doi:10.1038/nn.2412.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Schulte-Körne, G. (2010). The prevention, diagnosis, and treatment of dyslexia. Deutsches Ärzteblatt International, 107(41), 718–726. doi:10.3238/arztebl.2010.0718.
  37. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., Bannister, P. R., De Luca, M., Drobnjak, I., Flitney, D. E., Niazy, R., Saunders, J., Vickers, J., Zhang, Y., De Stefano, N., Brady, J. M., & Matthews, P. M. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–S219. doi:10.1016/j.neuroimage.2004.07.051.CrossRefPubMedGoogle Scholar
  38. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., Watkins, K. E., Ciccarelli, O., Cader, M. Z., Matthews, P. M., & Behrens, T. E. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505. doi:10.1016/j.neuroimage.2006.02.024.CrossRefPubMedGoogle Scholar
  39. Van Eimeren, L. (2008). White matter microstructures underlying mathematical abilities in children. Neuroreport, 19(11), 5.Google Scholar
  40. Vandermosten, M., Boets, B., Wouters, J., & Ghesquiere, P. (2012). A qualitative and quantitative review of diffusion tensor imaging studies in reading and dyslexia. Neuroscience and Biobehavioral Reviews, 36(6), 1532–1552. doi:10.1016/j.neubiorev.2012.04.002.CrossRefPubMedGoogle Scholar
  41. Vellutino, F. R., Fletcher, J. M., Snowling, M. J., & Scanlon, D. M. (2004). Specific reading disability (dyslexia): what have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 2–40.CrossRefPubMedGoogle Scholar
  42. WHO World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines.Google Scholar
  43. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., & Nichols, T. E. (2014). Permutation inference for the general linear model. NeuroImage, 92, 381–397. doi:10.1016/j.neuroimage.2014.01.060.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wirtz, M. A. (2014). Weingartener Grundwortschatz Rechtschreibtest (WRT 1+, WRT 2+, WRT 3+, WRT 4+). Dorsch – Lexikon der Psychologie, 17.Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Inga K. Koerte
    • 1
    • 2
    • 3
  • Anna Willems
    • 1
    • 2
  • Marc Muehlmann
    • 1
    • 2
  • Kristina Moll
    • 1
  • Sonia Cornell
    • 4
  • Silvia Pixner
    • 5
  • Denise Steffinger
    • 3
  • Daniel Keeser
    • 3
    • 6
  • Florian Heinen
    • 4
  • Marek Kubicki
    • 2
    • 7
  • Martha E. Shenton
    • 2
    • 7
    • 8
  • Birgit Ertl-Wagner
    • 3
  • Gerd Schulte-Körne
    • 1
  1. 1.Department of Child and Adolescent Psychiatry, Psychosomatic and PsychotherapyLudwig-Maximilian-UniversityMunichGermany
  2. 2.Department of Psychiatry, Psychiatry Neuroimaging Laboratory, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  3. 3.Institute for Clinical RadiologyLudwig-Maximilian-UniversityMunichGermany
  4. 4.Department of Pediatric Neurology and Developmental Medicine, Dr. von Hauner Children’s HospitalLudwig-Maximilian-UniversityMunichGermany
  5. 5.Institute of Applied PsychologyUniversity for Health Sciences, Medical Informatics and TechnologyHall in TyrolAustria
  6. 6.Department of Psychiatry and PsychotherapyLudwig-Maximilian-UniversityMunichGermany
  7. 7.Departments of Psychiatry and Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  8. 8.VA Boston Healthcare SystemBostonUSA

Personalised recommendations