Brain Imaging and Behavior

, Volume 10, Issue 3, pp 730–738 | Cite as

Greater preference consistency during the Willingness-to-Pay task is related to higher resting state connectivity between the ventromedial prefrontal cortex and the ventral striatum

  • Scott Mackey
  • Valur Olafsson
  • Robin L. Aupperle
  • Kun Lu
  • Greg A. Fonzo
  • Jason Parnass
  • Thomas Liu
  • Martin P. Paulus
Original Research

Abstract

The significance of why a similar set of brain regions are associated with the default mode network and value-related neural processes remains to be clarified. Here, we examined i) whether brain regions exhibiting willingness-to-pay (WTP) task-related activity are intrinsically connected when the brain is at rest, ii) whether these regions overlap spatially with the default mode network, and iii) whether individual differences in choice behavior during the WTP task are reflected in functional brain connectivity at rest. Blood-oxygen-level dependent (BOLD) signal was measured by functional magnetic resonance imaging while subjects performed the WTP task and at rest with eyes open. Brain regions that tracked the value of bids during the WTP task were used as seed regions in an analysis of functional connectivity in the resting state data. The seed in the ventromedial prefrontal cortex was functionally connected to core regions of the WTP task-related network. Brain regions within the WTP task-related network, namely the ventral precuneus, ventromedial prefrontal and posterior cingulate cortex overlapped spatially with publically available maps of the default mode network. Also, those individuals with higher functional connectivity during rest between the ventromedial prefrontal cortex and the ventral striatum showed greater preference consistency during the WTP task. Thus, WTP task-related regions are an intrinsic network of the brain that corresponds spatially with the default mode network, and individual differences in functional connectivity within the WTP network at rest may reveal a priori biases in choice behavior.

Keywords

fMRI Value Preference Default mode network Ventromedial prefrontal cortex Ventral striatum 

Notes

Acknowledgments

This work was funded by a grants received from the National Institute on Drug Abuse: R01 DA027797 & P20 DA027843.

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11682_2015_9435_MOESM1_ESM.pdf (365 kb)
ESM 1(PDF 365 kb)

References

  1. Antrobus, J. S., Singer, J. L., & Greenberg, S. (1966). Studies in the stream of consciousness: experimental enhancement and suppression of spontaneous cognitive processes. Perceptual and Motor Skills, 23, 399–417.CrossRefGoogle Scholar
  2. Baldassarre, A., Lewis, C. M., Committeri, G., Snyder, A. Z., Romani, G. L., & Corbetta, M. (2012). Individual variability in functional connectivity predicts performance of a perceptual task. Proceedings of the National Academy of Sciences of the United States of America, 109, 3516–3521.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Becker, G. M., DeGroot, M. H., & Marschak, J. (1964). Measuring utility by a single-response sequential method. Behavioral Science, 9, 226–232.CrossRefPubMedGoogle Scholar
  4. Berridge, K. C., Robinson, T. E., & Aldridge, J. W. (2009). Dissecting components of reward: ‘liking’, ‘wanting’, and learning. Current Opinion in Pharmacology, 9, 65–73.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bouret, S., & Richmond, B. J. (2010). Ventromedial and orbital prefrontal neurons differentially encode internally and externally driven motivational values in monkeys. Journal of Neuroscience, 30, 8591–8601.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.CrossRefPubMedGoogle Scholar
  7. Chib, V. S., Rangel, A., Shimojo, S., & O’Doherty, J. P. (2009). Evidence for a common representation of decision values for dissimilar goods in human ventromedial prefrontal cortex. Journal of Neuroscience, 29, 12315–12320.CrossRefPubMedGoogle Scholar
  8. Clithero, J. A., & Rangel, A. (2012) Reliable features of the network involved in the neural computation of subjective value. In: Neuroeconomics 10th Annual Meeting Miami, USA.Google Scholar
  9. Clithero, J. A., & Rangel, A. (2013) Informatic parcellation of the network involved in the computation of subjective value. Soc Cogn Affect Neurosci.Google Scholar
  10. Coste, C. P., Sadaghiani, S., Friston, K. J., & Kleinschmidt, A. (2011). Ongoing brain activity fluctuations directly account for intertrial and indirectly for intersubject variability in Stroop task performance. Cerebral Cortex, 21, 2612–2619.CrossRefPubMedGoogle Scholar
  11. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  12. Damoiseaux, J. S., & Greicius, M. D. (2009). Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Structure and Function, 213, 525–533.CrossRefPubMedGoogle Scholar
  13. Dillon, D. G., Rosso, I. M., Pechtel, P., Killgore, W. D., Rauch, S. L., & Pizzagalli, D. A. (2014). Peril and pleasure: an rdoc-inspired examination of threat responses and reward processing in anxiety and depression. Depression and Anxiety, 31, 233–249.CrossRefPubMedGoogle Scholar
  14. Erk, S., Spitzer, M., Wunderlich, A. P., Galley, L., & Walter, H. (2002). Cultural objects modulate reward circuitry. Neuroreport, 13, 2499–2503.CrossRefPubMedGoogle Scholar
  15. Fellows, L. K., & Farah, M. J. (2007). The role of ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cerebral Cortex, 17, 2669–2674.CrossRefPubMedGoogle Scholar
  16. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102, 9673–9678.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Fransson, P. (2006). How default is the default mode of brain function? Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia, 44, 2836–2845.CrossRefPubMedGoogle Scholar
  18. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 253–258.CrossRefPubMedGoogle Scholar
  19. Gusnard, D. A., & Raichle, M. E. (2001). Searching for a baseline: functional imaging and the resting human brain. Nature Reviews Neuroscience, 2, 685–694.CrossRefPubMedGoogle Scholar
  20. Hare, T. A., Camerer, C. F., Knoepfle, D. T., & Rangel, A. (2010). Value computations in ventral medial prefrontal cortex during charitable decision making incorporate input from regions involved in social cognition. Journal of Neuroscience, 30, 583–590.CrossRefPubMedGoogle Scholar
  21. Hare, T. A., Malmaud, J., & Rangel, A. (2011). Focusing attention on the health aspects of foods changes value signals in vmPFC and improves dietary choice. Journal of Neuroscience, 31, 11077–11087.CrossRefPubMedGoogle Scholar
  22. Harmelech, T., & Malach, R. (2013). Neurocognitive biases and the patterns of spontaneous correlations in the human cortex. Trends in Cognitive Sciences, 17, 606–615.CrossRefPubMedGoogle Scholar
  23. Janowski, V., Camerer, C., & Rangel, A. (2013). Empathic choice involves vmPFC value signals that are modulated by social processing implemented in IPL. Social Cognitive and Affective Neuroscience, 8, 201–208.CrossRefPubMedGoogle Scholar
  24. Jo, H. J., Saad, Z. S., Simmons, W. K., Milbury, L. A., & Cox, R. W. (2010). Mapping sources of correlation in resting state FMRI, with artifact detection and removal. NeuroImage, 52, 571–582.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kang, M. J., Rangel, A., Camus, M., & Camerer, C. F. (2011). Hypothetical and real choice differentially activate common valuation areas. Journal of Neuroscience, 31, 461–468.CrossRefPubMedGoogle Scholar
  26. Koyama, M. S., Di Martino, A., Zuo, X. N., Kelly, C., Mennes, M., Jutagir, D. R., Castellanos, F. X., & Milham, M. P. (2011). Resting-state functional connectivity indexes reading competence in children and adults. Journal of Neuroscience, 31, 8617–8624.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Leathers, M. L., & Olson, C. R. (2012). In monkeys making value-based decisions, LIP neurons encode cue salience and not action value. Science, 338, 132–135.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Lee, L., Amir, O., & Ariely, D. (2009). In search of homo economicus: cognitive noise and the role of emotion in preference consistency. J Cons Res, 36, 173–187.CrossRefGoogle Scholar
  29. Liljeholm, M., Wang, S., Zhang, J., & O’Doherty, J. P. (2013). Neural correlates of the divergence of instrumental probability distributions. Journal of Neuroscience, 33, 12519–12527.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mackey, S., & Paulus, M. (2013). Are there volumetric brain differences associated with the use of cocaine and amphetamine-type stimulants? Neuroscience and Biobehavioral Reviews, 37, 300–316.CrossRefPubMedGoogle Scholar
  31. Mackey, S., & Petrides, M. (2014) Architecture and morphology of the human ventromedial prefrontal cortex. European Journal of Neuroscience, 40, 2777–2796.Google Scholar
  32. Margulies, D. S., Vincent, J. L., Kelly, C., Lohmann, G., Uddin, L. Q., Biswal, B. B., Villringer, A., Castellanos, F. X., Milham, M. P., & Petrides, M. (2009). Precuneus shares intrinsic functional architecture in humans and monkeys. Proceedings of the National Academy of Sciences of the United States of America, 106, 20069–20074.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Mars, R. B., Jbabdi, S., Sallet, J., O’Reilly, J. X., Croxson, P. L., Olivier, E., Noonan, M. P., Bergmann, C., Mitchell, A. S., Baxter, M. G., Behrens, T. E., Johansen-Berg, H., Tomassini, V., Miller, K. L., & Rushworth, M. F. (2011). Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. Journal of Neuroscience, 31, 4087–4100.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering minds: the default network and stimulus-independent thought. Science, 315, 393–395.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Mayberg, H. S., Lozano, A. M., Voon, V., McNeely, H. E., Seminowicz, D., Hamani, C., Schwalb, J. M., & Kennedy, S. H. (2005). Deep brain stimulation for treatment-resistant depression. Neuron, 45, 651–660.CrossRefPubMedGoogle Scholar
  36. McClure, S. M., Li, J., Tomlin, D., Cypert, K. S., Montague, L. M., & Montague, P. R. (2004). Neural correlates of behavioral preference for culturally familiar drinks. Neuron, 44, 379–387.CrossRefPubMedGoogle Scholar
  37. Mevorach, C., Humphreys, G. W., & Shalev, L. (2006). Opposite biases in salience-based selection for the left and right posterior parietal cortex. Nature Neuroscience, 9, 740–742.CrossRefPubMedGoogle Scholar
  38. Ochsner, K., & Gross, J. (2005) The cognitive control of emotion. TRENDS in Cognitive Sciences, 9, 242–249.Google Scholar
  39. Olafsson, V., Guo, J., Wong, C. W., Kundu, P., Inati, S., Luh, W.-M., Roopchansingh, V., Brenowitz, N., Bandettini, P., Wong, E, Liu, T. (2012). High spatial and temporal resolution fcMRI with BOLD selectivity using multiecho simultaneous multislice EPI. In: Proceedings of the 20th ISMRM, p 2068.Google Scholar
  40. Paulus, M. P., & Frank, L. R. (2003). Ventromedial prefrontal cortex activation is critical for preference judgments. Neuroreport, 14, 1311–1315.CrossRefPubMedGoogle Scholar
  41. Paulus, M. P., Tapert, S. F., & Schulteis, G. (2009). The role of interoception and alliesthesia in addiction. Pharmacology Biochemistry and Behavior, 94, 1–7.CrossRefGoogle Scholar
  42. Plassmann, H., O’Doherty, J., & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27, 9984–9988.CrossRefPubMedGoogle Scholar
  43. Plassmann, H., O’Doherty, J. P., & Rangel, A. (2010). Appetitive and aversive goal values are encoded in the medial orbitofrontal cortex at the time of decision making. Journal of Neuroscience, 30, 10799–10808.CrossRefPubMedGoogle Scholar
  44. Singer, J. L., & Antrobus, J. S. (1963). A factor-analytic study of daydreaming and conceptually-related cognitive and personality variables. Perceptual and Motor Skills, 17, 187–209.CrossRefPubMedGoogle Scholar
  45. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., Filippini, N., Watkins, K. E., Toro, R., Laird, A. R., & Beckmann, C. F. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106, 13040–13045.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Uddin, L. Q. (2013). Complex relationships between structural and functional brain connectivity. Trends in Cognitive Sciences, 17, 600–602.CrossRefPubMedGoogle Scholar
  47. Uddin, L. Q., Kelly, A. M., Biswal, B. B., Xavier Castellanos, F., & Milham, M. P. (2009). Functional connectivity of default mode network components: correlation, anticorrelation, and causality. Human Brain Mapping, 30, 625–637.CrossRefPubMedGoogle Scholar
  48. Verdejo-Garcia, A., & Bechara, A. (2009). A somatic marker theory of addiction. Neuropharmacology, 56(Suppl 1), 48–62.CrossRefPubMedGoogle Scholar
  49. Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., Zempel, J. M., Snyder, L. H., Corbetta, M., & Raichle, M. E. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447, 83–86.CrossRefPubMedGoogle Scholar
  50. Zhang, S., & Li, C. S. (2012). Functional connectivity mapping of the human precuneus by resting state fMRI. NeuroImage, 59, 3548–3562.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Scott Mackey
    • 1
  • Valur Olafsson
    • 2
  • Robin L. Aupperle
    • 3
  • Kun Lu
    • 4
  • Greg A. Fonzo
    • 5
  • Jason Parnass
    • 6
  • Thomas Liu
    • 4
  • Martin P. Paulus
    • 3
    • 6
  1. 1.Department of PsychiatryUniversity of VermontBurlingtonUSA
  2. 2.Neuroscience Imaging CenterUniversity of PittsburghPittsburghUSA
  3. 3.Laureate Institute for Brain ResearchTulsaUSA
  4. 4.Center for Functional MRIUniversity of California, San DiegoLa JollaUSA
  5. 5.Department of Psychiatry and Behavioral SciencesStanford University School of MedicineStanfordUSA
  6. 6.Veterans Affairs San Diego Healthcare SystemSan DiegoUSA

Personalised recommendations