Brain Imaging and Behavior

, Volume 10, Issue 3, pp 629–635 | Cite as

Variations in Disrupted-in-Schizophrenia 1 gene modulate long-term longitudinal differences in cortical thickness in patients with a first-episode of psychosis

  • Javier Vázquez-BourgonEmail author
  • Roberto Roiz-Santiañez
  • Sergi Papiol
  • Adele Ferro
  • Noemí Varela-Gómez
  • Lourdes Fañanás
  • Benedicto Crespo-Facorro


Schizophrenia patients typically present a widespread bilateral cortical thinning from the early stages of the illness. However, there is controversy whether this reduction in cortical thickness (CT) is static or progressive over the evolution of the disorder. Disrupted-in-Schizophrenia 1 (DISC1) is one of the main candidates genes for schizophrenia, as it has been found associated to the illness, and to several endophenotypes of the disorder including structural brain differences. This gene is known to be involved in neurodevelopment and brain maturation processes. We therefore hypothesized that variations in this gene modulate different progressions of CT in psychosis. Seventy-nine Caucasian drug-naive patients experiencing a first episode of non-affective psychosis were genotyped for rs6675281 (Leu607Phe) and rs821616 (Ser704Cys) SNPs of the DISC1 gene. Brain MRIs were carried out at baseline and 3 years after initiating the treatment. Other clinical and socio-demographic variables were recorded to rule out possible confounding effects. Patients homozygous for the Leu allele of the rs6675281 SNP had a significant (p < 0.05) descend in CT over the 3-years period, while those carrying the Phe allele presented an increase in CT. When combining the two SNPs we found a synergic effect on CT progression, presenting those patients homozygous for Leu607 +Ser704 a more pronounced cortical thinning. In conclusion, DISC1 gene variations may modulate the longitudinal changes in cortical thickness in patients suffering from a first episode of non-affective psychosis.


Psychosis Neuroimaging-genetics Cortical thickness DISC1 rs6675281 rs821616 



The present study was performed at the Hospital Marqués de Valdecilla, University of Cantabria, Santander, Spain, under the following Grant support: SENY Fundacio Research Grant 2005, Instituto de Salud Carlos III, FIS 00/3095, 03/1009, PI06/0507, and PI14/00639, and Fundación Marques de Valdecilla A/02/07 and API 07/11. We thank Valdecilla Biobank for providing the biological samples and associated data included in this study and IDIVAL Neuroimaging Unit for its help in the technical execution of this work. We thank the Comissionat per a Universitats i Recerca del DIUE (2014SGR1636), and the Spanish Centro Nacional de Genotipado (CEGEN) for carrying out the genetic analysis.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

11682_2015_9433_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 18 kb)
11682_2015_9433_MOESM2_ESM.docx (19 kb)
ESM 2 (DOCX 18 kb)


  1. Blackwood, D. H., Fordyce, A., Walker, M. T., St Clair, D. M., Porteous, D. J., & Muir, W. J. (2001). Schizophrenia and affective disorders cosegregation with a translocation at chromosome 1q42 that directly disrupts brain-expressed genes: clinical and P300 findings in a family. American Journal of Human Genetics, 69, 428–433.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blix, E., Perski, A., Berglund, H., & Savic, I. (2013). Long-term occupational stress is associated with regional reductions in brain tissue volumes. PLoS ONE, 8(6), e64065.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bradshaw, N. J., & Porteous, D. J. (2012). DISC1-binding proteins in neural development, signaling and schizophrenia. Neuropharmacology, 62(3), 1230–1241.CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bramon, E., Pirinen, M., Strange, A., Lin, K., Psychosis Endophenotypes International Consortium; Wellcome Trust Case-Control Consortium 2, et al. (2014). A genome-wide association analysis of a broad psychosis phenotype identifies three loci for further investigation. Biological Psychiatry, 75(5), 386–397.CrossRefPubMedGoogle Scholar
  5. Brauns, S., Gollub, R. L., Roffman, J. L., Yendiki, A., Ho, B.-C., Wassink, T. H., et al. (2011). DISC1 is associated with cortical thickness and neural efficiency. NeuroImage, 57(4), 1591–1600.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Camargo, L. M., Collura, V., Rain, J.-C., Mizuguchi, K., Hermjakob, H., Kerrien, S., et al. (2007). Disrupted in Schizophrenia 1 Interactome: evidence for the close connectivity of risk genes and a potential synaptic basis for schizophrenia. Molecular Psychiatry, 12, 74–86.CrossRefPubMedGoogle Scholar
  7. Chakravarty, M. M., Felsky, D., Tampakeras, M., Lerch, J. P., Mulsant, B. H., Kennedy, J. L., & Voineskos, A. N. (2012). DISC1 and Striatal Volume: A Potential Risk Phenotype For mental Illness. Frontiers in Psychiatry, 3, 57.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chubb, J. E., Bradshaw, N. J., Soares, D. C., Porteous, D. J., & Millar, J. K. (2008). The DISC locus in psychiatric illness. Molecular Psychiatry, 13(1), 36–64.CrossRefPubMedGoogle Scholar
  9. Cobia, D. J., Smith, M. J., Wang, L., & Csernansky, J. G. (2012). Longitudinal progression of frontal and temporal lobe changes in schizophrenia. Schizophrenia Research, 139, 1–6.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Crespo-Facorro, B., Roiz-Santiáñez, R., Pérez-Iglesias, R., Rodriguez-Sanchez, J. M., Mata, I., Tordesillas-Gutierrez, D., et al. (2011). Global and regional cortical thinning in first-episode psychosis patients: relationships with clinical and cognitive features. Psychological Medicine, 41(7), 1449–1460.CrossRefPubMedGoogle Scholar
  11. Duff, B. J., Macritchie, K. A., Moorhead, T. W., Lawrie, S. M., & Blackwood, D. H. (2013). Human brain imaging studies of DISC1 in schizophrenia, bipolar disorder and depression: A systematic review. Schizophrenia Research, 147(1), 1–13.CrossRefPubMedGoogle Scholar
  12. Engvig, A., Fjell, A. M., Westlye, L. T., Moberget, T., Sundseth, Ø., Larsen, V. A., & Walhovd, K. B. (2010). Effects of memory training on cortical thickness in the elderly. NeuroImage, 52(4), 1667–1676.CrossRefPubMedGoogle Scholar
  13. Goghari, V. M., Smith, G. N., Honer, W. G., Kopala, L. C., Thornton, A. E., Su, W., et al. (2013). Effects of eight weeks of atypical antipsychotic treatment on middle frontal thickness in drug-naïve first-episode psychosis patients. Schizophrenia Research, 149(1-3), 149–155.CrossRefPubMedGoogle Scholar
  14. Goldman, A. L., Pezawas, L., Mattay, V. S., Fischl, B., Verchinski, B. A., Chen, Q., et al. (2009). Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. Archives General Psychiatry, 66, 467–477.CrossRefGoogle Scholar
  15. Gratten, J., Wray, N. R., Keller, M. C., & Visscher, P. M. (2014). Large-scale genomics unveils the genetic architecture of psychiatric disorders. Nature Neuroscience, 17(6), 782–790.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gutiérrez-Galve, L., Chu, E. M., Leeson, V. C., Price, G., Barnes, T. R., Joyce, E. M., & Ron, M. A. (2015). A longitudinal study of cortical changes and their cognitive correlates in patients followed up after first-episode psychosis. Psychological Medicine, 45(1), 205–216.CrossRefPubMedGoogle Scholar
  17. Jaaro-Peled, H., Hayashi-Takagi, A., Seshadri, S., Kamiya, A., Brandon, N. J., & Sawa, A. (2009). Neurodevelopmental mechanisms of schizophrenia: understanding disturbed postnatal brain maturation through neuregulin-1-ErbB4 and DISC1. Trends in Neuroscience, 32(9), 485–495.CrossRefGoogle Scholar
  18. Johnstone, M., Thomson, P. A., Hall, J., McIntosh, A. M., Lawrie, S. M., & Porteous, D. J. (2011). DISC1 in schizophrenia: genetic mouse models and human genomic imaging. Schizophrenia Bulletin, 37(1), 14–20.CrossRefPubMedGoogle Scholar
  19. Kahler, A. K., Rimol, L. M., Brown, A. A., Djurovic, S., Hartberg, C. B., Melle, I., et al. (2012). Effect of DISC1 SNPs on Brain Structure in Healthy Controls and Patients with a History of Psychosis. American Journal of Medical Genetics Part B, 159B, 722–730.CrossRefGoogle Scholar
  20. Keshavan, M. S., Haas, G. L., Kahn, C. E., Aguilar, E., Dick, E. L., Schooler, N. R., et al. (1998). Superior temporal gyrus and the course of early schizophrenia: progressive, static, or reversible? Journal Psychiatry Research, 32(3-4), 161–167.CrossRefGoogle Scholar
  21. Lee, F. H., Fadel, M. P., Preston-Maher, K., Cordes, S. P., Clapcote, S. J., Price, D. J., et al. (2011). Disc1 point mutations in mice affect development of the cerebral cortex. Journal of Neuroscience, 31(9), 3197–3206.CrossRefPubMedGoogle Scholar
  22. Lipska, B. K., Peters, T., Hyde, T. H., Halim, N., Horowitz, C., Mitkus, S., et al. (2006). Expression of DISC1 binding partners is reduced in schizophrenia and associated with DISC1 SNPs. Human Molecular Genetics, 15, 1245–1258.CrossRefPubMedGoogle Scholar
  23. Magnotta, V. A., Harris, G., Andreasen, N. C., O’Leary, D. S., Yuh, W. T., & Heckel, D. (2002). Structural MR image processing using the BRAINS2 toolbox. Computerized Medical Imaging and Graphics, 26, 251–264.CrossRefPubMedGoogle Scholar
  24. Mata, I., Perez-Iglesias, R., Roiz-Santiañez, R., Tordesillas-Gutierrez, D., Gonzalez-Mandly, A., Berja, A., et al. (2010). Additive effect of NRG1 and DISC1 genes on lateral ventricle enlargement in first episode schizophrenia. NeuroImage, 53(3), 1016–1022.CrossRefPubMedGoogle Scholar
  25. Millar, J. K., Wilson-Annan, J. C., Anderson, S., Christie, S., Taylor, M. S., Semple, C. A., Devon, R. S., Clair, D. M., Muir, W. J., Blackwood, D. H., & Porteous, D. J. (2000). Disruption of two novel genes by a translocation co-segregating with schizophrenia. Human Molecular Genetics, 9, 1415–1423.CrossRefPubMedGoogle Scholar
  26. Millar, J. K., Christie, S., & Porteous, D. J. (2003). Yeast two-hybrid screens implicate DISC1 in brain development and function. Biochemical and Biophysical Research Communications, 311, 1019–1025.CrossRefPubMedGoogle Scholar
  27. Millar, J. K., Pickard, B. S., Mackie, S., James, R., Christie, S., Buchanan, S. R., et al. (2005). DISC1 and PDE4B are interacting genetic factors in schizophrenia that regulate cAMP signalling. Science, 310(5751), 1187–1191.CrossRefPubMedGoogle Scholar
  28. Nesvåg, R., Bergmann, Ø., Rimol, L. M., Lange, E. H., Haukvik, U. K., Hartberg, C. B., et al. (2012). A 5-year follow-up study of brain cortical and subcortical abnormalities in a schizophrenia cohort. Schizophrenia Research, 142(1-3), 209–216.CrossRefPubMedGoogle Scholar
  29. Niwa, M., Kamiya, A., Murai, R., Kubo, K., Gruber, A. J., Tomita, K., et al. (2010). Knockdown of DISC1 by in utero gene transfer disturbs postnatal dopaminergic maturation in the frontal cortex and leads to adult behavioral deficits. Neuron, 65(4), 480–489.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Pelayo-Terán, J. M., Pérez-Iglesias, R., Ramírez-Bonilla, M., González-Blanch, C., Martínez-García, O., Pardo-García, G., et al. (2008). Epidemiological factors associated with treated incidence of first-episode non-affective psychosis in Cantabria: insights from the Clinical Programme on Early Phases of Psychosis. Early Intervention Psychiatry, 2, 178–187.CrossRefGoogle Scholar
  31. Rampino, A., Walker, R. M., Torrance, H. S., Anderson, S. M., Fazio, L., Di Giorgio, A., et al. (2014). Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia. PLoS ONE, 9(6), e99892.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Randall, A. D., Kurihara, M., Brandon, N. J., & Brown, J. T. (2014). Disrupted in schizophrenia 1 and synaptic function in the mammalian central nervous system. European Journal of Neuroscience, 39(7), 1068–1073.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Raznahan, A., Lee, Y., Long, R., Greenstein, D., Clasen, L., Addington, A., et al. (2011). Common functional polymorphisms of DISC1 and cortical maturation in typically developing children and adolescents. Molecular Psychiatry, 16(9), 917–926.CrossRefPubMedGoogle Scholar
  34. Rimol, L. M., Nesvåg, R., Hagler, D. J., Jr., Bergmann, O., Fennema-Notestine, C., Hartberg, C. B., et al. (2012). Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. Biological Psychiatry, 71, 552–560.CrossRefPubMedGoogle Scholar
  35. Ripke, S., O’Dushlaine, C., Chambert, K., Moran, J. L., Kähler, A. K., Akterin, S., et al. (2013). Genome-wide association analysis identifies 13 new risk loci for schizophrenia. Nature Genetics, 45(10), 1150–1159.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Roiz-Santiáñez, R., Tordesillas-Gutiérrez, D., Ortíz-García de la Foz, V., Ayesa-Arriola, R., Gutiérrez, A., Tabarés-Seisdedos, R., et al. (2012). Effect of antipsychotic drugs on cortical thickness. A randomized controlled one-year follow-up study of haloperidol, risperidone and olanzapine. Schizophrenia Research, 141(1), 22–28.CrossRefPubMedGoogle Scholar
  37. Roiz-Santiañez, R., Ortiz-García de la Foz, V., Ayesa-Arriola, R., Tordesillas-Gutiérrez, D., Jorge, R., Varela-Gomez, N., et al. (2015). No progression of the alterations in the cortical thickness of individuals with schizophrenia-spectrum disorder: a three-year longitudinal MRI study of first-episode patients. Psychological Medicine, in Press.Google Scholar
  38. Sawa, A., & Snyder, S. H. (2003). Schizophrenia: Neural Mechanisms for Novel Therapies. Molecular Medicine, 9(1-2), 3–9.PubMedPubMedCentralGoogle Scholar
  39. Schaufelberger, M. S., Lappin, J. M., Duran, F. L., Rosa, P. G., Uchida, R. R., Santos, L. C., et al. (2011). Lack of progression of brain abnormalities in first-episode psychosis: a longitudinal magnetic resonance imaging study. Psychological Medicine, 41(8), 1677–1689.CrossRefPubMedGoogle Scholar
  40. Sizonenko, S. V., Babiloni, C., de Bruin, E. A., Isaacs, E. B., Jönsson, L. S., Kennedy, D. O., et al. (2013). Brain imaging and human nutrition: which measures to use in intervention studies? British Journal of Nutrition, 110(1), S1–S30.CrossRefPubMedGoogle Scholar
  41. Trost, S., Platz, B., Usher, J., Scherk, H., Wobrock, T., Ekawardhani, S., et al. (2013). DISC1 (disrupted-in-schizophrenia 1) is associated with cortical grey matter volumes in the human brain: a voxel-based morphometry (VBM) study. Journal of Psychiatry Research, 47(2), 188–196.CrossRefGoogle Scholar
  42. vanHaren, N. E., Schnack, H. G., Cahn, W., van den Heuvel, M. P., Lepage, C., Collins, L., et al. (2011). Changes in cortical thickness during the course of illness in schizophrenia. Archives of General Psychiatry, 68(9), 871–880.CrossRefGoogle Scholar
  43. Vázquez-Bourgon, J., Mata, I., Roiz-Santiáñez, R., Ayesa-Arriola, R., Suárez Pinilla, P., Tordesillas-Gutiérrez, D., et al. (2014). A Disrupted-in-Schizophrenia 1 Gene Variant is Associated with Clinical Symptomatology in Patients with First-Episode Psychosis. Psychiatry Investigation, 11(2), 186–191.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Vázquez-Bourgon, J., Ayesa-Arriola, R., Fatjó-Vilas, M., Roiz-Santiañez, R., Fañanás, L., Crespo-Facorro, B. (2015). Effect of DISC1 polymorphisms on the long-term course of neurocognitive deficits in non-affective psychosis. European Psychiatry, in Press.Google Scholar
  45. Wang, Q., Jaaro-Peled, H., Sawa, A., & Brandon, N. J. (2008). How has DISC1 enabled drug discovery? Molecular and Cellular Neuroscience, 37, 187.fc–195.fc.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Psychiatry, University Hospital Marqués de Valdecilla, School of MedicineUniversity of CantabriaSantanderSpain
  2. 2.Centro Investigación Biomédica en Red Salud Mental, CIBERSAMMadridSpain
  3. 3.Instituto de Investigación Marqués de Valdecilla, IDIVALSantanderSpain
  4. 4.Departament de Biologia Animal, Facultat de Biologia, Institut de Biomedicina de la Universitat de Barcelona (IBUB)Universitat de BarcelonaBarcelonaSpain
  5. 5.Institute of Psychiatric Phenomics and Genomics (IPPG) and Department of Psychiatry-Molecular NeurobiologyLudwig Maximilian University of MunichMunichGermany
  6. 6.Department of Experimental Clinical Medicine, Inter-University Center for Behavioral Neurosciences (ICBN)University of UdineUdineItaly

Personalised recommendations